
October 21, 2020 3rd Global 21-cm Workshop, Cambridge

Robustly Constraining the Global 21-cm Signal using 
Pattern Recognition and Bayesian Inference

David Rapetti
NASA Ames Research Center

Universities Space Research Association
University of Colorado Boulder

In collaboration with other key pipeline builders:
Keith Tauscher, Jack Burns

University of Colorado Boulder

1



DAPPER

• Accurately & precisely extracting & constraining the small global 21-
cm signal from within a foreground 4-6 orders of magnitude larger.

• Limited available information on both the signal and the systematics 
of the experiment, including potential overlaps between the spectral 
shapes of the signal and systematics.
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OUTLINE OF THE CHALLENGES
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The Dark Ages Polarimeter PathfindER (DAPPER) is 
a NASA SmallSat mission concept for hydrogen 
cosmology from the radio pristine lunar far side (see 
Burns’ talk earlier).

78 MHz trough reported by EDGES in gray.

Standard astrophysical model (black, dashed 
curve) inconsistent with EDGES data.

Exotic physics models of the Dark Ages trough 
consistent with the EDGES signal (color curves; 
credit J. Mirocha).
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OUR CURRENT SOLUTIONS: PIPELINE PUBLICATIONS
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- Pipeline series Paper I, II, III (published), and IV (in preparation):
- Paper I: Global 21 cm Signal Extraction from Foreground and 

Instrumental Effects. I. Pattern Recognition Framework for Separation 
Using Training Sets (2018, ApJ, 853, 187)

- Paper II: Global 21 cm Signal Extraction from Foreground and 
Instrumental Effects. II. Efficient and Self-consistent Technique for 
Constraining Nonlinear Signal Models (2020, ApJ, 897, 174)

- Paper III: Global 21 cm Signal Extraction from Foreground and 
Instrumental Effects. III. Utilizing Drift-scan Time Dependence and Full 
Stokes Measurements (2020, ApJ, 897, 174)

- Minimum Assumption Analysis (MAA) paper (see Tauscher’s talk later):
- Formulating and Critically Examining the Assumptions of Global 21 cm 

Signal Analyses: How to Avoid the False Troughs That Can Appear in 
Single-spectrum Fits (2020, ApJ, 897, 132)

https://ui.adsabs.harvard.edu/link_gateway/2018ApJ...853..187T/doi:10.3847/1538-4357/aaa41f
https://ui.adsabs.harvard.edu/link_gateway/2020ApJ...897..174R/doi:10.3847/1538-4357/ab9b29
https://ui.adsabs.harvard.edu/link_gateway/2020ApJ...897..175T/doi:10.3847/1538-4357/ab9b2a
https://ui.adsabs.harvard.edu/link_gateway/2020ApJ...897..132T/doi:10.3847/1538-4357/ab9a3f
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SCHEMATIC VIEW OF 
THE PATTERN REGONITION SEGMENT (PAPER I)
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DATA COMPONENT TRAINING SETS AND SVD MODES

Tauscher, Rapetti, Burns, Switzer (2018; Paper I) 

I Q U

• The bottom panels show the first six SVD eigenmodes obtained from the training sets above in black.
• SVD modes ordered from most to least important. For foreground modelling, see Hibbard’s talk tomorrow.
• For an overall linear model, we choose each component’s number of SVD modes using an information criteria.
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MODEL SELECTION (NUMBER OF MODES) AND
LINEAR, ANALYTICAL SIGNAL EXTRACTION

Tauscher, Rapetti, Burns, Switzer (2018; Paper I) 
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Black curves: Input signals; red: estimates; dark/light
red bands: 68/95% confidence intervals

(See also Bassett’s talk afterwards)



• In Paper II (Rapetti, Tauscher, Mirocha & Burns, 2020), we present a new 
technique converting spectral constraints into constraints on any given nonlinear 
signal parameter space.

• We analytically find a joint linear fit of the signal and systematics (currently, beam-
weighted foreground) and used as starting point (mean and covariance) for a 
simultaneous, nonlinear Markov Chain Monte Carlo (MCMC) fit.

• At each step of the MCMC fit, we marginalize over the coefficients to the SVD 
foreground modes. This allows us to straightforwardly use a large number of 
foreground parameters, while efficiently exploring the signal parameter space.

• This calculation is exact and provides a natural separation of linear nuisance 
parameters without a need for a parametric model and nonlinear signal 
parameters to be numerically sampled. A similar separation between linear and 
nonlinear parameters can be performed in receiver modeling (Paper IV, in prep.).
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JOINT MCMC FIT OF NONLINEAR SIGNAL MARGINALIZING OVER 
LINEAR BEAM-WEIGHTED FOREGROUND
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CONSTRAINING SINGAL PARAMETERS (PAPER II)

8

MCMC signal 
parameter 
constraints

Signal training set

SVD modes from 
foreground training set

SVD modes from 
signal training set

Foreground training set

Simulated observation

Nonlinear signal model of 
choice

Random curve from 
foreground training set

Random curve 
from signal 
training set

+ Radiometer noise+

+

=

+
Linear + MCMC 

model

Apply Information 
Criteria (DIC)

Spectral 
constraints

Linear 
fit

SVD overall model

MCMC fit 
(marginal over linear 
foreground modes)

Rapetti et al. (Paper II) 

Find the code pylinex in this link: https://bitbucket.org/ktausch/pylinex

https://bitbucket.org/ktausch/pylinex


Sample of 200 curves from the training set
for the flattened Gaussian model.

A uniform (-1, -0.1) K
ν0 uniform (60, 90) MHz
w uniform (1, 30) MHz
τ exponential (1)
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GLOBAL 21-CM SIGNAL MODEL: FLATTENED GAUSSIAN
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Rapetti et al. (Paper II) 

• 5 random cases successfully recovered
• 95% C.I. in blue for the linear fit (SVD signal & 

foreground modes) and red for the MCMC fit 
(nonlinear signal model & SVD foreground 
terms marginalized over)

• In the linear fits, the 95% C.I. correspond to 
8.75σ.
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FLATTENED GAUSSIAN MODEL:
FULL MCMC PARAMETER CONSTRAINTS

• 1D (gray) and 2D (68/95%) MCMC posterior parameter constraints.  
• Red contours: represent 95% errors for statistical noise alone.
• Red, dashed lines: mark the input parameters. 
• In case FG4 (right) the systematics clearly play a larger role than in case FG2 (left).

Rapetti et al. (Paper II) 
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FLATTENED GAUSSIAN MODEL:

CORRELATION MATRICES

• Correlation matrices for the MCMC fits of FG2 (left) and FG4 (right). 

• Matching the previous slide, these show stronger correlations for FG4 versus FG2.

• 4 signal & 160 (40 per 4 pointings) foreground parameters. Our marginal MCMC reduced the MCMC parameters from 164 to 4.

• Most foreground parameters (above a certain mode order) have negligible correlations (in gray), becoming thereby irrelevant 

thanks to the down-weighting power of foreground priors.

Rapetti et al. (Paper II) 
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MEASUREMENT STRATEGY EFFECTS ON UNCERTAINTIES (PAPER III)
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Signal 
Level 
Range
Reference

● Each CDF for 5000 fits

● DS: Drift-scan time 
dependence (Dashed 
lines: 25 bins in LST)

● Pol: Full polarized 
Stokes measurements 
(in blue)

● Both time dependence 
and polarization 
measurements provide 
marked benefits

Tauscher et al. (Paper III) 
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UTILIZING THE CORRELATIONS BETWEEN SPECTRA
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Tauscher et al. (Paper III) 

Signal 
Level 
Range 
Reference

● Without polarization

● Orange: Correlated  
LST bins

● Blue: Independent 
LST bins

● Benefiting from 
correlations 
between LST bins 
is critical for best 
constraints
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UTILIZING THE CORRELATIONS BETWEEN SPECTRA
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● With polarization

● Orange: Correlated  
LST bins

● Blue: Independent 
LST bins

● Benefiting from 
correlations 
between LST bins 
is critical for best 
constraints

Tauscher et al. (Paper III) 

Signal 
Level 
Range 
Reference
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• We can use a large number of correlated spectra at once, create models specifically suited
for a given experimental dataset, form training sets arbitrarily complex (avoiding the
necessity for smooth, phenomenological foregrounds), and include beam effects directly into
the model (instead of having to remove them).

• SVD factorizes a training set providing the optimal vector basis to fit it.

• We employ a linear, fast, analytic methodology to separate the global 21-cm signal from
systematics, properly accounting for their potentially large overlaps, to estimate the starting
point of a full MCMC search of any chosen nonlinear signal model.

• We utilize the linear coefficients of the SVD beam-weighted foreground model to properly
and efficiently (in terms of convergence) incorporate this modeling by marginalizing over
these generally large number of parameters at each step of our MCMC signal calculation.

• We benefit from the use of correlated foreground spectra via multiple sky views or Stokes
parameters to differentiate between foreground & signal, significantly lowering uncertainties.

• Our statistically rigorous pipeline is able to extract the global 21-cm signal while modeling
signal & systematics using detailed training sets from theory, simulations and observations.
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BENEFITS OF OUR METHODOLOGY


