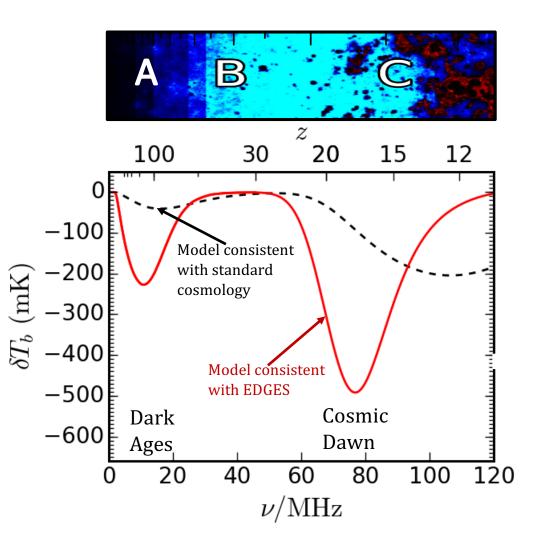
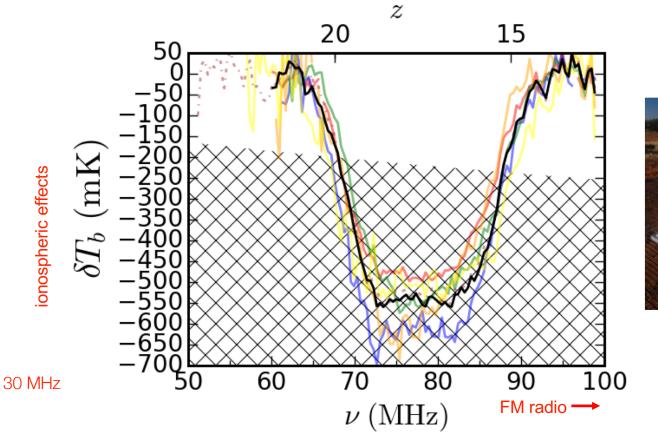


Dark Cosmology: Investigations of Dark Matter with the Dark Ages Polarimeter PathfindER (DAPPER) Jack Burns¹, Stuart Bale², Richard Bradley³, Keith Tauscher¹, David Rapetti^{1,4}, Jordan Mirocha⁵


¹University of Colorado Boulder, ²UC-Berkeley, ³NRAO, ⁴NASA Ames Research Center, ⁵McGill University

URSI National Radio Science Meeting: Cosmology & Astrophysics at Low Frequencies

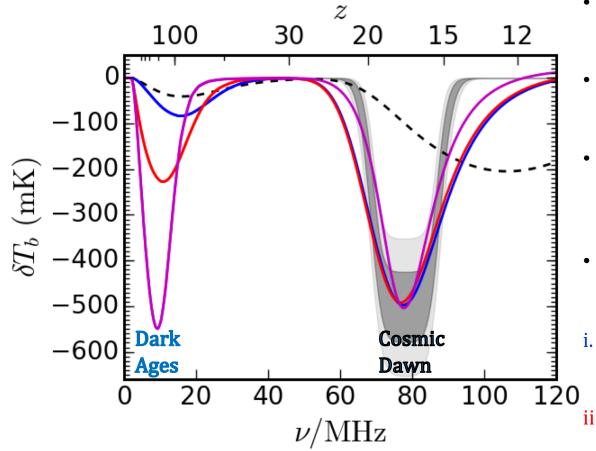
What is the 21-cm Global signal?


Spectral Features:


- A: Dark Ages: test of standard cosmological model
- B: Cosmic Dawn: First stars ignite
- C: Black hole accretion begins

EDGES: Key Features

Bowman et al. 2018, Nature, 555, 67

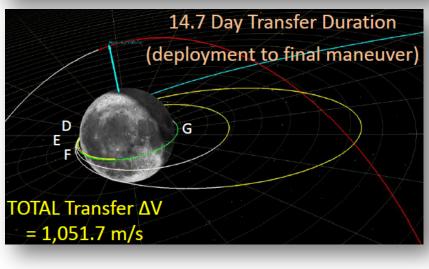

Initial Considerations

$$\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{\Omega_{b,0} h^2}{0.023}\right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm R}}{T_{\rm S}}\right) \ {\rm mK}$$

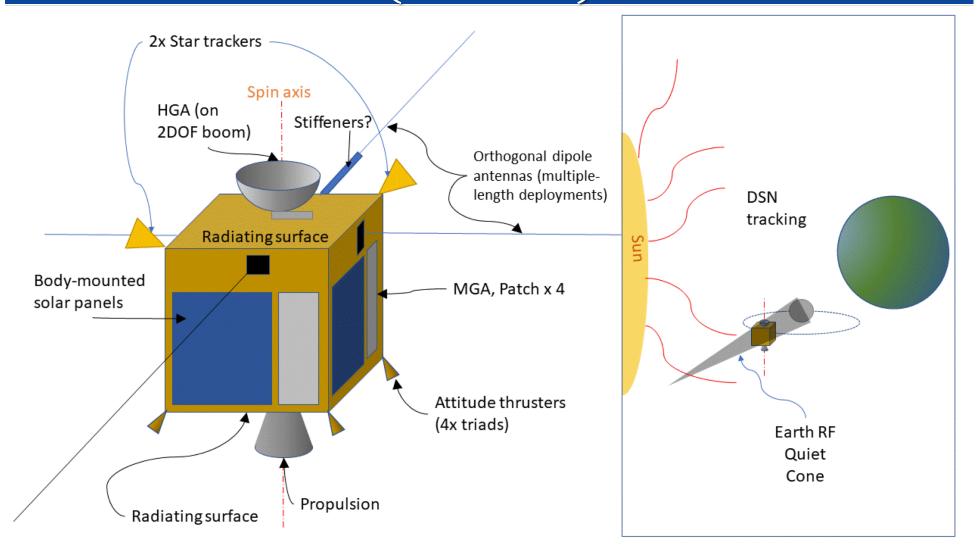
Q. How to amplify signal by a factor of 2-3?

- 1. Increase T_R via Dark Matter decay or synchrotron radiation from black holes, galaxies.
 - Feng & Holder, Ewall-Wice et al., Fraser et al., Mirocha & Furlanetto
- 2. Alter the cosmology.
 - McGaugh, Costa et al., Hill et al.
- 3. Decrease T_S via baryon-Dark Matter interactions which cools the hydrogen.
 - Barkana, Munoz & Loeb, Fialkov et al., Berlin et al., Slatyer & Wu

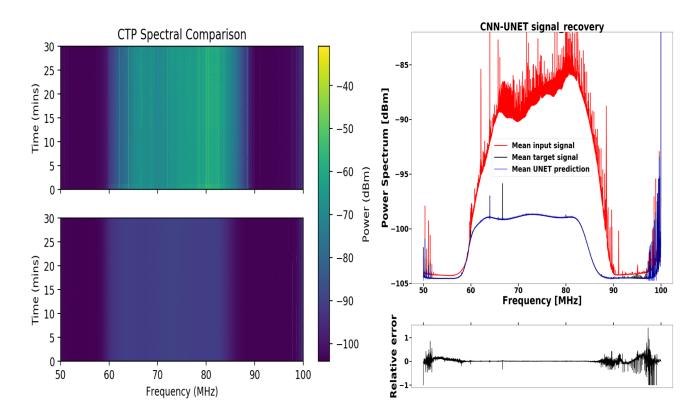
Extrapolation into the Dark Ages based upon EDGES Results


- 68 and 95% (dark and light gray) bands: EDGES measurements of Cosmic Dawn.
- Black, dashed curve: Example of the standard astrophysical models *inconsistent with EDGES results*.
- EDGES results (Bowman et al. 2018, Nature, 555, 67) *require exotic physics* such as e.g. interactions between baryons and dark matter particles.
- <u>Beyond-standard-physics</u> models of the Dark Ages trough consistent with the EDGES Cosmic Dawn signal:
 - Blue curve: Maximum cooling rate is the adiabatic rate, but occurring earlier.
- ii. Red curve: Cooling rate both lower and earlier.
- Magenta curve: Cooling rate not monotonically declining (i.e. there is a 'preferred epoch' of excess cooling).

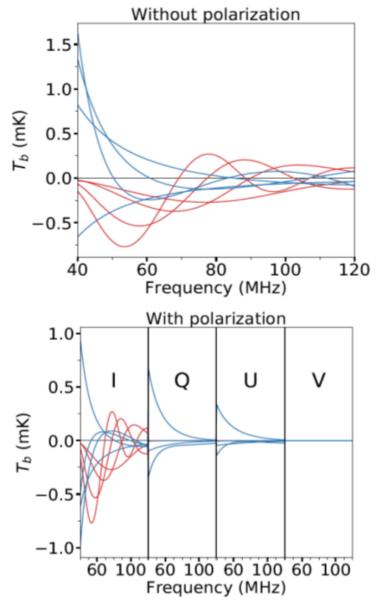
The Dark Ages Polarimeter PathfindER (DAPPER): A Space-based SmallSat Testbed


• Science Objectives:

- Search for deviations from the standard cosmological model & impact of exotic physics
- Verify EDGES results
- DAPPER will launch from NASA's Lunar Gateway & transfer to a 50×125 km low lunar orbit
- Operates over primary bandwidth of 17-30 MHz (83 ≥z≥46) and sparse secondary sampling from 30-100 MHz (46 ≥z≥13)
- Bandwidth determined by antenna resonances from 3 length deployments of thin-wire, spinning, dual orthogonal dipole antennas (TRL=8) ranging from 4.4-7.6 m tipto-tip
- Low noise amplifiers & dual channel receiver to measure all 4 Stokes parameters. Based upon FIELDS instrument currently flying on Parker Solar Probe (TRL = 8)
- Projection-induced polarimetry used to independently constrain foreground



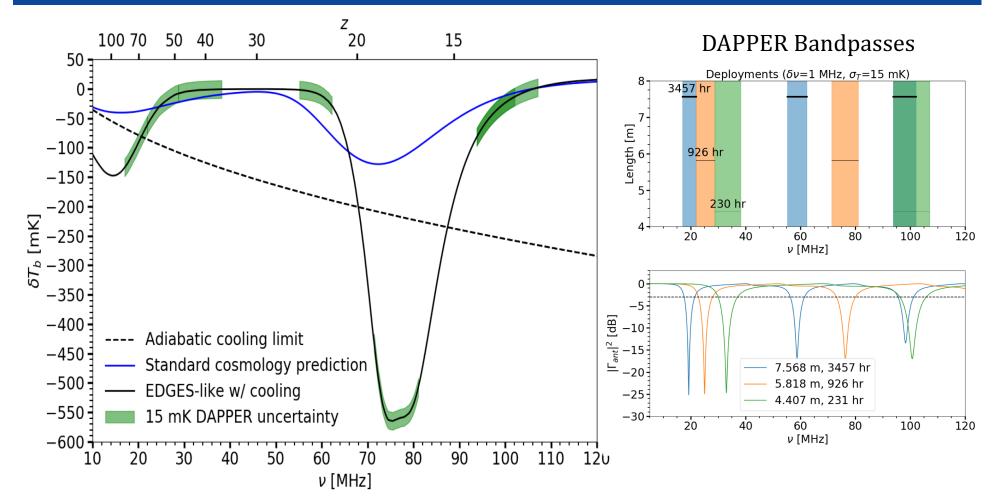
The Dark Ages Polarimeter PathfindER (DAPPER)



DAPPER: Internal RFI Mitigation Strategy

- Active Control
 - Faraday Cage + Polyphase Filters
 - Crystal Oscillator Masking of Internal RFI
- Knowledge-Based Measurement of RFI
 - Frequency-Tone injection system to accurately measure gain variations
 - Neural Network Separation of RFI from Sky + 21-cm spectrum

How can we extract the 21-cm signal?


Employ Pattern Recognition + Dynamic Polarimetry Techniques:

- Extract basis vectors from training sets using Singular Value Decomposition (SVD)
- SVD is a machine learning tool equivalent to:
 - Principal Component Analysis (PCA)
 - EigenVector Decomposition (EVD)

See also talks by:

- Rapetti+, *Full Data Analysis Pipeline*, J4-15, 11:40
- Tauscher+, Challenges of Global EoR Detection, J5-3, 13:45
- Bordenave+, The Cosmic Twilight Polarimeter, J5-9, 15:30

What is the expected DAPPER Performance?

DAPPER will measure amplitude of 21-cm spectrum to the level required to distinguish (at >5 σ) the standard cosmological model from that of additional cooling derived from current EDGES results

Team Members & Recent Publications

Team Member	Expertise & Experience	Role
J. O. Burns, U. Colorado	cm, meter-wave observations; CTP; data processing; cosmology simulations	PI. Ensures mission success, mission reporting; data analysis
S. D. Bale, UC Berkeley	P.I. for Parker Solar Probe FIELDS and STEREO/WAVES; meter-wave instrumentation	Co-I. Instrument scientist
R. Bradley, NRAO	Meter-wave instrumentation; CTP; PAPER; HERA	Co-I. Polarimeter; receiver
NASA Ames Research Center	Extensive lunar mission experience including LADEE and LCROSS	Mission Design; management, Navigation
J. Bowman, ASU	Meter-wave instruments; P.I. EDGES; HERA	Collaborator; RF instrument
H. Falcke, Radbound U.	Meter-wave instrumentation; NCLE lunar radio experiment	Collaborator; RFI environment
S. Furlanetto, UCLA	21-cm cosmology theory	Collaborator; modeling of DAPPER spectrum
M. Klein- Wolt, Radbound U.	Meter-wave instrumentation; NCLE lunar radio experiment	Collaborator; RFI environment
R. MacDowall, GSFC	Meter-wave space instruments; Solar Probe, STEREO, WIND	Collaborator; RFI environment; RF instrument
J. Mirocha, McGill U.	21-cm cosmology theory	Collaborator; modeling of DAPPER spectrum
B. Nhan, U. Virginia	Meter-wave instrumentation; CTP	Collaborator; polarimeter
D. Rapetti, U. Colorado	Signal extraction & modelling	Postdoc; data analysis pipeline
K. Tauscher, U. Colorado	Signal extraction & modelling	Graduate student; data analysis

- **Burns et al.** 2017, A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21cm Global Spectrum, ApJ, 844, 33.
- **Tauscher, K., Rapetti, D., Burns, J., Switzer, E.** 2018, Global 21-cm Signal Extraction from Foreground & Instrumental Effects I: Pattern Recognition Framework for Separation Using Training Sets, ApJ, 853, 187.
- **Tauscher, K., Rapetti, D., Burns, J.** 2018, *A new goodness-of-fit statistic and its application to 21-cm cosmology,* Journal of Cosmology and Astroparticle Physics, Issue 12, article id. 015.
- Nhan, B., Bordenave, D., Bradley, R., Burns, J., Klima, P., Tauscher, K., Rapetti, D. 2019, A Proof of Concept Experiment to Constrain the Foreground Spectrum for Global 21 cm Cosmology Through Projection-Induced Polarimetry, submitted to ApJ., arXiv:1811.04917.

Summary and Conclusions

- The redshifted 21-cm Global Spectrum at ≤30 MHz offers the prospect of probing the nature & character of Dark Matter in the Dark Ages.
- These observations need to be conducted in space, in orbit of the Moon, to eliminate Earth ionospheric & RFI effects.
- Projection-induced polarization provides an independent measure of the galactic foreground.
- We developed a method which transforms the 21-cm signal extraction task from one where *absolute knowledge of system parameters* is required to one of *composing training sets where knowledge of the modes of variation* are used.
- We are developing a SmallSat mission concept (DAPPER) to utilize both polarimetry and pattern recognition to detect deviations from the standard cosmology model.