

Methodology to Assess the Human Factors Associa Teleoperated Assembly Tasks

University of Colorado

New Era of Space Exploration

- NASA's Mission
 - Human on the moon by 2024
 - Sustainable human lunar presence by 2028

Image Credit: NASA

- Our Mission
 - Quantify various constraints of teleoperating rovers
 - Determine new ways to effectively and efficiently teleoperate rovers

Image Credit: Jack Burns

University of Colorado

Telerobotic Simulation System (TSS)

- Armstrong
 - Commercial-off-the-shelf rover 0
 - Crustcrawler Pro-Series Robotic Arm 0
 - 6 Degrees of Freedom
 - Two Raspberry Pi Cameras Ο
 - Onboard Raspberry Pi and Arduino Ο
 - Handles drive, camera position, and arm
- Feedback GUI for Operator support

Methodology

- 3 phases
 - Training
 - Local assembly
 - Remote assembly
- Objective Measurements
 - Number of failures
 - Time to completion
 - Antenna unit placement
- Subjective Measurements
 - Situational Awareness Rating Technique
 - NASA Task Load Index
 - System Usability Scale

University of Colorado

Methodology

EED MARTIN /

Objective Results

Number of Failures: Antenna Module

- Antenna Module vs. USB Module
 - More precise assembly task
 - Wire attached to USB module
 - P-value < 0.001
- Antenna Unit 1 vs. Antenna Units 2 & 3
 - Operator fatigue
 - P-value = 0.008
- No significant difference in number of failures between
 <u>remote and local assembly</u>

Number of Failures: USB Module

■ 0 ■ 1 ■ 2 ■ 3 ■ 4 ■ 5

Objective Results

- Local assembly is significantly faster than remote assembly
 - P-value = 0.003

University of Colorado

Boulder

LOCKHEED MARTIN

Subjective Results

- Situational Awareness Rating Technique
 - One question showed significance
 - Wording of the questions may have been confusing for the user
- NASA Task Load Index
 - No significant results
 - Individual scale analysis may be useful
 - Again, wording may have been confusing
- System Usability Scale
 - Average SUS: 73.8
 - Users rated our system as "Just above average" (70~average)
 - Different experience levels should show different results

University of Colorado

Next Steps

- Adjusted subjective assessment
 - Ensure validity of each test Ο
 - Re-word confounding questions Ο
 - Individual scale/question Ο assessment
- **Experiment Procedure**
 - Guided training system Ο
 - New variables Ο

Thank You and Questions

Special thanks to the following for providing help and guidance with our research:

NASA Solar System Exploration Research Virtual Institute

Jack Burns

Dan Szafir

Michael Walker

Wendy Bailey

Midhun Menon

Lockheed Martin Space Systems Company

University of Colorado

