Cosmology from the Moon: Observing the Dark Ages of the Early Universe from the Farside

Principal Investigator:
Dr. Jack Burns, University of Colorado Boulder

Co-Investigators:
Dr. Stuart Bale, University of California at Berkeley
Dr. Richard Bradley, National Radio Astronomy Observatory

NASA Lead Center:
NASA Ames Research Center
The First Stars
M. Norman, B. O’Shea et al.
What is the 21-cm Global signal?

Spectral Features:

A: Dark Ages: test of standard cosmological model

B: Cosmic Dawn: First stars ignite

C: Black hole accretion begins
EDGES: Key Features

How to amplify signal by a factor of 2-3?

\[\delta T_b \simeq 27 \bar{x}_H (1 + \delta) \left(\frac{\Omega_{b,0} h^2}{0.023} \right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1 + z}{10} \right)^{1/2} \left(1 - \frac{T_R}{T_S} \right) \text{ mK} \]

1. Increase \(T_R \) via Dark Matter decay or synchrotron radiation from black holes, galaxies.
 - Feng & Holder, Ewall-Wice et al., Fraser et al., Mirocha & Furlanetto

2. Alter the cosmology.
 - McGaugh, Costa et al., Hill et al.

3. Decrease \(T_S \) via baryon-Dark Matter interactions which cools the hydrogen.
 - Barkana, Munoz & Loeb, Fialkov et al., Berlin et al., Slatyer & Wu
DARK COSMOLOGY: INVESTIGATING DARK MATTER IN THE DARK AGES

OBJECTIVE 1:
- Determine the level of (dis)agreement with the standard cosmological model caused by dark matter in the Dark Ages.

OBJECTIVE 2:
- Determine the level of excess cooling above the adiabatic limit for Cosmic Dawn.
- Determine when the first stars and black holes formed.

Will the observed behavior of redshifted neutral hydrogen redefine the standard cosmological model?

21-cm spectrum has broad absorption troughs corresponding to the Dark Ages and Cosmic Dawn

DAPPER uses the 21-cm all-sky signal to observe redshifts z = 83-12, associated with the Dark Ages and the Cosmic Dawn.

DAPPER separates Galaxy foreground from 21-cm signal using differences in spectral shapes, spatial structure, and polarization.

Legend:
- Galactic foreground
- [21-cm signal]
 - Foreground's spatial structure is irregular
 - Foreground brightness
 - Foreground is polarized, neutral hydrogen is not

EM Spectrum
- 10 MHz
- 60 MHz
- 120 MHz

Time (billions of Years)
- 0.004
- 0.5
- 1
- 9
- 13

Big Bang
- Cosmic Dark Ages
- Cosmic Dawn
- Reionization

Modern Galaxies Form
- Hubble Ultra-Deep Field
- JWST/WFIRST

Initial Stages
- DAPPER
- HERA
- EDGES

First Galaxies & Black Holes
- First Stars
Mission Overview

• DAPPER will deploy from vicinity of NASA’s Lunar Gateway & transfer to a 50×125 km low lunar orbit.

• Operates over primary bandwidth of $17-38$ MHz ($83 \geq z \geq 36$) and sparse secondary sampling from $55-107$ MHz ($25 \geq z \geq 12$).

• Low noise amplifiers & dual channel receiver to measure all 4 Stokes parameters. Based upon FIELDS instrument currently flying on Parker Solar Probe (TRL = 8).

• Projection-induced polarimetry used to independently constrain foreground.

• Baseline mission duration = 26 months.
Lunar Farside: No RFI or Ionosphere!

Wind/Waves data near the Moon
Spacecraft
- Deep Space Xplorer bus by Bradford Space Industries.
- High impulse, high ΔV.

Antennas
- Deployable, spinning, wire boom antennas arranged in 2 orthogonal, co-linear pairs.
- 3 length deployments to “tune” instrument.
DAPPER Instrument

- **High heritage** from Parker Solar Probe, THEMIS, Van Allen Probes.
- **Receiver gain variations:**
 - Measured with high fidelity by frequency tones.
 - Controlled by stabilizing temperatures to \(\pm 1 \, ^{\circ}\text{C} \).
- **Calibration:**
 - Pre-launch lab measurements.
 - In-flight verification.
 - Fitting receiver characteristics using pattern recognition/MCMC pipeline.
Removal of RFI using Kurtosis & Neural Network

Separate foreground from 21-cm signal using polarization & SVD

End-to-end simulation with sky + instrument systematics, signal models

DAPPER separates standard cosmology from added-cooling at >5σ
Summary

• The redshifted 21-cm Global Spectrum at $\lesssim 30$ MHz offers the prospect of probing the nature & character of Dark Matter in the Dark Ages.
• These observations need to be conducted in space, in orbit of the Moon, to eliminate Earth ionospheric, RFI, & ground effects.
• Projection-induced polarization provides an independent measure of the galactic foreground.
• We developed a method which transforms the 21-cm signal extraction task from one where absolute knowledge of system parameters is required to one of composing training sets where knowledge of the modes of variation are used.
• DAPPER will differentiate between the standard cosmology model & added cooling models at $>5\sigma$ level.

MOON GAZING

Nearly 50 years ago, NASA put a telescope on the Moon. Astronomers have been trying to return ever since

By Daniel Clery

FARSIDE array
P.I.s J. Burns & G. Hallinan