Results from Y1 trade study

Judd Bowman, Gregg Hallinan, Bob MacDowall June 8, 2018

Status of Y1 Action Items

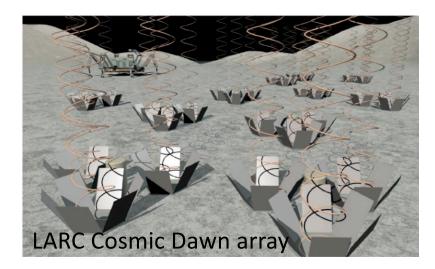
- Array design trade study
 - ✓ Literature review In progress
 - ✓ Review lunar properties Done
 - ✓ Define pathfinder Done
 - Which side of moon?
 - Full array: farside because 21cm wants to go above 20 MHz
 - Prototype array: probably farside (Justin says Wind shows ~50% RFI between 1-20 MHz)
 - Sensitivity required to see Earth's radiation belt
 - Justin had a student calculating?
 - Prepare for decadal review Deferred
- ✓ Technology roadmap Done
 - ✓ Submitted COR strategic technology gap input
 - ✓ Successful -- two technology gaps added (priority 3):
 - ✓ Wide-bandwidth, high-spectral-dynamic-range receiving system
 - ✓ High-precision low-frequency radio spectrometers and interferometers
 - https://apd440.gsfc.nasa.gov/technology/tech_gap_priorities.html

Year 1 Planned Schedule

- Literature review (summer 2017)
 - Previous design/trade studies (LARC, ROLSS, etc.) ✓ acquired documents from ROLSS
 - Relevant technologies, TRLs, etc. -- in progress
 - Lunar conditions ✓ yes, all summarized in lunar sourcebook
 - RFI, regolith properties, environment, dust, radiation, etc.
- Science objective definition (fall 2017)
 - - Exoplanet space weather: Detect earth-like auroral emission from nearby systems
 - 21cm: Measure dark ages power spectrum to test inflation through non-Gaussianity
 - - Total collecting area: ~400,000 m²
 - Frequency band: 1-20 MHz (possibly up to 40 MHz)
 - Angular resolution: 1 degree
 - Full Stokes
 - Select subset of science scoped to a small prototype array \checkmark Done
 - Exoplanet habitability: Stellar bursts from Alpha/Proxima Centauri, monitor all M-dwarfs
 - Heliophysics: Image Type 2/3 bursts to understand acceleration mechanism
 - 21cm: Foreground maps, Galactic science
- Trade study of design options for prototype array (spring 2018) -- Started
 - Goal to identify reference prototype design and key technology development
 - 100 element dipole(like) array, 1km diameter, 1-20 MHz
 - No reference antenna, etc., yet
 - Key technology: antenna, data transfer, deployment, survivability

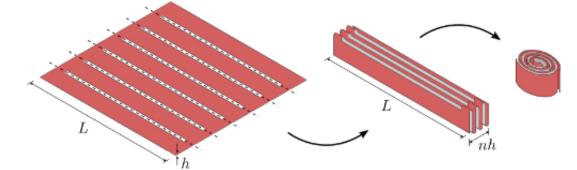
21cm dark ages

Science Traceability Matrix						
Decadal Science Goals	Science Objectives	Science Measurements	Instrument Requirements			
1) What is the nature of inflation?	1) Are primordial matter density perturbations non- Gaussian? What is the value of f _{NL} ?	1) Power spectrum of redshifted 21cm absorption fluctuations before stars	 Full Stokes aperture synthesis array on lunar farside (to avoid ionosphere and RFI) with: * 400,000 m² area 			
	values?	2) Frequency range approx. 10-40 MHz (50 <z<100)< td=""><td> * 1 km baselines * Full-sky imaging 2) High-precision bandpass and beam calibration for </td></z<100)<>	 * 1 km baselines * Full-sky imaging 2) High-precision bandpass and beam calibration for 			
2) What is the nature of dark matter?	l i l between 1 an		foreground removal 3) Hardware that is radiation and thermally tolerant to survive the lunar environment			
			 Deployer for chosen antenna design 			


Exoplanet habitability

Science Traceability Matrix							
Decadal Science Goals	Science Objectives	Science Measurements	Instrument Requirements				
GH - TBD	What are the flare statistics for G-M stellar types?	 Monitor large area of sky for transient radio events from stellar flares Monitor large area of sky for transient radio events from auroral emission from exoplanets 	 1) Full Stokes aperture synthesis array on lunar farside (to avoid ionosphere and RFI) with: 400,000 m² area 1 km baselines Full-sky imaging 2) Hardware that is radiation and thermally tolerant to survive the lunar environment 				
	Do M-dwarfs produce interplanetary shocks the same way sun-like stars do?						
GH	What are the magnetic field strengths of exoplanets?						
	What is fraction of exoplanets with a magnetic field?	* Frequency range 1-20 MHz	3) Deployer for chosen antenna design				
	What is the number of habitable exoplanets?	* Angular resolution of 1 degree to resolve stellar system of bursts					

Notational full array


- Location:
 - Lunar farside
- Antennas:
 - Dual polarization for full Stokes
 - Probably higher-gain than dipole
- Frequency band:
 - 10-40 MHz
- 10 K sensitivity per pixel:
 - 10,000 antennas (if dipole-like)
- 1 degree resolution:
 - ~1 km baselines
- Data rate: 300 GB/s (raw)
- Power estimate:
 - Analog 10,000 elements: ~2 kW
 - Digital processing: ~10 kW
- Lifetime:
 - 5-10 years

Antenna technology

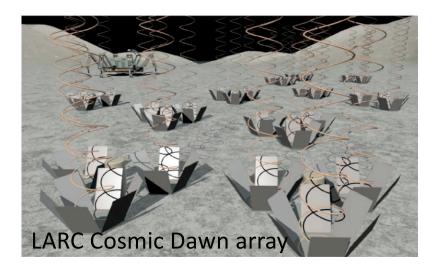
- Antenna mass and volume!
- Full array:
 - 1 kg (10,000 kg total mass)
 - 1000 cm³ (10 m³ total volume)
 - e.g. a 1U cubesat
 - Plus antenna stability, beam chromaticity
- Prototype array:
 - Relax mass/volume by order of magnitude
 - Standard beam properties

Images: Space Structures Lab (Caltech), Tethers Unlimited

Pathfinder Trade Study

Pathfinder top-level science goals

- Exoplanets: Do M-dwarfs produce interplanetary shocks the same way sun-like stars do?
 - Comparative study of burst statistics of two closest systems, one sun-like and one M-dwarf
 - Detect and resolve stellar bursts from Alpha Centauri (A and B) and Proxima Centauri
 - Monitor hundreds of other M-dwarfs for stellar flares
- Heliophysics: How are energetic particles accelerated in solar bursts?
 - Determine where and how the radiating particles are accelerated by imaging Type II and Type III solar radio bursts.
 - Monitor CMEs to improve space weather forecasting.
- Cosmology: What are the foregrounds for 21cm dark ages?
 - Create spectral data cubes of diffuse emission
 - Maps of radio recombination lines


Science to instrument properties

		Science goals				
		Heliophysics	Exoplanet habitability	21cm Dark ages foregrounds		
Instrument property	Frequency range	1-10 MHz	<20 MHz (stellar bursts and Jovian- type emission)	<40 MHz		
	Spectral resolution	1%	10%	10 kHz (RRLs)		
	Field of view	>10 deg (all-sky for CME monitoring)	the larger the better to capture occasional 1000-fold increases in planetary radio power	the larger the better to map more of sky		
	Angular resolution	2 degrees	2 degrees	1 degree		
	Sensitivity	10^4 Jy	1 Jy for stellar bursts (Earth is 1 mJy at 5pc when geomagnetic storm)	1000 K		
	Observing requirements	Sun and ecliptic visible	far side because of contamination from RFI and AKR, southern hemisphere	far side because of RFI		
	Polarization	full Stokes for science	full Stokes high fidelity Stokes V imaging required for science	full Stokes for foregrounds		

Notional pathfinder array – 1%

- Lunar farside
- Frequency band:
 - 1-20 MHz
- 1 Jy sensitivity:
 - 100 dipole-like antennas
- 1 degree resolution:
 - 1 km baselines
- Data rate:
 - 4 GB/s (raw)
- Power estimate:
 - Analog 100 elements: <20 W
 - Digital processing: 10-100 W
- Lifetime:
 - 1-5 years
- Mass and volume target/estimate:
 - 10⁴ cm³ per antenna = 1 m³ total
 - 10 kg per antenna = 1000 kg total

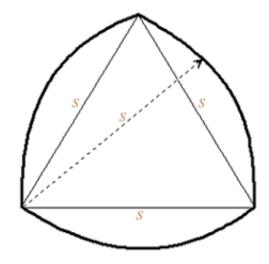
Pathfinder array trade space

- Location
 - Science targets
- Layout configuration
 - Imaging performance
- Antenna design
 - Performance and mass/volume optimization
- Digital processing
 - Amount of digital processing to perform
- System design
 - What goes where?

Location Trade

• Phase 1

- L1. Latitude and longitude range
 - Time on Sun, Alpha/Proxima Cen targets
 - Number of M-dwarfs visible
 - Amount of Galaxy visible
 - RFI/AKR attenuation (probably just an exclusion zone)
- Phase 2
 - L2. Candidate sites
 - Thermal range (nighttime low, daytime high)
 - Surface properties (rocks, slope)

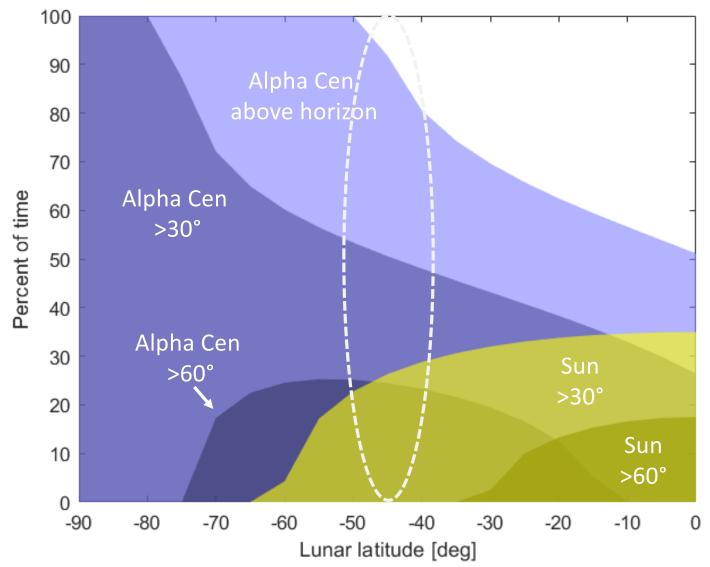

Antenna Trade

NOTE: Restrict to low-gain, dual polarization antennas

- Phase 1
 - A1. Planar antennas sitting directly on regolith vs. 3D?
 - This is gate: Can we consider dipole-like antennas directly on regolith?
 - EM modeling of antenna properties on lunar regolith
- Phase 2
 - A2. Specific designs
 - Mass, volume, RF performance
 - Deployment complexity

Layout Configuration Trade

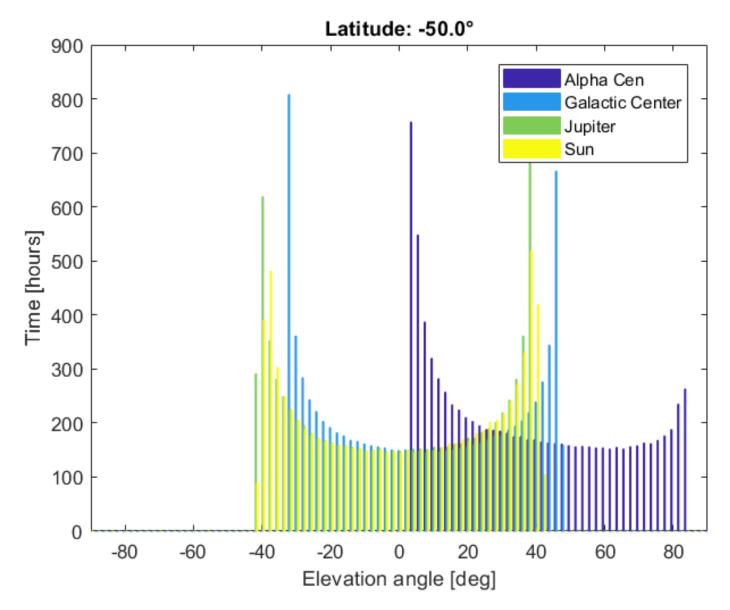
- C1. Imaging performance
 - Triangle
 - Reuleaux triangle
 - Square
 - Circle
 - Spokes
 - Pseudo random uniform density


Digital trade

- D1. Beam forming vs. full correlation
 - I don't see any reason to consider beamforming for only 100 antennas and 20 MHz bandwidth, but if we do...
 - Computational load
 - Complexity of monitor and control
- D2. Downlink raw vs. derived data products?
 - What are reference derived products? Light curves and solar images?
 - Data volume, computational load

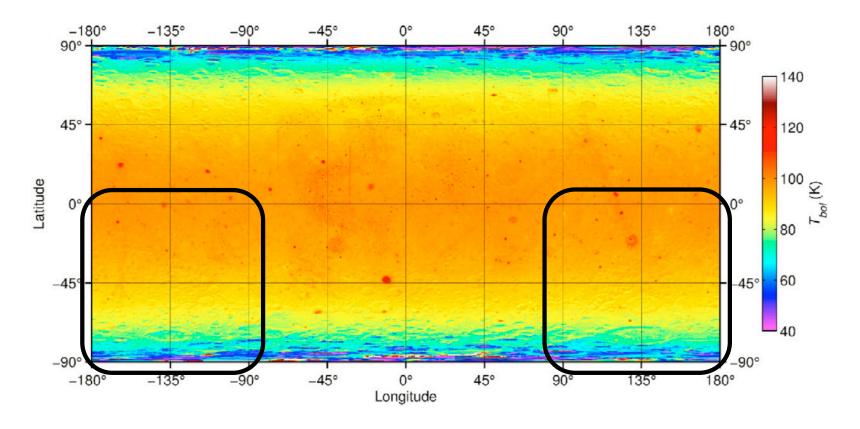
System trade

- S1. Wired vs. wireless RF/data transport from antennas?
 - Mass, volume, power, performance (copper, fiber, microwave, optical)
 - Deployment complexity
 - Note: What are rules on space-to-space transmitters?
- S2. Relay spacecraft in lunar orbit vs. L2?
 - Power/technology for communication
 - Duty cycle, complexity for buffering, etc.
- S3. Correlate on surface vs. spacecraft?
 - Power and survivability of correlator
 - Complexity of communication
- S4. Central station on surface vs. no central station?
 - Coupled to all above
 - Could antennas communicate directly to orbital asset?


L1 – Latitude/longitude bounds

• Metric: amount of time sun and Alpha/Proxima Cen (dec. –61°) are visible

• To-do: Time on known nearby M-dwarfs


L1 – Latitude/longitude bounds

Motivates low-gain antennas because targets move through entire sky

Mean low lunar temperatures

- At -45° latitude, minimum is ~90 K (high temps are 300-350 K)
- Warmest places are young craters with rocks (~5 K warmer)
- Diurnal variations extend to ~30 cm below surface
- Currently investigating candidate sites

LRO Diviner / Williams et al. 2017