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Outline
1. Take away result: current 21-cm signal constraints using 

end-to-end DARE simulations

2. Challenges of extracting the 21-cm spectrum from large
foregrounds

3. Comparing previous approaches to the current

4. Using an SVD approach in an MCMC pipeline

5. Results: modes, covariances, signal extraction

6. Further advances: ongoing work
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Current pipeline results using DARE instrument
Burns et al 17 (arXiv:1704.02651)

• Extracted spectra for models with Pop II (red) and Pop III (black) stars
• Dark bands represent thermal noise from the sky (800 hours integration)
• Light bands represent total uncertainty



Biggest challenges of 
measuring global signal

• Unavoidable (beam-averaged) 
foregrounds which are > 10! times
larger than signal
• Requires precise calibration

• Beam chromaticity mixes spatial and 
spectral structure of foreground
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Past approach
(Harker et al. 2012, 2016)

• Polynomials used to fit foregrounds
• Fourier series used to fit instrumental 

effects
• In both cases above, the basis functions 

overlap significantly with the signal
ØExtreme knowledge of foregrounds and 

instrument were required
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New pipeline’s extraction approach
• Pipeline calculates main modes of 

spectral variation in the data via an 
algorithm which learns from 
simulations based on lab and sky 
measurements.

• Foregrounds and instrument modes
calculated this way (i.e. adaptively) 
are less likely to overlap with the 
signal than polynomials and Fourier 
series.
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Singular Value Decomposition (SVD)
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Training Set:
(𝑁!"#$$%&×𝑁!'()%*)

Ordered basis functions:
(𝑁!"#$$%&×𝑁!"#$$%&)

• SVD orders the orthogonal modes of the 𝑁!"#$%&
curves of the training set, 𝑴, by importance

• 𝜮 is a diagonal matrix containing the importance of the 
modes (square root of eigenvalues of 𝑴𝑴')
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Training set

- Derived by randomly sampling the parameter space surveyed in Mirocha et al 17 with the 
addition of two parameters describing UV and X-ray photon production efficiency in minihalos. 
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SVD modeling of the signal and systematics

- SVD orthonormal modes. The ability to separate the 21-cm signal from 
DARE’s systematics hinges on the ability to distinguish between the signal (f) 
and systematic (g) modes. Therefore, we want minimal overlap between them.

Burns et al 17 (arXiv:1704.02651)
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Likelihood function

Global antenna temperature model

SVD modeling of the signal and systematics
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The on-orbit measurements of the antenna directivity
and the induced polarization technique enable us to an-
ticipate a knowledge of the beam-averaged foregrounds
at a level of ⇠20 ppm. This represents an important
advancement that allows us to achieve our goal of <20
mK RMS spectral uncertainty on the extracted 21-cm
models.

6. EXTRACTING THE COSMIC 21-CM SPECTRUM

In this section we demonstrate an essential aspect
of our observational strategy: how our data analysis
pipeline is able to separate the 21-cm signal from fore-
grounds measured through a realizable instrument. We
model each of these components, signal along with the
foreground and instrument systematics, as described be-
low.
In our previous work (Harker et al. 2012, 2016 here-

after H12 and H16), we developed a foundation for a
21-cm signal extraction pipeline using a Markov Chain
Monte Carlo (MCMC) framework. However, we assumed
an idealized instrument with exact knowledge of most in-
strument systematics and the form of the beam-averaged
foreground. We have now significantly expanded the ini-
tial analyses of H12 and H16 by implementing a robust
SVD modeling scheme based upon a pragmatic end-to-
end instrument model (Section 5). Specifically, the cur-
rent pipeline (which will be released to the community
in a later publication) incorporates the following aspects
for the first time:

• Full simulations of the antenna beam-weighted
foreground. These simulations are based upon
beam patterns calculated by the CST electromag-
netic simulation package3 and our di↵use fore-
ground model, described in Section 4.

• A calibration model, based upon expected lab mea-
surements and uncertainties, that includes all pa-
rameters in Equation 2. The instrument model de-
scribed in H12 included only the antenna reflection
coe�cient.

• A modeling scheme, detailed below, based upon
the implementation of SVD on well-characterized
training sets for both the signal and a complete
set of instrument and foreground systematics. The
SVD technique independently determines the main
modes of variation in the signal and systematics.
The MCMC algorithm then simultaneously fits all
the coe�cients associated with the SVD modes to
extract the signal. This is a major improvement
over our previous use of polynomials (Fourier se-
ries) to fit the foreground (reflection coe�cient).

The MCMC algorithm in the pipeline samples the like-
lihood function
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where fi(⌫) and gj(⌫) are the SVD signal and system-
atic modes, respectively, and (�21)i and (�sys)j (both
with units K) are the coe�cients associated with each of
them. We fit the entire parameter space, � = [�21, �sys],
simultaneously (using the emcee code; Foreman-Mackey
et al. 2013) in order to account for the covariance be-
tween all parameters and ensure self-consistency. This
MCMC calculation e�ciently and robustly obtains the
full posterior distribution.
In this work, we utilize n = 6 (signal) and m = 7

(systematic) SVD modes because they are able to fit
our fiducial models to within the thermal noise level
achieved through 800 hours of integration. For future
analyses, however, we are developing a novel technique
that will choose the optimal number of modes to use in
the pipeline. The details of this key advancement will
be described in forthcoming works (Tauscher et al., in
prep.; Rapetti et al., in prep.).
The systematic modes gj(⌫) are derived from 10,000

simulated datasets which vary the foreground and in-
strument within expected uncertainties. This process
utilizes Equation 2, its inverse, and the fiducial values
of the calibration and beam-weighted foreground param-
eters (Tauscher et al. in prep.). Currently, the signal
modes fi(⌫) are derived from input training sets of 21-
cm spectrum simulations (15,000 and 960, respectively)
based on two well-motivated ranges of physical models
(primordial Pop II and Pop III stars; see Section 3).4 In
future work, the signal models will be combined into a
single training set.
The Bayesian nature of the MCMC permits the incor-

poration of key prior knowledge on the instrument cal-
ibration and foregrounds when retrieving the posterior
probability distribution of the model parameters. In the
instrument simulations, we account for all the identified
uncertainties and priors, including a 50 mK constraint
on the beam-averaged foregrounds from measurements
of the induced polarization. Even though, at this stage,
the induced polarization is used only as a prior on the
antenna temperature, TA, in future work, all four Stokes
parameters will be included in the likelihood function.
Figure 5 shows the SVD modes used in this work. The

left and middle panels contain the signal modes for the
models of primordial Pop II and Pop III stars, respec-
tively. For the purpose of reducing the covariance be-

4 Each set of simulations was derived by randomly sampling
the parameter space surveyed in Mirocha et al. (2017), with the
addition of two parameters that describe the UV and X-ray photon
production e�ciency in minihalos (i.e., those with Tvirial < 104 K).
The Pop III models include only those with Region D extrema in
emission.
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Parameter estimation with MCMC
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Markov Chain Monte Carlo 
(MCMC)

• Explores the parameter 
space g=[g21,gsys] defined 
by the SVD modes

• Accounts for covariances
between all parameters

• Provides robust estimation 
of posterior parameter 
distribution

Credit: Jordan Mirocha
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Covariances between the signal and systematics modes

-The vertical and horizontal black lines separate the regions with covariances
between signal parameters (top left) and systematic parameters (bottom right). 
The other two regions are symmetric and show the covariances between signal 
and systematic parameters.

Burns et al 17 (arXiv:1704.02651)
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Extracting the signal from the systematics

- The extracted 21-cm spectra for models with primordial Pop II (red) and Pop III 
(black) stars for 800 hours of observation with DARE.

- Dark bands: thermal (statistical) noise from the sky. Lighter bands: total uncertainty, 
statistical plus systematic effects (instrument and foreground).

- The covariance between SVD signal and systematic modes dominates the total error.

Burns et al 17 (arXiv:1704.02651)



Ongoing work
• Incorporating data from rotating dual 

polarization antennas to take advantage 
of projection induced polarization
caused by the large beam.

• Optimizing basis set and number of 
parameters:
• Bayesian evidence
• Importance of SVD eigenmodes
• Errors introduced by each eigenmode
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SVD modeling of the signal and systematics
Burns et al 17 (arXiv:1704.02651)

- SVD orthonormal modes. The ability to separate the 21-cm signal from 
DARE’s systematics hinges on the ability to distinguish between the signal (f) 
and systematic (g) modes. Therefore, we want minimal overlap between them.
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Constraints on extrema frequencies
and physical parameters


