

Background/Motivation

- Designed an arrow vane which maximizes stability yet minimizes drag and sound for use with a broadhead point
- Benchmark testing of commercially available vanes and CFD modeling provided insight of flight characteristics
- Prototypes designed based on testing results and optimized for best performance

Testing Results

Accuracy

- Shooting machine fired arrows at a target from 40 yards away
- Laser sight and spotting scope ensured consistent targeting
- Measured the deviation from horizontal and vertical axes

Prototype improved broadhead performance vs. commercial vane

Spin-Up Rates

- Arrow spin balances out asymmetries in flight
- Recorded in 1280 x 720 resolution at 1200 frames per second
- Used High Speed Camera to determine spin rate at 3 points

Time [s]

- 1st revolution
- 2nd revolution
- Final revolution

Thank you: Bill Vanderheyden, Dr. Daria Kotys-Schwartz, Dr. Julie Steinbrenner, Victoria Lanaghan, Pat Maguire, Lauren McComb, Andy Kain, Aman Chavhan, Alex Kelling, Nicolas Garzione, Thomas Puhr, No Limits Archery and Arizona Archery Enterprises

Optimized Arrow Vane for Broadhead Archery

Austin Beltz | Lucas Fesmire | Matt Hoffmann | Travis Hopf | Heider lacometti

Iron Will Field Point (FP) Iron Will Broadhead (BH) 🗱 A-G - commercial vanes (dashed lines) **Proto (1-4)** – prototype vane profile (solid lines) tested with various materials

Drag/Velocity Data

Velocity measured with LabRadar chronograph

- Deceleration calculated using linear regression of velocity points
- Drag force also calculated to account for differing vane masses

Sound Data

- 0.05s audio sample collected using a Zoom H6 2020 audio recorder, ending at audio peak
- Audio sample undergoes a Fourier Transform to reveal frequencies and their amplitude
- Average amplitude of frequencies in a deer's most sensitive hearing range (4-8kHz) were compared between vanes

Prototyping

Prototype vanes were cut from extruded vane ribbon material

- Laser cutting provided best dimensional accuracy and leading-edge surface finish

Computational Fluid Dynamic Modeling

Motivation

- CFD modeling utilized extensively to predict vane performance
- and experimental testing

Method

- Wind drift
- vanes

performance score calculation due to results concerns

Project Challenges

Future Improvements

Mechanical Engineering UNIVERSITY OF COLORADO BOULDER

• Same profile cut on various ribbon types to determine material effects on flight performance

Allowed quick and accurate vane design testing prior to time-consuming manufacturing

• Access and availability of a controlled testing environment Consistency and repeatability of shooting machine Limited shots per testing session

 Construct consistent and repeatable shooting machine • Test for wind drift, stability and at further distances Obtain a controlled environment and wind tunnel