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High-redshift Universe
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Credit: NAOJ

Credit: Planck Collaboration (2016), 
AA, 594:A13

CMB
z ~ 1,100

δTCMB /TCMB

~ 10-5 Gunn-Petterson Troughs 
EoR ends @ z ~ 6

Credit: Fan et al. (2006)
ARAA, 44:415-462

Unobserved?

HI 21-cm 
probe

EoR starts @ zre < 17

Electron 
scattering 

optical depth

τe
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21-cm spin-flip 
transition of HI atoms

Evolution of global 
21-cm signal

Global = spatially averaged 
= sky averaged

i.e., no spatial information

Credit: Burns et al. (2018), ASR 49:433-450

First galaxies

First BHs heating

Reionization

Ionization history

Thermal historyBoth function of 
redshift z

Measured 
against CMB:

CMB 

Credit: Furlanetto (2006), MNRAS, 371:867-878



Current observational efforts 
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• Drift scans with antennas pointing at 
zenith 

• Total-power measurement: (Foreground 
+ 21 cm) in a single  averaged spectrum

→ Environment, measurement & systematic variations

Single element
BIGHORNS (AU) EDGES (USA)

SARAS (IN)

EDGES II (USA)

SCI-HI (MEX/USA)

LEDA/LWA (USA)

LOCOS/LOFAR 
(NL)

Compact Array

Lower cost than large arrays



Why is it a tricky measurement?
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Credit: Burns et al. (2017), ApJ, 844:33

1. Large dynamic range             
(4-6 orders of magnitude)

2. Beam is a complex 
function of frequency

Beam weighted
measurement

Foreground parametrization: 

Antenna Temperature
(Foreground+ 21 cm)



Conventional Foreground Removal
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Haslam map 
@ 408 MHz

Spectrally smooth foreground :

Beam corrupts foreground smoothness 
→ Large residual 

Example

Spectral Structures 
from Beam

Example



Recent measurement (March 2018)
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→ Need independent confirmation from separate 
experiment & different approach and systematics 

Credit: Bowman et al. (2018) Nature, 555:67

•EDGES-II (low-band 50-100 MHz):
Trough @ 78 ± 1 MHz
Amplitude ≈ 0.5+0.5

-0.2 K
FWHM ≈ 19+4

-2 MHz

Different trials & 
instrument 

configs

Sophisticated foreground parametrization:

Ionosphere 
refraction

Ionosphere 
absorption



What do we want?

• Measure foreground spectrum directly without 
assuming any parametrization for fitting

• Measure foreground separately without being 
“convoluted” with the background 21-cm signal 
as in a single total-power spectrum



Projection-induced polarization effect (PIPE)
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→  Asymmetry foreground induced periodic net polarization
→ Isotropic global background = zero net polarization

→ Geometric effect, NOT intrinsic foreground polarization 
(much weaker & washed out by spatially averaging)

Periodic 

Zero net

Cross dipole

NCP

Haslam map 
@ 408 MHz

Foreground 
Anisotropy

Credit: Haslam, et al. (1982), NASA archive data



Stokes formalism
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Total Stokes parameters:

→ Net Stokes vector measures 
the projection-induced polarization

Foreground ONLY



Simulation:
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Total Stokes I Net Stokes Q

Foreground 
+ 21-cm

FFT

Foreground 
only

FFT

Window fn.

Twice diurnal

Constant FOV

≈Dynamical freq.

Credit: Nhan et al. (2017) ApJ , 836:90



Foreground subtraction with 
induced Stokes spectra
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Scale & 
subtract

Credit: Nhan et al. (2017) ApJ , 836:90

Only scaling error

Caveats: 
• Gaussian beam
• Frequency-independent beam
• Observed at North Pole

→ Free from horizon cutoff of 
northern sky



Cosmic Twilight Polarimeter (CTP)
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Credit: Nhan et al. (2017) ApJ , 836:90

• Full Stokes, not just total power
• Point antenna at North Celestial 

Pole (NCP)

What’s new vs other 
experiments?

Charlottesville, VA
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Stokes U Spectra (from FFT)

1) S/N for (n=2) = 4.23

2) Relative harmonic ratio:
▪ Sim(n=1:2) = 2.24
▪ Obs(n=1:2) = 1.83 ± 0.5

DC

Diurnal

Twice Diurnal

Noise

n = 2

Simulation

Marginal detection of the twice 
diurnal
• Don’t have entire band to 

confirm the spectral index of 
the foreground

n = 1
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Ground effects

Tilted to 
ground

Parallel to 
ground

Horizon Obstruction

Beam simulation using 
CST (EM sim software)
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Idealized Model 
Model 

(CST tilted beam + horizon)

Model with ground effect on beam & horizon cutoff 
explains the observed characteristics in the CTP’s Stokes 

spectra



Takeaways
• New approach to constrain foreground using 

projection induced polarization 
– 1) Move the antenna high off the ground to reduce 

the corruption
– 2) Move the experiment to higher latitude to reduce 

horizon obstruction

• Full Stokes provides higher degree of freedom to 
constrain foreground directly & separately from 
background 21-cm signal (vs. total-power)

• Great potential to do a follow up observation for 
the global 21-cm signal to confirm EDGES’s result
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