

Test the feasibility and efficiency of duckbill valves in an automated liquid actuation system

- Duckbills are a type of check valve
- Duckbills prevent contamination in medical devices and drainage systems

Push sides of duckbill to open

direction

- Minimum 8 duckbill valves
- Overall housing diameter < 10 cm
- Autonomous fluid dispensing
- 2 bar duckbill burst pressure
- Disposable device housing

Acknowledgements: Steven Bain | Metin Giousouf | Festo Team | Dr. Daria Kotys-Schwartz | Aman Chavhan | Dr. Julie Steinbrenner | Jeffrey Erhard | ITLL Staff

ated in	 Different housing materials for ease of manufacturing, recycling, and lower
m	cost (injection molding)
8)	 Tighter tolerances; metric
ired	manufacturing
	 Liquid rack designs
ompress	 Design and manufacture duckbills
	specific to our uses

Preliminary Testing

- **Duckbill Valve Burst Pressure Test:** • Burst Pressure: 0.5 Bar
- **Duckbill Compression Test:**
- 7 Newtons
- Duckbill Leakage Test:
 - Eliminated fluid leakage with the addition of a rubber grommet

Final Testing

- Actuator Alignment Test:
- Aligned actuator with each valve **Duckbill Valve Burst Pressure Test:**
- Burst Pressure: 0.5 Bar
- Zero Positioning Test:
- Implemented switch to locate zero position

<u>Results</u>

Actuation:

• Had enough force to open duckbill but was not as precise as needed

Electrical:

• Full rotation code and actuation process was successful

Full Integration:

• Integrated system with 8 IV bags

Conclusion

- Would not recommend using duckbill valves for small scale, high precision work, specifically in life science industries
- Duckbill valves are viable for this application on larger scale because less precision is needed and more cost effective