
EDGES Calibration Pipeline

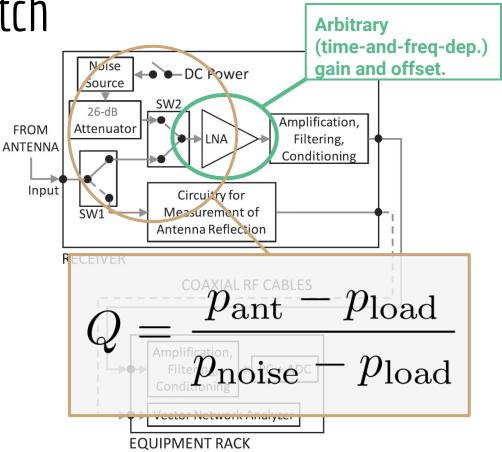
Steven Murray + EDGES Collaboration 21cm Global Workshop, Cambridge, 2020

Outline

- 1. Intro to EDGES calibration
- 2. A more informative calibration
- 3. Effects on Nature Paper results
- 4. Plans for the future

Introduction to EDGES calibration

1


The Three-Position Switch

"Q" removes gain.

Residual structure due to differing paths.

Get switch spectral structure *in the lab*. Assumed *time-independent*.

$$\hat{T} = A_{\nu}Q + B_{\nu}$$

Lab Calibration

• **Monsalve (2017)** gives details for modelling A and B, dependent on S₁₁ of sources.

$$K_0 A_{\nu} = 400C_1$$

$$K_0 B_{\nu} = (300 - C_2) + K_1 T_{\text{unc}} + K_2 T_{\cos} + K_3 T_{\sin}$$

- Measured | Fit (Polynomial)
- Use four **known** input sources in place of antenna.
- **Iteratively** solve for the unknowns.

Z. A More Informative Calibration

Motivation

Systematics may reduce necessity of absorption feature in data (Singh 2019, Sims 2020).

Model number	Global signal model, $\delta T_{\rm b}$	Log-polynomial order, \bar{T}_{Fg}	Damped sinusoid, T_{cal}	Noise model, N	log(evidence)	Residual RMS [mK]
1		3	7	white	-4289.96 ± 0.36	255.7
2	-	4		white	-4121.56 ± 0.35	237.9
3	ARES	3	-	white	-3429.35 ± 0.25	224.4
4	ARES	4		white	-3402.66 ± 0.25	217.2
5	-	3	Equation 19	white	-2876.04 ± 0.29	223.4
6	-	4	Equation 19	white	-2185.80 ± 0.29	179.2
7	ARES	3	Equation 19	white	-2074.01 ± 0.24	189.0

What are the **physical** priors on such effects?

Sims & Pober 2020

The Problem With Iterative Fits

You don't know the **uncertainties**.

Each fitted parameter (there are ~50) has uncertainties that **should** propagate to the final spectrum as a **covariance**.

This information is **lost**.

A Bayesian Model

Set up a simple \square^2 likelihood:

$$\ln \mathcal{L}(\mathbf{Q}_{\nu}|\vec{\theta}) = -\sum_{\text{src}} \sum_{\nu} \ln \sigma_{Q}(\nu|\vec{\theta}, \text{src}) + \frac{\left[\mathbf{Q}_{\nu}^{\text{src}} - Q(\nu|\vec{\theta}, \text{src})\right]^{2}}{2\sigma_{Q}^{2}(\nu|\vec{\theta}, \text{src})},$$

Recall:

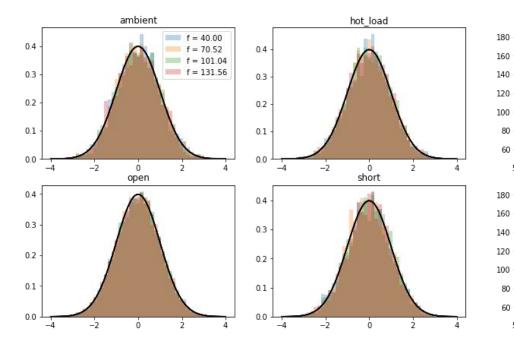
$$Q_{\rm src} = \frac{T_{\rm src}^{\rm meas} - B_{\rm src}}{A_{\rm src}}$$

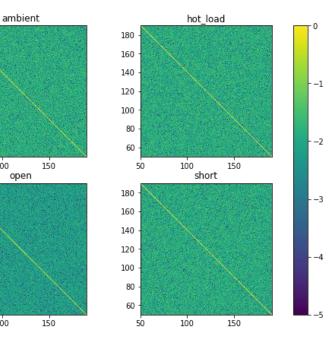
Use MCMC/Nested-Sampling to fit.

Justification of uncorrelated Gaussian Likelihood

50

50


100


100

open

Distribution of power in single channel over time (single file)

What about the model variance?

• Assuming Gaussianity and hot noise-source (and perfect impedance matching...):

$$\begin{split} \sigma_{Q_t}^2 &= \alpha \left(\frac{T_{\rm A} - T_{\rm L}}{T_{\rm NS}} \right)^2 \left[\frac{T_{\rm A}^2 + 2T_{\rm LNA}^2 + T_{\rm L}^2}{(T_{\rm A} - T_{\rm L})^2} - 2 \frac{T_{\rm L}^2 + T_{\rm LNA}^2}{(T_{\rm A} - T_{\rm L})T_{\rm NS}} \right. \\ &+ \frac{2T_{\rm L}^2 + T_{\rm NS}^2 + 2T_{\rm LNA}^2}{T_{\rm NS}^2} \right] \end{split}$$

- Non-matched solution being worked on.
- α requires a model of the spectrometer efficiency.
- For now... just **measure** the variance from data.

3. Effects on Nature Paper Results

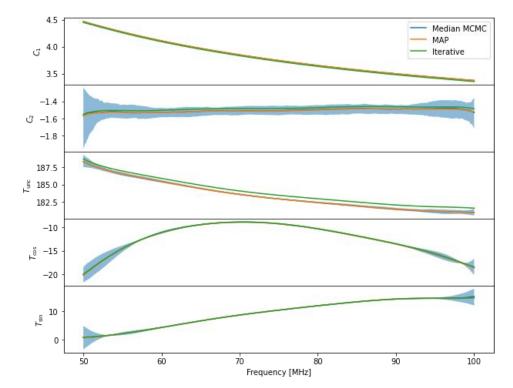
The Idea

Recalibrate & Refit B18

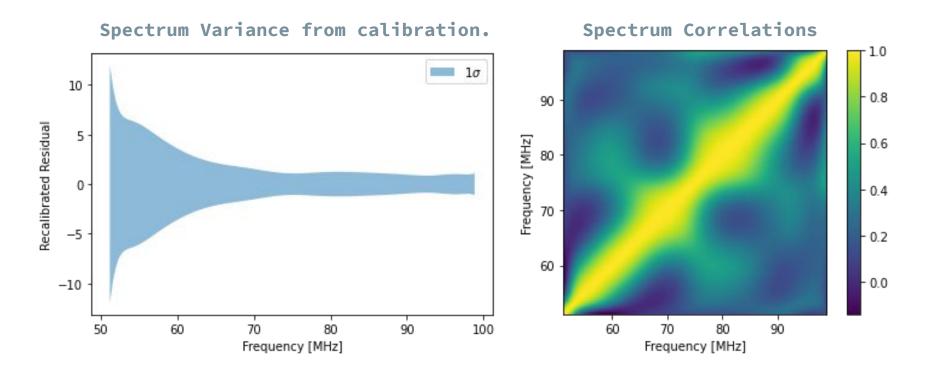
How much extra uncertainty is there on the Bowman et al. (2018) parameters, if calibration uncertainty is accounted for?

Re-Calibration of Bowman (2018) Data

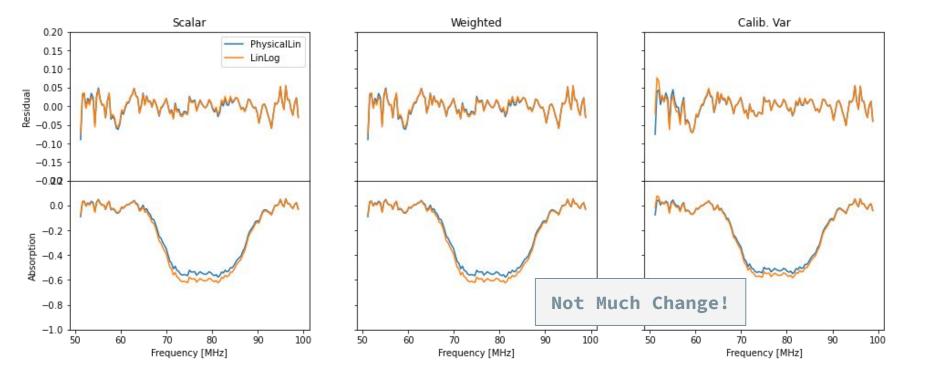
The initial process:


- 1. Generate full posterior on calibration parameters.
- 2. De-calibrate B18 data using best-fit.
- 3. Re-calibrate from posterior to generate data covariance.
- 4. Re-fit absorption+foregrounds with new covariance

Uncertainties on Calibration Parameters

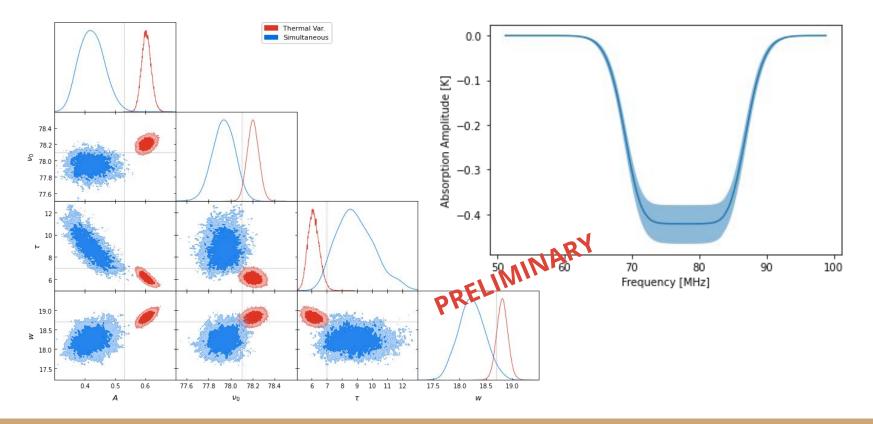

Bayesian fits mostly comparable to iterative fit (except T_{unc}).

Higher uncertainty at band edges (expected).


100-150mK overall amplitude uncertainty.

Re-Calibration of Bowman (2018) Data

Updated Fit to Bowman (2018) Data



More rigorous fit

Due to data covariance being highly structured:

- Single likelihood for *simultaneous* calibration and absorption/fg fitting.
- Re-calibrate data *within* MCMC.
- Absorption/fg likelihood has no intrinsic covariance.

Updated Fit to Bowman (2018) Data

Best-fit absorption feature is robust to increased low-frequency variance, and known calibration uncertainties.

Low frequencies significantly more sensitive to calibration errors (as expected).

Uncertainties on absorption parameters inflated by factor of ~3 after accounting for correlated calibration errors.

4. Plans for the Future

What Other Uncertainties Are There?

- Considered uncertainty of calibration model fitting.
- Other uncertainties:
 - S₁₁ measurements (and models!)
 - Beam model/correction
 - Ground-loss model
- It's the covariance, in the basis of the data, that is important.

EDGES is Getting an Upgrade

- **EDGES-3** coming in (late) 2021.
- *Raw data* from B18 to be made public, along with a full pipeline spec for reproducing results (~late 2021).
- Data from EDGES-3 to be made public after reasonable period of analysis.
- To do this, need new software...

New Software Pipeline

0

README.rst

edges-io

build passing 🖓 codecov 82%

Module for reading EDGES data and working with EDGES databases.

This package implements all necessary functionality for reading EDGES data. It's two main concerns are:

 Reading the various file formats required for EDGES data: - VNA readings - fastspec output - thermistor readings - field weather recordings - field thermlog recordings

README.md					
fastspec					
Multithreaded spectrometer code implemented in C++					
Overview					
README.md					
edges_cal					
build passing Fredecov 181% code style black					
Calculate calibration coefficients for EDGES Calibration Observations					
Installation					

EDGES Collaboration						
Collection of codes for working with EDGES of	data					
다. Repositories 9 🔗 Packages 오 People 6	ભ Teams 1 ા Projects ૹૢે Settin	gs				
Q Find a repository	Type: All - Language: All -	Customize pins				
edges-analysis ● Python क्य MIT 약0 ☆0 ① 12 (1 issue needs help) ११	1 Updated 2 hours ago	Top languages Python Jupyter Notebook				
edges-io Module for reading EDGES data and working with EDGES datab ● Python 邨 MIT 양0 ☆0 ① 2 \$\$ 1 Updated 2 hours						
edges-cal Code to calibrate EDGES data ● Jupyter Notebook কা <u>ঁ</u> দ MIT 양 0 ☆0 ① 10 ॏি 2 Upda	ted 21 hours ago	Invite someone				

Download/clone the repo and do

The Point:

We should (and will!) be accounting for complex modelling uncertainties.

Soon you can too.