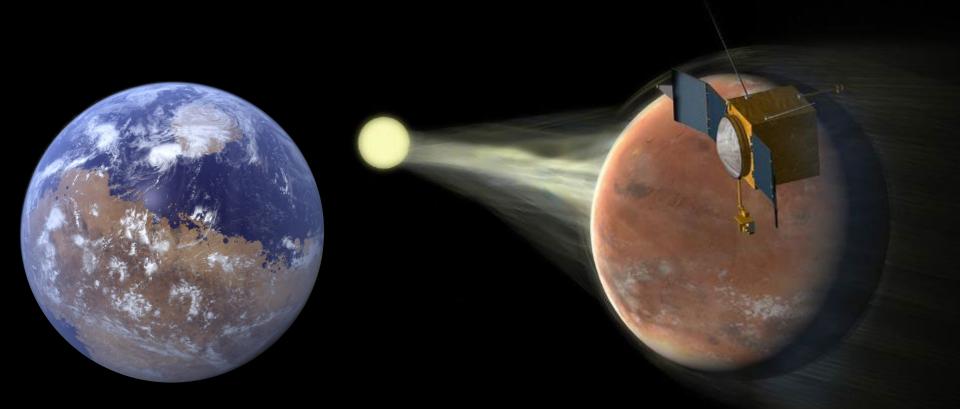

FARSIDE: A Low Radio Frequency Interferometric Array on the Lunar Farside

Principal Authors						
Jack O. Burns, University of Colorado Boulder	Gregg Hallinan, California Institute of Technology					
Co-Authors						
Jim Lux, NASA Jet Propulsion Laboratory	Andres Romero-Wolf, NASA Jet Propulsion Laboratory					
Lawrence Teitelbaum, NASA Jet Propulsion Laboratory	Tzu-Ching Chang, NASA Jet Propulsion Laboratory					
Jonathon Kocz, California Institute of Technology	Judd Bowman, Arizona State University					
Robert MacDowall, NASA Goddard Space Flight Center	Justin Kasper, University of Michigan					
Richard Bradley, National Radio Astronomy Observatory	Marin Anderson, California Institute of Technology					
David Rapetti, University of Colorado Boulder	Zhongwen Zhen, California Institute of Technology					
Wenbo Wu, California Institute of Technology						


The Dark Ages and Cosmic Dawn

Magnetospheres and Space Environments of Habitable Planets

Simulation: Marcelo Alvarez

1.1 Science Traceability Matrix

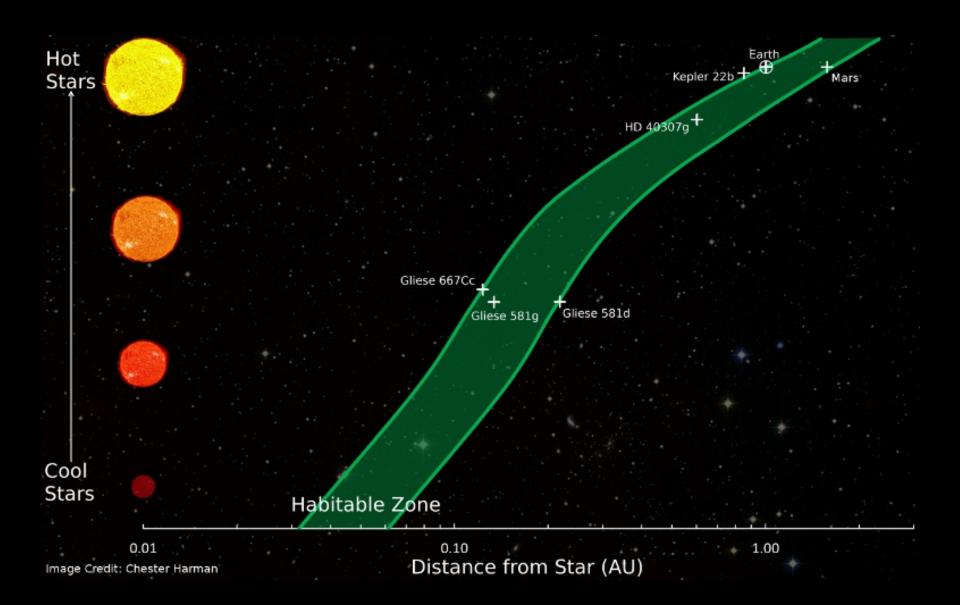
Investigation	Goals	Objectives	Scientific Measurement Requirements: Physical Parameters	Scientific Measurement Requirements: Observables	Instrument Functional Requirements	Instrument Predicted Performance	Mission Functional Requirements Common to all Investigations	Mission Functional Requirements Specific to Each Investigation
Exoplanets and Space Weather	 NASA Science Plan 2014 Discover and study planets around other stars, and explore whether they could harbor life. New Worlds, New Horizons (2010) Decadal Survey) Do habitable worlds exist around other stars, and can we identify the telltale signs of life on an exoplanet? Discovery area: Identification and characterization of nearby habitable exoplanets. Exoplanet Science Strategy (National Academies of Sciences 2018) Goal 2: to learn enough about the properties of exoplanets to identify potentially habitable environments and their frequency, and connect these environments to the planetary systems in which they reside. The presence and strength of a global-scale magnetic field is a key ingredient for planetary habitability. 	E1: Determine the prevalence and strength of large-scale magnetic fields on rocky planets orbiting M dwarfs and assess the role of planetary magnetospheres in the retention and composition of planetary atmosheres and planetary habitability.	Planetary magnetic field strength (proportional to frequency). Local stellar wind velocity. Planetary rotation period and assessment of the presence of a convective interior for a sample of rocky planets orbiting M dwarfs out to 10 pc.	Planetary radio flux: < 250 µJy (in the 150 kHz–250 kHz band). Frequency range: 150 kHz–1 MHz band. Polarization (IQUV stokes parameters)	Noise Equivalent Flux (for 60 second integration): 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz Pointing Resolution (FWHM): 10 deg @ 200 kHz \ 10 arcmin @ 10 MHz Spectral Resolution: < 25 kHz Temporal Resolution: < 60 seconds Minimum Frequency: < 150 kHz Maxmimum Frequency: > 20 MHz Number of Frequency Channels in band: > 1000 Polarization: Full Stokes radio telescope or array on lunar farside with < 5% uncertainty Sky Coverage: > 5,000 sq. degrees Any other driving requirements with sidelobes? UV coverage? Confusion? Noise Equivalent Flux (for 60 second integration):	Noise Equivalent Flux: 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz Pointing Resolution (FWHM): 10 deg @ 200 kHz \ 10 arcmin @ 10 MHz Spectral Resolution: 25 kHz Temporal Resolution: 60 seconds Minimum Frequency: 100 kHz Maxmimum Frequency: 40 MHz Number of Frequency 40 MHz Number of Frequency Channels in band: 1400 Polarization: Full Stokes radio telescope or array on lunar farside (to avoid ionosphere and RFI), operational from 300 kHz to 10 MHz. [5% uncertainty]	Location: Latitude and longitudes within 65 degrees of the anti-Earth point (required to suppress RFI from Earth by -80dB).	
		 E2: Determine wnether the largest stellar flares are accompanied by comparably large CMEs that can escape the corona of the star to impact the space environment of orbiting explanets. E3: Determine the space weather environment of rocky planets orbiting M dwarfs during extreme space weather events and assess whether such events play a decisive role in atmospheric retention and planetary habitability. E4: Determine the impact of extreme space weather events on exoplanets orbiting Solar type (FGK) stars and assess whether such events play a decisive role in atmospheric retention and planetary habitability. 	Stellar radio bursts from particles accelerated in magnetic fields that vary with frequency due to their local plasma environment.	Radio burst dynamic spectrum: sensitivity 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz over 60 seconds. Frequency range: 150 kHz–35 MHz band.	Noise Equivalent Flux (for 60 second integration): 40 mJy @ 200 kHz \ 0.5 Jy @ 10 MHz Pointing Resolution (FWHM): 10 deg @ 200 kHz \ 10 arcmin @ 10 MHz Spectral Resolution: < 25 kHz Temporal Resolution: < 60 seconds Minimum Frequency: <= 100 kHz Maxmimum Frequency: > 35 MHz Number of Frequency Channels in band: > 1000 Sky Coverage: > 5,000 sq. degrees	Sky Coverage: 10,000 sq. degrees		
Cosmology	"Explore how (the Universe) began and evolved" NASA Science Plan (2014) "What is the nature of dark matter?" Astro2010 "Resolve the structure present during the dark ages and the reionization epoch" NASA Astrophysics Roadmap	C1: Determine if excess cooling beyond adiabatic expansion in standard cosmology and exotic physics (e.g., baryon-dark matter interactions) are present in the Dark Ages with > 5 σ confidence.	Redshift-dependent mean brightness temperature variation of the cosmic radio background at the level of -100 mK due to the spin-filp transition of neutral hydrogen. Redshift range approx. (50 < z < 130)	Brightness temperature: a -40 mK absorption feature between 11-28 MHz against the cosmic radio background, globally averaged over > 10 deg^2. Frequency range approx. 11-28 MHz (corresponding to 50 < z < 130). Frequency resolution of 50 kHz to resolve the absorption feature and allow foreground & RFI mitigation and systematic checks. Astrophysical foreground mitigation to better than 10^5 level in spectral domain.	Noise Equivalent Brightness Temperature Sensitivity: < 20 mK Antenna Beam Size: field-of-view > 10 deg^2 (non-driving) Antenna Beam Pattern Knowledge: To a level of < 50 dB.	Noise Equivalent Brightness Temperature Sensitivity: 15 mK Antenna Beam Size: field-of-view > 10,000 deg^2 Antenna Beam Pattern Knowledge: 50 dB		Observation time: > 5000 hours

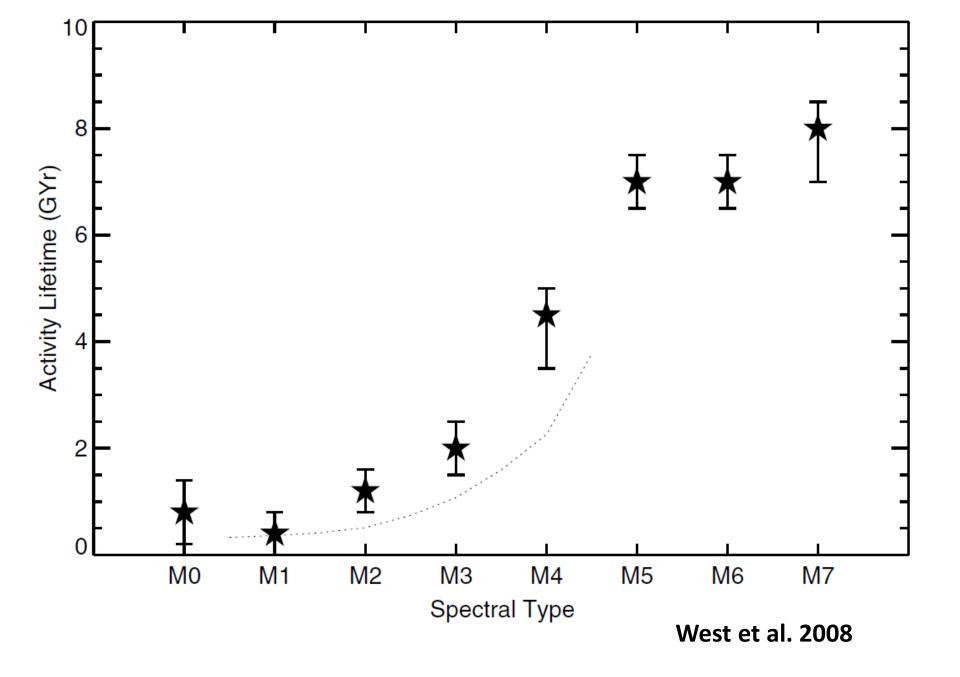
Young Mars was warmer and wetter

Mars atmosphere removed by coronal mass ejections from the young Sun (Jakosky et al. 2015)

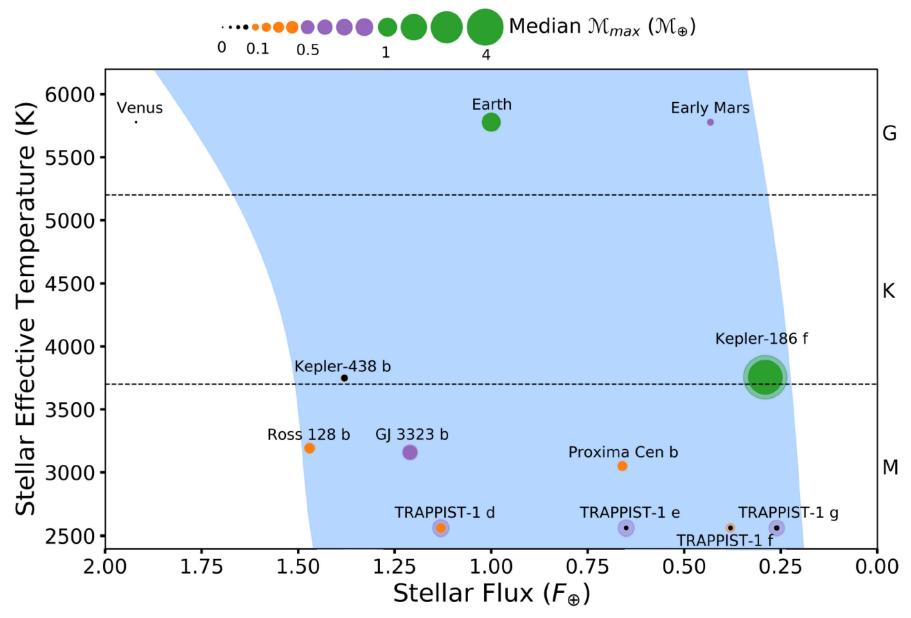
Flares – higher X-ray and ultraviolet radiation flux –> heating results in extended thermospheres (Lammer et al. 2003)

Coronal mass ejections (CMEs) – higher stellar wind flux –> can erode atmosphere – eg. ion pick-up erosion (Kulikov 2007)


Magnetic activity can redefine habitability!



The M Dwarf Opportunity


Rocky planets are particularly frequent around M dwarfs (Dressing & Charbonneau 2013, 2015)

The nearest "habitable" planet likely orbits an M dwarf within a few pc

The Magnetic Fields of Candidate Habitable Planets

McIntyre et al. 2019

Credit: Chuck Carter / Caltech