Principal Investigator:
Jack Burns, University of Colorado Boulder

Co-Investigators:
Stuart Bale, U. California at Berkeley
Richard Bradley, NRAO

NASA Lead Center:
NASA Ames Research Center
DAPPER Project Team Members

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Position</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Jack Burns</td>
<td>PI</td>
<td>CU Boulder</td>
</tr>
<tr>
<td>2.</td>
<td>Neil Bassett</td>
<td>Data Pipeline</td>
<td>CU Boulder</td>
</tr>
<tr>
<td>3.</td>
<td>Joshua Hibbard</td>
<td>Data Pipeline</td>
<td>CU Boulder</td>
</tr>
<tr>
<td>4.</td>
<td>Keith Tauscher</td>
<td>Data Pipeline</td>
<td>CU Boulder</td>
</tr>
<tr>
<td>5.</td>
<td>Jill Bauman</td>
<td>PM</td>
<td>NASA Ames</td>
</tr>
<tr>
<td>6.</td>
<td>Stephanie Morse</td>
<td>PSE</td>
<td>NASA Ames</td>
</tr>
<tr>
<td>7.</td>
<td>David Rapetti</td>
<td>Data Pipeline</td>
<td>NASA Ames</td>
</tr>
<tr>
<td>8.</td>
<td>Tim Snyder</td>
<td>S/C Engineer</td>
<td>NASA Ames</td>
</tr>
<tr>
<td>9.</td>
<td>Rich Bradley</td>
<td>Co-I: Receiver; High-band Antenna</td>
<td>NRAO</td>
</tr>
<tr>
<td>10.</td>
<td>David Bordenave</td>
<td>Antennas/receiver</td>
<td>NRAO</td>
</tr>
<tr>
<td>11.</td>
<td>Bang Nhan</td>
<td>Antennas/receiver</td>
<td>NRAO</td>
</tr>
<tr>
<td>12.</td>
<td>Nicholas Gelles</td>
<td>PM-NRAO</td>
<td>NRAO</td>
</tr>
<tr>
<td>13.</td>
<td>Stuart Bale</td>
<td>Co-I: Instrument; Low-band Antenna</td>
<td>UC Berkeley</td>
</tr>
<tr>
<td>14.</td>
<td>Keith Goetz</td>
<td>Antenna SE</td>
<td>U. Minn</td>
</tr>
<tr>
<td>15.</td>
<td>Lindsey Hayes</td>
<td>PM-UCB</td>
<td>UC Berkeley</td>
</tr>
<tr>
<td>16.</td>
<td>David Pankow</td>
<td>Antenna Engineer</td>
<td>UC Berkeley</td>
</tr>
<tr>
<td>17.</td>
<td>Marc Pulupa</td>
<td>Receiver Engineer</td>
<td>UC Berkeley</td>
</tr>
</tbody>
</table>
Radio wave Observations at the Lunar Surface of the photoElectron Sheath = ROLSES

- **Science Goals:**
 - determine the photoelectron sheath density from ~1 to ~3 m above the lunar surface.
 - demonstrate detection of solar, planetary, & other radio emission from lunar surface
 - detect dust impacting NOVA-C lander or antennas
 - measure reflection of incoming radio emission from lunar surface and below
 - Measure RFI from terrestrial transmitters
 - Aid development of lunar radio arrays.

- **Team:** Robert MacDowall, William Farrell, Damon Bradley, Nat Gopalswamy, Michael Reiner, Ed Wollack, Jack Burns, David McGlone, Mike Choi, Scott Murphy, Rich Katz, Igor Kleyner

- **Status:** ROLSES scheduled to land on lunar nearside in October 2021 using Intuitive Machines Nova-C lander.
OBJECTIVE 1:
- Determine the level of (dis)agreement with the standard cosmological model caused by dark matter in the Dark Ages.

<table>
<thead>
<tr>
<th>Redshift (z)</th>
<th>Time (billions of Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>~0.004</td>
</tr>
<tr>
<td>30</td>
<td>~0.5</td>
</tr>
<tr>
<td>20</td>
<td>~1</td>
</tr>
<tr>
<td>15</td>
<td>~9</td>
</tr>
<tr>
<td>12</td>
<td>~13</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

EM Spectrum
- 10 MHz
- 60 MHz
- 120 MHz

OBJECTIVE 2:
- Determine the level of excess cooling above the adiabatic limit for Cosmic Dawn.
- Determine when the first stars and black holes formed.

Will the observed behavior of redshifted neutral hydrogen redefine the standard cosmological model?

21-cm spectrum has broad absorption troughs corresponding to the Dark Ages and Cosmic Dawn.

DAPPER uses the 21-cm all-sky signal to observe redshifts z = 83-12, associated with the Dark Ages and the Cosmic Dawn.

DAPPER separates Galaxy foreground from 21-cm signal using differences in spectral shapes, spatial structure, and polarization.
Mission Overview

- 2 Frequency Bands: 18-40 MHz and 60-110 MHz.
- Measure all 4 Stokes parameters.
- Spin spacecraft at 2-5 rpm for dynamic polarimetry.
- Integration time: 5000 hrs at low band and 500 hrs at high band to achieve ~20 mK thermal noise.
- Low 50×125 km equatorial lunar orbit to maximize time in radio quiet cone.

DAPPER Low Band Antenna

Four deployable wire antenna units (\(~3.5\text{-}m\) length), arranged in two, orthogonal co-linear pairs.

These four physical monopoles function as two cross-dipoles, meeting the requirement for dual polarization.

The thin wire antennas are wound on spools and deployed by commanded motor-drive in the spin-plane of the spacecraft.
Low Band Wire Antenna Heritage

DAPPER will use fine wire, rather than a wire harness, simplifying the design.

The DAPPER antenna enclosure will be designed to optimize antenna impedance.

A THEMIS/EFI spin plane boom system. The THEMIS mission successfully deployed 20 of these units on orbit. The DAPPER wire boom antennas derive directly from the THEMIS/EFI and Van Allen Probe (RBSP) units.
Low Band Wire Antenna Beams

18 MHz

27 MHz

36 MHz

45 MHz
High Band Patch Antenna Design

Baseline Design
A rendering of the baseline design made from solid dielectric materials is shown in Fig. 3 along with a cut-away view, where the middle layer of metal and the four terminal connections are visible.

Figure 3: Rendering of the baseline patch antenna. Panel a) is an overall view, and b) is a cutaway showing the middle metal layer and feed connections.
BaTiO$_3$ is the most widely used ferroelectric material, and even sixty years after its discovery, it is the most important multilayer ceramic dielectric.
Beam Patterns (65, 85, 95, 110 MHz)
Patch Antenna Heritage

Galileo in-orbit patch. Four stacked layers of Kapton.

Patch antennas have been used primarily for TT&C and ISL applications.

Table 79: Constellation ISL Comparison

<table>
<thead>
<tr>
<th>Mission</th>
<th>Link</th>
<th>Band</th>
<th>Antenna type</th>
<th>Data-rate</th>
<th>Distance</th>
<th>Link margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSETTA</td>
<td>Orbiter-Lander</td>
<td>S</td>
<td>Patch</td>
<td>16 kbps</td>
<td>150km</td>
<td>14,8 dB</td>
</tr>
<tr>
<td></td>
<td>Lander-Orbiter</td>
<td>S</td>
<td>Patch</td>
<td>16,38 kbps</td>
<td>150 km</td>
<td>15,5 dB</td>
</tr>
<tr>
<td>PRISMA</td>
<td>RRFR</td>
<td>S</td>
<td>X-pole</td>
<td>12 kbps</td>
<td>30 km</td>
<td>18,1 dB</td>
</tr>
<tr>
<td>CanX 4&5</td>
<td>ISL</td>
<td>S</td>
<td>Patch</td>
<td>10 kbps</td>
<td>5 km</td>
<td>19,2 dB</td>
</tr>
<tr>
<td>NODES</td>
<td>ISL</td>
<td>UHF</td>
<td>Monopole</td>
<td>9,6 kbps</td>
<td>100 km</td>
<td>33,8 dB</td>
</tr>
<tr>
<td>TSX-TDX</td>
<td>P-P @90°@</td>
<td>S</td>
<td>Patch</td>
<td>31,25 kbps</td>
<td>1,25 km</td>
<td>12,0 dB</td>
</tr>
<tr>
<td>Sar-Lupe</td>
<td>Low rate</td>
<td>S</td>
<td>Patch</td>
<td>300 kbps</td>
<td>50 km</td>
<td>13,5 dB</td>
</tr>
<tr>
<td></td>
<td>High Rate</td>
<td>S</td>
<td>Patch</td>
<td>6000 kbps</td>
<td>50 km</td>
<td>0,5 dB</td>
</tr>
</tbody>
</table>

Following from https://directory.eoportal.org/
DAPPER Receiver Design

Four Channel Correlation Receiver

Diagram showing the components and flow of a DAPPER receiver design, including Low Band Wire Antenna (18-40 MHz), High Band Patch Antenna (60-110 MHz), Four Channel Receiver, Temperature Controller, Switch, Battery Charger, 4 Ch ADC, Burst Buffer, 4 Ch Correlation, Signal Processor, Battery Supply & Conditioning, Data Package & Storage, Atomic Clock, Monitor & Control Computer, Spacecraft Attitude Monitor, and Science Instrument.
Receiver Concept

Current Status

- Initial test of 310 MHz POC completed
- First set of ADS models completed
- Final 310 MHz Rcvr board completed
- Correlation tests to begin shortly
- Initial 60-110 MHz Rcvr design started
DAPPER Heritage
Cosmic Twilight Polarimeter – Initial Tests of Dynamic Polarimetry

Bunker Mode - Diagram

- In order to correct for long-duration drifts in timing, a closed-loop controller is proposed.
- Between each set of observations, the controller will adjust the
- Duration of the previous bunker mode is timed by the payload.

Diagram:
- **Bunker Mode Controller**
- **Bunker Circuit Thermistor**
- **Payload Timer**
- **Platform Avionics**

Flowchart:
- Current temperature
- New target time
- Reset duration
- Awake signal
- Post-bunker report on bunker duration
- Time Correction
Signal Extraction and Parameter Constraints

Observation strategy (polarization and time dependence; Paper III)

Measured data

Frequency space signal fitting using training sets (Paper I)

Parameter space signal fitting using MCMC (Paper II)

See also Workshop talks by Rapetti, Tauscher, Basset, & Hibbard
Simulated DAPPER observations including statistical plus systematic uncertainties. DAPPER will distinguish at $>5\sigma$ between a standard cosmology model and exotic physics models.
Summary & Conclusions

• NASA Commercial Lunar Payload Services (CLPS) program will deliver radio science payload to the lunar surface next year (ROLSES).
• DAPPER will take advantage of transportation & communication infrastructure associated with NASA’s Artemis.
• DAPPER will make spectral observations from lunar orbit of the Dark Ages & Cosmic Dawn using the highly redshifted 21-cm signal.
• Instrument development continues to refine antenna designs, receiver, & data pipeline.
Mechanical Mode Effects on Electromagnetic Performance: Tuning

Antenna Tuning for several wire twist angles

Efficiency for several wire twist angles
Chromaticity of the DAPPER Antennas

DAPPER Beam Solid Angle

- Blue line: 7.57m Wire Dipoles (18-45 MHz)
- Orange line: Patch Antenna (65-110 MHz)

\(\frac{\Omega_B}{4\pi} \) vs. \(\nu \) (MHz)
The 21-cm Global signal

Spectral Features:

A: Dark Ages: test of standard cosmological model
B: Cosmic Dawn: First stars ignite
C: Black hole accretion begins