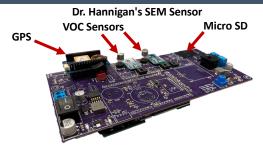


Autonomous Rover for Landfill Methane Monitoring

Ahmed Ashmaig | Caden Bence | Nicholas Cooper | Kimberly Fung | Nathan Gallagher | Alex Jakubek | Max Kowalski | Hugh Scribner | Graham Williams

Background Problem

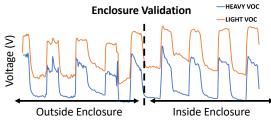
In the US, 18% of methane is emitted from landfills[1] Surface emission monitoring (SEM) can reduce harm Manned SEM testing is costly (\$24,000 annually), dangerous, and time-consuming


Objective

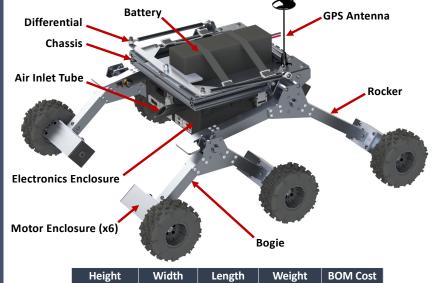
Prove a low cost, automated process could be used for surface emission monitoring

Key Requirements

- ✓ Utilize HAQ Lab's SEM sensor
- ✓ Maneuver obstacles and ruts
- ✓ Traverse across inclines
- ✓ Travel autonomously
- ✓ Be low-cost & scalable
- ✓ Include a remote manual off switch


SEM Data Collection

Sensor measures and records volatile organic compound (VOC) levels and their locations



Air enters enclosure through the intake tube, flows over VOC sensors, and exits the backside

Test shows that the enclosure does not obstruct the sensor accuracy

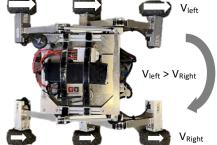
RALPH-E

Rover Maneuverability

29.5 in

32 lbs

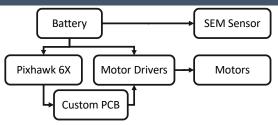
26.5 in


18 in

100° bogie arm angle increases climbing ability Differential distributes weight equally

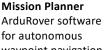
Differential keeps chassis stable to prevent tipping

\$3100


Skid Steering

Simple and compatible with software

To turn, one side is driven at a higher speed than the other side

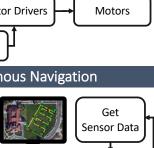

To pivot turn, one side is driven forward and the other in reverse

Critical Electronics

Autonomous Navigation

Get Next

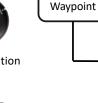
waypoint navigation


GPS & Compass

Measures position and heading IMU (x3)

Measures acceleration and angular velocity

Estimate


Position and

Heading

Find Error in

Heading

Drive

Conclusions

	Run Time	Current Draw	Max Rut Length	Tallest Obstacle	Travel Speed	Incline Travelled
Req.	1.5 hr	<20 A	5 in	3 in	2 mph	15°
Actual	5.75 hr	5.5 A	7 in	6 in	2.2 mph	30°

Impact

Lowers cost of SEM testing

Increases SEM data collection frequency in the field To be used in EPA funded research project next year

Future Considerations

Implement obstacle avoidance capabilities Increase electronics protection from environment Implement self-charging capabilities