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Outline

® Enumerate assumptions of all global 21-cm signal analyses

® Examine the form of assumptions for EDGES and other single spectrum
analyses

® Introduce a minimum assumption analysis
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Key assumptions of 21-cm global signal
experiments

¢. Sky-averaged radio data contains a sum of beam-weighted foreground
emission and the global signal.

2. The noise of the data follows a known or estimated distribution (usually a
zero-mean Gaussian distribution with covariance C).

3. The true beam-weighted foreground can be fit with the given foreground
model to well below the noise level of the data. This is equivalent to
5TC~ 18 « N,, where N, is the number of channels in the data and § is the
unmodeled component of the foreground.

4. The signal follows a specific form.
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Form of assumptions for EDGES

¢. Sky-averaged radio data contains a sum of beam-weighted foreground
emission and the global signal. The instrument is well-calibrated.

2. The noise of the data follows a known or estimated distribution (usually a
zero-mean Gaussian distribution with covariance C). Noise is spectrally flat
and independent.

3. The true beam-weighted foreground can be fit with the given foreground
model to well below the noise level of the data. This is equivalent to
5TC~ 16 « N,, where N, is the number of channels in the data and § is the
unmodeled component of the foreground. Polynomials can fit the beam-
weighted foreground down to mK level.

4. The signal follows a specific form. Signal follows a flattened Gaussian.
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Testing EDGES foreground modeling assumption

e We simulated beam-weighted
foreground observations from the
EDGES latitude for local sidereal
times from 0:00 to 6:00 hr

6 hr LST

Tete(v,0,¢,0 = 6 hr LST) =
0 hr LST

T(v,0,0,t)dt

e A flat horizon was added at zero

elevation angle.
o For simplicity, only emission from
above the horizon is simulated.
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Foreground modeling bias induces signal bias
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Foreground modeling issues motivate a new
method

e Single spectrum nature of EDGES analysis necessarily excludes possible signal
models.

o Using multiple spectra can allow for analysis that can fit any possible signal spectrum.

e Polynomial models are not guaranteed to (and probably won’t) fit the
beam-weighted foreground sufficiently well in few enough terms before overlap
with the signal model causes uncertainties to blow up when including a large
class of possible signal models.

o Using training sets specific to the given experimental situation can minimize the
number of foreground terms necessary while also accounting for all foreseen
observation effects
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Form of assumptions for Minimum Assumption
Analysis (MAA)

¢. Sky-averaged radio data contains a sum of beam-weighted foreground
emission and the global signal. The instrument is well-calibrated.

2. The noise of the data follows a known or estimated distribution (usually a
zero-mean Gaussian distribution with covariance (). Noise is independent
and given by radiometer equation.

3. The true beam-weighted foreground can be fit with the given foreground
model to well below the noise level of the data. This is equivalent to
§TC~18 « N,, where N, is the number of channels in the data and § is the
unmodeled component of the foreground. Beam-weighted foreground can
be fit from eigenmodes derived from a simulated training set.

4. The signal follows a specific form. Signal is the same in every total power
spectrum.
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Logistics of using multiple spectra

Spectrum Spectrum does
contains signal not contain signal

e The signal should
appear the same
in all total power
spectra while the
foreground will
change as the sky
seen by the
antenna rotates

Polarization

Time dependence
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Making a training set to simulate the MAA

e Fo regrou nd was Full widths at half max of training set beams
simulated in the same
way as earlier EDGES
simulations, except it was
done in 100 equal LST
bins

FWHM []

e Beam FWHM training set
made using quadratic
Legendre polynomials
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Signal uncertainties under the MAA

Minimum assumption analysis uncertainties

o MAA unce rta i nties are infi N ite —— posterior error, 2 time bins  —— posterior error, 6 time bins
. . 10° - —— posterior error, 3 time bins —— posterior error, 8 time bins
W|th a Si ngl e Spectru m —— posterior error, 4 time bins ~ —— posterior error, 10 time bins

—— posterior error, 5 time bins  ----- noise level
107 \
e Larger number of spectra \

pushes uncertainties down
near noise level but are

harder to create an accurate \

training set for

e 100 hrs integration split
evenly between LST bins 4050 60 70 80 90 160 110 120
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Example signal reconstruction from the MAA

Minimum assumption analysis correlations, 6 time bins

Minimum assumption signal reconstruction, 6 time bins
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MAA is generalized foreground subtraction

e In the perfect knowledge case, foreground is removed completely with no
change to data uncertainties.

e MAA allows for foreground to be removed while increasing uncertainties.

e Importantly, MAA can be followed up by an (e.g. MCMC) exploration of
signal parameters that i |gnores foreground parameters

MCMC reconstructions from MAA fit, 6 time bins

—— input 95% confidence
[0 68% confidence

Minimum assumption signal reconstruction, 6 time bins
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Conclusions

e Common single spectrum analyses are prone to large signal biases due to:
o Necessity of choosing a sighal model that may be inaccurate w.r.t. to true signal
o Beam-weighted foreground models are often simple, but inaccurate in
simulations
e Minimum Assumption Analysis (MAA) is a rigorous alternative that:
o Allows for any 21-cm signal spectrum

o Fits multiple spectra at a time, utilizing time dependence to separate signal and
foreground

o Allows for follow-up signal-only MCMC with any parameterization

® The pipeline described in the previous talks by D. Rapetti and N. Bassett is in
between the two extremes.

® \We are currently attempting to model EDGES with these techniques, but
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Extra slide: basic MAA equations

¥ — 21-cm expansion matrix ~ F — beam-weighted foreground  y —data (length- € — noise covariance
(NN, x N,, matrix) basis (N;N, x N, matrix) NN, vector) (NgN,, x NgN,, matrix)

Foreground projection matrix _ T re1e\—1 T ~—1
(NN, x N, N, matrix) — O =F(F'C'F)"'F'C

Signal posterior covariance
(N, x N, matrix)

Signal posterior mean
(length-N,, matrix)
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