
 Arizona State University

Modeling Planar Dipoles on Lunar Regolith for a Radio Array on the Lunar Far-side.

Nivedita Mahesh and Judd. D. Bowman, School of Earth and Space Exploration

A low-frequency radio array telescope on the lunar surface can address two most pressing questions in astrophysics:

Existing radio astronomy antenna designs optimized for Earth-based arrays need to be modified for use in lunar radio telescope to cover the desired frequency range between $\sim 1-30$ MHz and to account for the properties of the lunar regolith.

Antenna Efficiency

To answer the question of wheither a ground plane is needed below the antenna, we firist look at how much power reaches the receiver for each of the 6 conifigurations.

$$
\begin{aligned}
& d T_{\text {ant }}=T_{s k y} * \operatorname{gain}(f) *\left(1-S_{11}^{2}\right) \quad \operatorname{gain}(f)=(1 / 4 \pi) \iint \sigma(\theta, \phi) d \theta d \phi \\
& d T_{\text {ant }}=T_{\text {ground }} * \operatorname{loss}(f) *\left(1-S_{11}^{2}\right) \quad \operatorname{loss}(f)=1-\operatorname{gain}(f) \\
& \text { We assume the quiet sky temperature at } 10 \mathrm{MHz} \text { is } 130,000 \mathrm{~K} \text { and at } 40 \mathrm{MHz} \text { is } 5,000 \mathrm{~K}
\end{aligned}
$$

At low Frequencies, the S11 decreases for the no ground plane cases compared to Config 2.) Simulations with the antenna blades 10 cm above the regolith (configs $4 \& 6$) have a larger band-width where S11 <-10dB. (solid curves vs dashed curves The cases of increased blade size result in better match at lower frequencies; $10-45 \mathrm{MHz}$ (red
curves Vs blue curves)

Frequency variation of (left) Giin and (right) Reflection
coefficient for confio 5 with two different soil conditions.
he multilayer simulation was tested for all the metrics:

The gain reduces.
The
The
-The antenna efficiency decreases
The chromaticity increases

CAVEATS

Calculations indicate that ideally, the scaled EDGES blade has enough efficiency to sense the sky at low frequencie $\sim 10 \mathrm{MHz}$. But the S 11 of this antenna is ~ 0.96 which means receiver signal could plummet drastically due to -The beam chromaticity analysis carried out based on the simulated spectra was done assuming the antenna was placed at the MRO site.
-The analysis done for variations in the regolith electrical properties with frequency is preliminary

CONCLUSIONS

