A Space-Based Observational Strategy for Hydrogen Cosmology Using Dynamic Polarimetry and Pattern Recognition

Jack Burns¹, Bang Nhan¹,², Rich Bradley², Keith Tauscher¹, David Rapetti¹,³, Eric Switzer⁴
¹University of Colorado Boulder, ²NRAO, ³NASA ARC, ⁴NASA GSFC
What is the 21-cm Global signal?

Spectral Features:

A: Dark Ages (test of standard cosmological model)

B: First stars ignite (Cosmic Dawn)

C: Black hole accretion begins

Models courtesy of Jordan Mirocha
Why is this a Challenging Observation?

Foreground Characteristics
- Spectrally smooth
- Spatial structure
- Polarized

Signal Characteristics
- Spectral structure
- Spatially isotropic
- Unpolarized

Weighting by antenna beam introduces spectral structure in foreground (e.g., Bernardi et al. 2015, Mozdzen et al. 2016)
How Can Polarimetry Help?

Ideal Simulation of the Dynamic & Asymmetric Foreground

- **A. 4 symmetric point sources** revolving about pointing center
- **B. 3 weak sources & 1 strong source** revolving
- **C. Actual sky map** (Haslam et al. 1982) centered on North Celestial Pole

Remember: No net polarization expected from isotropic global 21-cm signal
The Cosmic Twilight Polarimeter (CTP): Dynamic Polarimetry Testbed

Nhan, Bradley, & Burns, 2018

Operates over 60-80 MHz

Nhan, Bradley, & Burns, 2018
Initial Results from the Cosmic Twilight Polarimeter

Data consist of Stokes I,Q,U,V in frequency channels as a function of time at \(\approx 82 \) MHz.

After extensive RFI editing and averaging, Fourier transform binned data channels to measure dynamical frequencies \((n) \) for Stokes Q,U.

\(n = 2 \) is expected twice diurnal signal and is tentatively detected in these data.

Caveats:

- Simulation only contains first order models of beam distortions due to ground and horizon effects.
- Very few clean channels due to severe RFI.
How can we extract the 21-cm signal?

Employ Pattern Recognition Techniques:
- Extract basis vectors from training sets using **Singular Value Decomposition (SVD)**
- SVD is a machine learning tool equivalent to:
 - Principal Component Analysis (PCA)
 - EigenVector Decomposition (EVD)

See also at the meeting:
- Next talk by D. Rapetti, 312.03, *SVD/MCMC Pipeline for Separating the Global 21-cm Signal from Foregrounds/Systematics.*
- Poster by K. Tauscher, 319.05, *Characterizing the 21-cm absorption trough with pattern recognition and a numerical sampler.*
How much difference does polarization data make?

Extrapolation into the Dark Ages based upon EDGES Results

- **68 and 95% (dark and light gray) bands:** EDGES measurements of Cosmic Dawn.
- **Black, dashed curve:** Example of the standard astrophysical models inconsistent with EDGES results.
- EDGES results (Bowman et al. 2018, Nature, 555, 67) require exotic physics such as e.g. interactions between baryons and dark matter particles.
- **Beyond-standard-physics** models of the Dark Ages trough consistent with the EDGES Cosmic Dawn signal:
 - **Blue curve:** Maximum cooling rate is the adiabatic rate, but occurring earlier.
 - **Red curve:** Cooling rate both lower and earlier.
 - **Magenta curve:** Cooling rate not monotonically declining (i.e. there is a ‘preferred epoch’ of excess cooling).

Models courtesy of Jordan Mirocha
The Dark Ages Polarimetry PathfindER (DAPPER): A Space-based SmallSat Testbed

- DAPPER will be placed in proximity to NASA’s Lunar Orbital Platform-Gateway to reduce Earth-based RFI.
- Operates over bandwidth of 15-30 MHz ($93 \geq z \geq 46$).
- Dual orthogonal ≈ 7-m tip-to-tip wire dipole antennas deployed successfully many times (e.g., WIND/WAVES).
- Low noise amplifiers & dual channel receiver to measure all 4 Stokes parameters. Based upon FIELDS instrument to be flown on Parker Solar Probe (collaboration with S. Bale, Berkeley).
Summary and Conclusions

• We developed a method which transforms the 21-cm signal extraction task from one where *absolute knowledge of system parameters* is required to one of *composing training sets where knowledge of the modes of variation* are used.

• Applying this method to simulated 21-cm experiment data sets using dual-polarized antennas, we extracted a wide variety of input signals with a 95% confidence error of $\lesssim 30$ mK.

• The CTP ground-based prototype has tentatively detected the expected dynamic polarization signal from the Foreground.

• We are developing a SmallSat mission concept (DAPPER) to utilize both polarimetry and Pattern Recognition to detect the expected turning points in the Global 21-cm spectrum.