Modular Filler / Extractor

Festo - University of Colorado at Boulder - Design Center Colorado
Jordan Jalufka - Kyi Soe - Jackson Prescott - Blake Adams - Anthony Nguyen - Alekh Nagarkar

Objective
Test the feasibility and efficiency of duckbill valves in an automated liquid actuation system.

Background
- Duckbills are a type of check valve
 - Open by applying force to each side
 - Allows for fluid flow in one direction
- Duckbills prevent contamination in medical devices and drainage systems

Specifications
- Minimum 8 duckbill valves
- Overall housing diameter < 10 cm
- Autonomous fluid dispensing
- No leakage
- 2 bar duckbill burst pressure
- Reusable actuating system
- Disposable device housing

Electrical System
- Shaft spins until switch activated in motor mount setting origin
- Arduino receives position from laptop user input (position 1-8)
- Stepper motor rotates to desired position
- Linear actuator extends to compress duckbill and dispense liquid

Improvements
- Different housing materials for ease of manufacturing, recycling, and lower cost (injection molding)
- Tighter tolerances; metric manufacturing
- Liquid rack designs
- Design and manufacture duckbills specific to our uses

Conclusion
- Would not recommend using duckbill valves for small scale, high precision work, specifically in life science industries
- Duckbill valves are viable for this application on larger scale because less precision is needed and more cost effective

Results

Preliminary Testing
- Duckbill Valve Burst Pressure Test:
 - Burst Pressure: 0.5 Bar
- Duckbill Compression Test:
 - 7 Newtons
- Duckbill Leakage Test:
 - Eliminated fluid leakage with the addition of a rubber grommet

Final Testing
- Actuator Alignment Test:
 - Aligned actuator with each valve
- Duckbill Valve Burst Pressure Test:
 - Burst Pressure: 0.5 Bar
- Zero Positioning Test:
 - Implemented switch to locate zero position

Background
Test the feasibility and efficiency of duckbill valves in an automated liquid actuation system.

Push sides of duckbill to open
Fluid flow through self closing direction

Acknowledgements: Steven Bain | Metin Glousouf | Festo Team | Dr. Daria Kotys-Schwartz | Aman Chavhan | Dr. Julie Steinbrenner | Jeffrey Erhard | ITLL Staff