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A Small Deformation
Thermoporomechanics
Finite Element Model
and Its Application to
Arterial Tissue Fusion
Understanding the impact of thermally and mechanically loading biological tissue to
supraphysiological levels is becoming of increasing importance as complex multiphysical
tissue–device interactions increase. The ability to conduct accurate, patient specific com-
puter simulations would provide surgeons with valuable insight into the physical proc-
esses occurring within the tissue as it is heated or cooled. Several studies have modeled
tissue as porous media, yet fully coupled thermoporomechanics (TPM) models are lim-
ited. Therefore, this study introduces a small deformation theory of modeling the TPM
occurring within biological tissue. Next, the model is used to simulate the mass, momen-
tum, and energy balance occurring within an artery wall when heated by a tissue fusion
device and compared to experimental values. Though limited by its small strain assump-
tion, the model predicted final tissue temperature and water content within one standard
deviation of experimental data for seven of seven simulations. Additionally, the model
showed the ability to predict the final displacement of the tissue to within 15% of experi-
mental results. These results promote potential design of novel medical devices and more
accurate simulations allowing for scientists and surgeons to quickly, yet accurately,
assess the effects of surgical procedures as well as provide a first step toward a fully
coupled large deformation TPM finite element (FE) model. [DOI: 10.1115/1.4037950]

Keywords: finite element modeling, biomechanics, thermoporomechanics, poromechanics,
bioheat transfer, tissue fusion

1 Introduction

Biological tissue undergoes thermal loading in several manners
ranging from surgical devices that heat or cool biological tissue to
cauterize or ablate it [1–4], to natural causes such as hyperthermia
or frostbite [5]. Scientists and physicians seek to understand these
processes and their impact on tissue mechanics to create novel,
safer, and more effective medical devices and procedures. With
tissue–device interaction becoming ever more prevalent in the
form of more complex medical devices, wearable electronics, and
implanted electronics, experimental testing is becoming increas-
ingly expensive in time and resources. Computer simulations of
these interactions, when calibrated to experimental data, provide
essential insight into the underlying physics occurring in biologi-
cal tissue when deformed and heated, allowing for streamlined
design work and ultimately more effective devices and safer pro-
cedures. Additionally, models with the ability to accurately and
quickly predict surgical outcomes will help satisfy the growing
desire for patient specific, near real time, simulations for surgical
procedures [6].

A good deal of biological tissue is nonhomogenous and typi-
cally contains several materials, often in different phases [5]. For
example, the artery wall has an extracellular matrix (ECM) made
up of collagen, elastin, and glycosaminoglycans. While water is
attracted to molecules within the tissue through polar interactions,
it readily moves through interstitial spaces. Thus, this tissue can

be considered as a porous medium. Studies attempting to model
biological tissue, including vertebral disks [7], articular cartilage
[8], lung tissue [9], arterial tissue [10], skin [5], tumor [5], and
myocardial tissue [11] as a porous medium exist throughout litera-
ture; however, these attempts have failed to completely represent
the complex physics occurring within the tissue. Typically, mod-
els representing biological tissue as porous media fall into one of
two categories. The first neglects deformation and only heat and/
or mass transfer is represented [3,5,12]. The second category of
models uses solid mechanics and mass transport to model tissue
deformation and coupled pore fluid flow, but thermal transport is
not considered [7,9,13]. To the authors’ knowledge, no model
exists that demonstrates the coupled solid phase (ECM) mechan-
ics, mass transfer, and heat transfer (thermoporomechanics
(TPM)) occurring in biological tissue. In this paper, a small defor-
mation, TPM finite element (FE) model with the ability to repre-
sent the heating and deformation of biological tissue is presented,
and its results are validated by comparison to measured experi-
mental results of thermal arterial tissue fusion.

2 Methods

2.1 Initial Definitions. Throughout this paper, it will be
assumed that the biological tissue being modeled will be partially
saturated triphasic (also called unsaturated) porous media.
Meaning the tissue will consist of some solid skeletal matrix and
multiple fluid constituents (gas and liquid) occupying the voids
between the solid matrix. It will be assumed the voids will be
filled with liquid water and gaseous water vapor all tissue is
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avascular, meaning the tissue itself does not contain blood vessels
or lymphatic vessels that could act as source/sink for fluid.

To fully describe a partially saturated triphasic porous medium,
several definitions must be prescribed and constraints given. Con-
sidering a total differential volume, dv, with a total differential
mass, dm, it can be said that the total differential volume and
mass are equal to a sum of the differential volumes and masses of
each phase, a (s ¼ solid; ‘ ¼ liquid; g ¼ gas), at a continuum
point

dv ¼
X

a¼s;‘;g

dva (1)

dm ¼
X

a¼s;‘;g

dma (2)

Thus, we can define the volume fraction of each phase, na, as

na ¼ dva

dv
(3)

With Eq. (3), it can be seen that

1 ¼ ns þ n‘ þ ng ¼ ns þ n (4)

where n is the volume fraction of the pore space, or porosity. The
differential mass of each phase can be written as

dma ¼ qaRdva ¼ qaRnadv (5)

where qaR is the true (real) mass density of the a phase. With
Eq. (5), it can be shown that the partial mass density, qa, is

qa ¼ qaRna (6)

Finally, it is beneficial to define the saturation of the liquid and
gas phases, Sf , as the volume fraction of the pore space occupied
by each fluid phase

Sf ¼
nf

n
; f ¼ l; g (7)

1 ¼ S‘ þ Sg (8)

2.2 Kinematics. To fully understand the physical processes
occurring within porous media when loaded, it is necessary to
examine the kinematics of a volume element and its constituents.
From fundamental continuum mechanics and the theory of porous
media [14,15], it can be said that each phase undergoes some
motion, va, defined as

x ¼ vaðXa; tÞ (9)

where x is the current “smeared” position of all phases at time, t
and Xa is the initial location of the a phase as shown in Fig. 1.
Thus, the deformation gradient, Fa, for the a phase is

Fa ¼
@va Xa; tð Þ
@Xa

¼ @x Xa; tð Þ
@Xa

(10)

Examining the volumetric change of the differential volume ele-
ment, it is seen that

dv ¼ JadVa (11)

dva ¼ naJadVa (12)

where Ja is the determinant of the deformation gradient, Fa, and
dVa is the reference differential volume for the a phase. These are
nonlinear geometric, or large deformation, variables, but we will
simplify later to the linear (small deformation) theory.

2.3 Governing Equations. Three governing equations will be
used in the finite element formulation: balance of mass, balance of
linear momentum, and balance of energy for the three phase mix-
ture. While these equations can be arranged to solve for numerous

Fig. 1 A depiction of the deformation of each phase from its initial differential volume, dVa, in
their respective reference configurations to the final smeared differential volume, dv , in the
final current configuration
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variables, in this paper the desired field variables are the solid
phase displacement, u, the liquid pore pressure, p‘, and the average
temperature of the smeared mixture, h: In geomechanics, it is tradi-
tional to split the gas mixture into a combination of dry air and
water vapor adding an additional balance of mass equation to solve
for gas pressure [16]. However, in this paper, it is assumed that no
dry air exists in the biological tissue and all gas is water vapor.
Therefore, gas (vapor) pressure can be solved directly from the
Clausius–Clapeyron equation as demonstrated later.

Figure 2 illustrates the problem setup including generalized
boundary conditions, which include for the solid ECM—
prescribed displacements, u fixed, and applied traction, t, for the
water species—prescribed liquid pore pressure, p fixed

‘ and flux, q‘,
in the form of vapor or liquid, and for energy—prescribed temper-
ature, h fixed and energy flux, qh.

2.4 Balance of Mass. The balance of mass of the a phase for
a total differential volume element, dv, can be written as

Dama

Dt
¼ Da

Dt

ð
X
qadv ¼

ð
X
q̂adv (13)

where (DaðmaÞ=Dt) is the material time derivative of mass with
respect to the a phase, and q̂a is the mass supply term [17]. It is
assumed that the solid matrix cannot gain or lose mass (q̂s ¼ 0),
and that the water can change from liquid to vapor or vice versa,
but that no water is added or lost

q̂g ¼ �q̂‘ ¼ q̂v (14)

Applying these assumptions, localizing the integral, and applying
Eq. (6), the balance of mass for each phase is

Dsns

Dt
þ nsdivvs ¼ 0 (15)

D‘n‘

Dt
þ n‘divv‘ ¼ �

q̂v

q‘R
(16)

Dgng

Dt
þ ngdivvg ¼

q̂v

qgR
(17)

where divva is the divergence of the velocity, va, of the a phase,
and q̂v is the change in water mass due to vaporization or conden-
sation. Assuming that the solid and liquid phases are incompressi-
ble, but allowing for density change due to temperature [18] and
treating gas as ideal, the balance of mass equations become

Dsns

Dt
þ nsdivvs � bh

s ns Dsh
Dt
¼ 0 (18)

D‘n‘

Dt
þ n‘divv‘ � bh

‘n
‘ D‘h

Dt
¼ � q̂v

q‘R
(19)

Dgng

Dt
þ ngdivvg þ

1

pg

Dgpg

Dt
� 1

h
Dgh
Dt
¼ q̂v

qgR
(20)

A Lagrangian formulation is used for the FE formulation, such
that all material time derivatives must be put in terms of the solid
phase (i.e., the FE mesh will follow the solid ECM motion). Addi-
tionally, it is beneficial to combine Eqs. (18)–(20) with Eq. (7)
into a single balance of mass equation for the mixture

q‘RS‘ þ qgRSg

� �
divvs � 1� nð Þ q‘RS‘ þ qgRSg

� �
bh

s þ nq‘Rbh
‘

h i
� Dsh

Dt
þ n q‘R � qgR
� �DsS‘

Dt
þnSg

DsqgR

Dt

þ div qgR~vD
g þ q‘R~vD

‘

� �
¼ 0 (21)

where ~vD
f is the Darcy velocity of the fluid (f ¼ g or ‘) phase,

where ~vD
f ¼ nf ðvf � vsÞ.

2.5 Balance of Linear Momentum. According to de Boer
[15], Holzapfel [17], and Coussy [19], the balance of linear
momentum for the a phase can be written as

ð
X

va
Daqa

Dt
þ qaaa þ qadivva

� �
dv

¼
ð

X
qa þ ba þ ĥ

a� �
dvþ

ð
C

tada (22)

Fig. 2 Depiction of the problem setup for the balance equations where u, p‘, and h are the desired field variables. Fluxes and
prescribed boundary conditions act on surfaces (C), while heat source (r) and phase transition (q̂v ) act throughout the body
(X).

Journal of Biomechanical Engineering MARCH 2018, Vol. 140 / 031007-3

Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 01/07/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



where ta is the traction acting on surface C, aa is the acceleration,

ba is the body force, and ĥ
a

is the drag body force of all other
phases acting on the a phase such thatX

a¼s;‘;g

ĥ
a ¼ 0 (23)

Localizing and applying Cauchy’s theorem, Eq. (22) can be writ-
ten as

va
Daqa

Dt
þ qaaa þ qadivva ¼ qaba þ ĥ

a þ divra (24)

where ra is the partial Cauchy stress in the a phase. Summing
over all phases, neglecting inertia terms, and applying Eq. (24),
the total mixture balance of linear momentum is

0 ¼ qeffbþ divr (25)

where

qeff ¼ ð1� nÞqs þ nðS‘q‘R þ SgqgRÞ (26)

ba ¼ b (27)

The total Cauchy stress of the mixture, r, is defined by the effec-
tive stress principle as

r ¼ r0 � ðvp‘ þ ð1� vÞpgÞ1 (28)

where r0 is the effective stress of the solid ECM, p‘ and pg are the
pore pressure of each fluid phase, and v is the effective stress
parameter representing the portion of the stress taken by the liquid
and gas phases [18].

2.6 Balance of Energy. The first law of thermodynamics pro-
vides the balance of energy for the mixture, which for the a phase
can be written as

_E
a þ _K

a ¼ Pa þ _Q
a þ

ð
X

êadv (29)

with

_E
a þ _K

a ¼
ð

X
q̂a va � va

2
þ ea

� 	
þ qa Daea

Dt

� �
dv (30)

Pa ¼
ð

X
ra :

Da�a

Dt
� ĥ

a � va

� �
da (31)

_Q
a ¼

ð
X
½qara � divqa

h�dv (32)

The material time derivatives following the a phase of internal

energy, _E
a
, and kinetic energy, _K

a
, are a function of the partial

mass density, qa, the source or sink of mass density, q̂a, the veloc-
ity, va, and the internal energy, ea, of the a phase. The rate of heat

transfer to the a constituent, _Q
a
, is dependent on both an energy

supply source, ra, and the heat flux, qa
h, to each phase. Pa is the

power imparted on the a phase and consists of a mechanical work

term, ra : ðDa�a=DtÞ, and the interphase momentum term, ĥ
a � va,

where �a is the small strain tensor of the a phase (here, we begin
to assume small deformation theory). Finally, êa is the energy
supply rate of the a constituent from all other constituents. Local-
izing and summing over all constituents, Eq. (29) becomes

X
a¼s;‘;g

ra :
Da�a

Dt
þ ĥ

a � va � qa va � va

2
þ qa Daea

Dt
� qara þ eaq̂a ¼ 0

(33)

2.7 Closure of Theory. Although the balance equations
provide the backbone of TPM, additional equations, often called
constitutive equations, are needed to reach a closed theory. In this
work, several equations will be used to close the theory.

The second law of thermodynamics is used to motivate consti-
tutive forms and can be written in the local form for the a constit-
uent as

q̂ahaga � qara þ qaha Daga

Dt
þ divqa

h � qa
h �

gradha

h
� 0 (34)

where ga is the entropy per unit mass of the a phase. The Gibb’s
free energy per unit mass, gf , of a fluid (f ¼ ‘; g) phase is defined
as

gf ¼ ef � pf

qf R
� hf gf

(35)

Taking the material time derivative with respect to f of Eq. (35),
substituting it into Eq. (34) and combining with Eqs. (13) and (33)
yield the entropy inequality of a fluid phase

X
f¼‘;g

qf vf � vf

2
� ĥ

a � vf þ êf � qf @gf

@pf

Df pf

Dt
� qf @gf

@hf

Df hf

Dt

� qf gf Df hf

Dt
þnf Df pf

Dt
þ pf

Df nf

Dt
� q

f
h � gradhf

hf
� 0 (36)

Defining the Helmholtz free energy per unit mass of the solid
phase as

ws ¼ es � hsgs (37)

and combining it with Eqs. (28), (33), and (34), the entropy
inequality for the solid is

r0 :
Ds�skel

Dt
þ n‘ � v
� �

þ ng � 1� vð Þ
� �

pg

h i
divvs � ĥ

s � vs þ êa

�qsgs Dshs

Dt
� qs Dsws

Dt
� qs

h � gradhs

hs � 0 (38)

where the strain tensor of the solid phase is the same as that of the
solid ECM, e.g., �skel ¼ �s. Following the procedure outlined by
de Boer [15], Coussy [19], and Wang [20], through combining
Eqs. (21), (36), and (38), the entropy inequality for the mixture
can be written as

1

2
q̂‘v‘ � v‘ þ

1

2
q̂gvg � vg � q̂‘v‘ � ~v‘ � q̂gvg � ~vg

þ ng � 1� vð Þ

 �

pg � n‘ � v
� �

p‘

n o
bh

s � qsgs � qs @w
s

@h

� �

� Dshs

Dt
þq‘

@g‘

@h‘
� g‘

� �
D‘h‘

Dt
þ qg @gg

@hg � gg

� �
Dghg

Dt

� qs @w
s

@S‘
þ ns

� �
DsS‘
Dt
þ n‘ � q‘

@g‘

@p‘

" #
D‘p‘
Dt

þ ng � qg @gg

@pg

� �
Dgpg

Dt
� ~vD

‘ � gradp‘ � q‘Rb‘

 �

�~vD
g � gradpg � qgRbg

 �

þ r0 � qs@ws

@�skel

� 	
:

Ds�skel

Dt

� 1

h
qh � gradh � 0 (39)

where ~vf ¼ vf � vs and qh is the heat flux. Using arguments by
Coleman and Noll [21] and Coussy [19] that Ds�skel=Dt; Df pf =Dt;
DsS‘=Dt; and Daha=Dt are independent processes that can be
varied separately, it is then required that

031007-4 / Vol. 140, MARCH 2018 Transactions of the ASME

Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 01/07/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



ng � 1� vð Þ½ �pg � n‘ � v
� �

p‘

n o
bh

s � qsgs � qs @w
s

@h

� �
¼ 0

(40)

@gf

@hf
� gf

� �
¼ 0; for f ¼ g; l (41)

qs @w
s

@S‘
þ ns

� �
¼ 0; for f ¼ g; l (42)

r0 � qs@ws

@�skel

� 	
¼ 0; (43)

�~vD
f � ½gradpf � qf Rbf � � 0 (44)

� 1

h
qh � gradh � 0 (45)

Therefore, to remain thermodynamically consistent, the
constitutive models for the mixture must meet the following
requirements:

qsgs ¼ ng � 1� vð Þ½ �pg � n‘ � v
� �

p‘

n o
bh

s � qs @w
s

@h
(46)

ns ¼ �qs @w
s

@S‘
(47)

gf ¼ @gf

@hf
for f ¼ ‘; g (48)

nf

qf
¼ @gf

@pf
for f ¼ ‘; g (49)

r0 ¼ qs @w
s

@�skel
(50)

Applying the conclusion shown in Eqs. (44)–(49), assuming the
temperature of each phase at a point is the same, e.g.,

h ¼ ha for a ¼ s; ‘; g (51)

combining them with Eqs. (35) and (37) and simplifying yield the
balance of energy equations of the combined mixture

q‘h
D‘g‘

Dt
þ qgh

Dggg

Dt
þ qsh

Dsgs

Dt
þ ~vD

‘ � gradp‘ � q‘Rb‘

 �

þ~vD
g � gradpg � qgRbg

 �

� 1

2
q̂ ‘v‘ � v‘ �

1

2
q̂gvg � vg

þ q̂‘v‘ � ~v‘þq̂gvg � ~vg � q‘r‘ � qgrg � qsrs þ grad q‘h

þ gradq
g
h þ grad qs

h þ q̂vHvap ¼ 0 (52)

Combining the heat sink and flux terms, neglecting body forces,
moving material time derivatives to be in reference to the solid
phase, and introducing the definition of specific heat, Ca

p, as

qaCa
p

Daha

Dt
¼ qaha Daga

Dt
(53)

allow the final balance of energy to be written as

qCpð Þeff

Dsh
Dt
þ q‘RC‘

p~vD
‘ � gradhþ qgRCg

p � gradh� qr

þ gradqh þ q̂vHvap�q̂‘
v‘ � v‘

2
� q̂‘

vg � vg

2
� q̂vv‘ � ~v‘

þ q̂vvg � ~vg þ ~vD
‘ � gradp‘ þ ~vD

g � gradpg ¼ 0 (54)

where the effective specific heat, ðqCpÞeff , is defined as

ðqCpÞeff ¼ qsCs
pð1� nÞ þ n½S‘q‘C‘

p þ SgqgCg
p� (55)

the total heat flux, qh, is

qh ¼ qs
h þ q‘h þ q

g
h (56)

and the total heat source per unit mass, r; is

r ¼ rs þ r‘ þ rg (57)

Additionally, the heat flux is assumed to be isotropic and, there-
fore, can be defined as

qh ¼ keff
t gradh (58)

where keff
t is the total thermal conductivity of the mixture defined

as

keff
t ¼ ð1� nÞks

t þ nðS‘k‘t þ Sgkg
t Þ (59)

where ka
t is the thermal conductivity of the a phase. Furthermore,

it is assumed that water vapor reaches its saturation pressure [22].
Therefore, the Clausius–Clapeyron equation can be used to calcu-
late gas pressure, pg

pg ¼ pgs0 exp �MmHvap

R

1

h
� 1

h0

� �� 	
(60)

where Mm is the molar mass of the vapor, Hvap is the latent heat of
vaporization, R is the ideal gas constant, and pgs0 is the saturated
gas pressure at reference temperature, h0. Using this calculated
gas pressure, the van Genuchten (Eq. (61)) equation can now be
used to relate the liquid saturation with the capillary pressure
[15,23], s, which is the difference between the liquid and gas
pressures

Se ¼
S‘ � Sr

Ss � Sr
¼ 1

1þ s

a

� 	nvg

0
B@

1
CA

m

(61)

m ¼ 1� 1

n
(62)

s ¼ pg � p‘ (63)

where, Se is the effective degree of saturation, Sr is the residual
degree of saturation, and Ss is the saturated degree of saturation,
taken to be 1. Literature fails to provide values for constants
a; nvg;m, and Sr for biological tissue, forcing the authors to look to
fields such as food processing [24] and geomechanics [16] for
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values. Additionally, Darcy’s law will provide the relative veloc-
ities of the fluids [16] (the body force term is neglected)

~vD
f ¼ �

kf
relk

f
int

lf
gradpf (64)

where lf is the viscosity of the fluid phase f. The relative perme-

ability of each fluid, kf
rel, includes the Kozeny–Carman relation-

ship and is defined as

kf
rel ¼

nfð Þ3

1� nfð Þ2
1� nf

0

� �2

nf
0

� �3
(65)

where nf and nf
0 are the current and initial volume fraction of each

fluid phase, and the intrinsic permeability, kf
int, is defined as

kint ¼ k0intcðS‘Þ

where k0int is a material constant, and cðS‘Þ is a saturation-
dependent parameter defined for the liquid phase as

c S‘ð Þ ¼
S‘ � Sr

1� Sr

� 	3

S‘ > Sr

0 S‘ < Sr

8><
>: (66)

and for the gas phase as

cðSgÞ ¼
1� 1:1Sg Sg < 1=1:1

0 Sg > 1=1:1

(
(67)

where Sr is the residual degree of saturation, Sl is the degree of liq-
uid saturation, and Sg the gaseous degree of saturation defined as
Sg ¼ 1� S‘ [25]. These equations assume that as the liquid satu-
ration (S‘) approaches the residual saturation (Sr), it becomes
increasingly difficult for the fluids to flow through the tissue.

Finally, the solid ECM is assumed to be elastic; thus, the effec-
tive ECM stress, r0, can be represented by

r0 ¼ C�skel (68)

where C is the isotropic elasticity tensor that meets the thermody-
namic requirements set forth in Eq. (43), and �skel is the small
strain within the solid ECM. This paper examines three different
constitutive equations: a simple linear elastic, a bilinear elastic,
and an exponential elastic equation to determine the elasticity ten-
sor, C.

2.8 FE Implementation. As stated earlier, the field variables
to be solved using the finite element method are pore liquid pres-
sure, p‘, the smeared temperature, h, and the solid ECM displace-
ment vector, u. The balance of mass, linear momentum, and
energy equations (Eqs. (21), (25), and (54)) were put into weak
form and linearized with respect to the desired variables. To avoid
element locking, isoparametric quadrilateral elements biquadratic
in displacement and bilinear in temperature and pore pressure
were used. A standard backward Euler time-stepping scheme was
implemented with Newton–Raphson iterations to obtain conver-
gence during each time step. All calculations were conducted
using a custom written code in MATLAB 2015b. To handle the
highly nonlinear nature of this problem efficiently, an adaptive
time-stepping scheme was performed by altering the time-step
size based on the number of Newton–Raphson iterations needed
for convergence during the previous step. The FE code was rigor-
ously verified through comparison with published TPM FE results
in the geomechanics field [16,20] and by comparing portions of
the code with simulations conducted using the commercial soft-
ware Comsol Multiphysics

VR

.

Fig. 3 Depiction of the tissue clamped within the Conmed
Altrus

VR

jaws and the two-dimensional plane to be simulated

Fig. 4 Depiction of the quarter-symmetry section of tissue and applied boundary conditions. The device jaws
apply temperature and pressure to the top. Symmetry boundary conditions are applied to the bottom and left
edges. Heat and water are allowed to flow through the right edge.

031007-6 / Vol. 140, MARCH 2018 Transactions of the ASME

Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 01/07/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



2.9 Experimental Measurements. The experimental results
used to evaluate the performance of the FE model were taken
from data published within the literature [2,26,27] as well as
supplemental experiments conducted by the first and third authors
following the same procedures outlined in these papers. The tem-
perature measurements were taken within the lumen of a com-
pressed artery using an array of thermocouples. To find water
content, a portion of tissue was fused and then weighed. It was
then dried completely and weighed again. The percent weight of
water is calculated from these measurements. Full experimental
details for tissue temperature and water content measurement can
be found in the works published by Cezo et al. [26,27].

To obtain the deformation of the tissue while loaded to 100 N
during the tissue fusion process, a custom testing setup affixing
Conmed Altrus

VR

jaws, to a uniaxial material testing system (MTS;
MTS Insight 2 Electromechanical Testing System), was used.
The thickness of eight porcine artery sections was recorded via
optical microscope, and then each arterial section was placed

between the Altrus
VR

jaws, and a 100 N force was applied using a
proportional–integral–derivative control algorithm. Once the
100 N force was reached, the heaters were activated for 3 s. The
deformation in the y-direction of the tissue and the force were
recorded throughout the loading and heating process. To obtain
the Young’s Modulus, E, used in the finite element simulations, a
best fit analysis was conducted using the engineering stress and
strain recorded in the tissue after mechanically loading the tissue,
but before heating. A more detailed explanation of the MTS
attachments and experimental setup can be found in the work by
Fankell et al. [2].

2.10 Tissue Fusion Simulations. Now that the framework
for a multiphase TPM FE model has been established, its use in
simulating heated biological tissue, specifically thermal tissue
fusion, will be demonstrated. Figures 3 and 4 show the quarter-
symmetry, two-dimensional section representing the center of the

Table 1 Material properties, initial conditions, and boundary conditions

Material property Value Description Source

Universal constants R 8.314 N�m/mol K Ideal gas constant [28]
Mm 0.018 kg/mol Molar mass of water [28]

Solid skelton structure Elin 6.22 MPa Linear elastic Young’s modulus Measured
E1 2.0 MPa Bilinear elastic Young’s modulus 1 Measured
E2 10.12 MPa Bilinear elastic Young’s modulus 2 Measured

Eexp 4.62 MPa Exponential elastic Young’s modulus Measured

�skel 0.3 Poisson’s ratio [29]

Thermal constants as 2.5� 10�4 K�1 Solid thermal expansion coefficient [30]

bh
s

3*as Solid volumetric thermal expansion coefficient N/A

bh
‘

4.0� 10�4 K�1 Water volumetric thermal exp. coefficient [31]

Cs
p 145.83 J/(kg K) Specific heat of solid [26]

C‘
p

4179 J(kg K) Specific heat of liquid water [28]

Cg
p 1850 J/(kg K) Specific heat of water vapor [28]

ks
t 0.5 W/(m K) Thermal conductivity of solid [26]

k‘t 0.6 W/(m K) Thermal conductivity of liquid water [28]

kg
t 0.025 W/(m K) Thermal conductivity of water vapor [28]

Hvap 2.264� 106 J/kg Latent heat of vaporization of water [28]
ht 25 W/(m2 K) Convective heat transfer coefficient [32]

hamb 25 �C¼ 298 K Ambient temperature N/A

Densities qsR 1050 (kg/m3) Real density of solid [33]

q‘R 1000/(1þ 4 bh
‘h) Real density of water [28]

qgR Ideal gas N/A

Mass transport constants ko
‘
int

5� 10�14 m2 Intrinsic permeability of liquid water [24]

ko
‘
rel

Eq. (61) Relative permeability of water [15]

kg
int

10� 10�14 m2 Intrinsic permeability of water vapor [24]

kg
int

Eq. (61) Relative permeability of water [15]

l‘ 5.5� 10�4 Pa�s Viscosity of liquid water [24]
lg 1.8� 10�5 Pa�s Viscosity of water Vapor [24]

nvg 1.6, 1.8, 2.0 Constant for Clausius–Clapeyron [16], N/A

a 19.4� 103 Pa Constant for Clausius–Clapeyron [16]
Sr 0.25, 0.3, 0.35 Constant for Clausius–Clapeyron [16], N/A
hm 0.0015 m/s Convective mass transfer coefficient [24]

qamb 0.073 kg/m3 Ambient water vapor density Ideal gas
pamb 1.01� 105 Pa Ambient pressure N/A

Initial conditions and model parameters pgo 1.01� 105 Pa Initial water vapor pressure N/A

no 0.78 Initial porosity [26]
p‘o 1.01� 105 Pa Initial liquid water pressure N/A
hamb 37 �C¼ 310 K Initial ambient temperature Measured
S‘o 0.99 Initial liquid water saturation N/A
happ

t
¼ t

:5
� hmax � 37ð Þt:t < :5

¼ hmax; t > :5

8><
>:

Applied temperature Measured

hmax Varies Maximum jaw temperature N/A
t 2.7� 106 Pa Applied traction Measured
T 5 s Total time N/A

dt0 0.0001 (s) Initial time step N/A
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tissue clamped within the jaws of a Conmed Altrus tissue fusion
device used in the simulations and the applied boundary
conditions.

2.11 Boundary Conditions. Three different temperature
boundary conditions exist within the thermal tissue fusion FE
model. The first is the symmetric boundary condition, which sets
the heat flux, qh, through the surface equal to 0 (i.e., adiabatic)

qh ¼ qh � n ¼ 0 on Csym
h (69)

The second thermal boundary condition is a prescribed tempera-
ture boundary condition representing the temperature of the jaws,
hfixed

hðtÞ ¼ hfixedðtÞ on Cfixed
h (70)

Finally, on all free edges, free convection is expected to occur.
Thus, the normal heat flux, qh, is specified as

qh ¼ htðh� hambÞ on Cfree
p (71)

where ht is the heat transfer coefficient, and hamb is the ambient
temperature. Two water species boundary conditions are imple-
mented. The first is an impermeable or symmetric boundary con-
dition preventing flow through the boundary

q‘ ¼ qg ¼ 0 (72)

The second boundary condition consists of the fluid flux, qf , due
to the difference of pore pressure across the boundary

qf ¼ �
kf

relk
f
int

lf
qaRSf pf � pambð ÞA for f ¼ l; g on Cfree

p
(73)

where pamb is the ambient fluid pressure, and A is the boundary
area. The last boundary conditions are an applied traction, t, and a
symmetric boundary condition fixing displacements

u � n ¼ 0 on Cfixed
u (74)

2.12 Material Properties. Material properties unable to be
experimentally measured in the lab were obtained from several
sources within the literature. If material properties specifically
pertaining to the artery wall were unavailable, properties of tissue
similar in composition to the artery wall were used. As it was not
possible at this time to find values for the van Genuchten parame-
ters, a parametric study of the parameters Sr and nvg was con-
ducted to determine the optimal parameters for matching
experimental data. To determine the structural mechanical proper-
ties, Elin, E1, E2, and Eexp, needed for the constitutive models, a
nonlinear regression analysis using measured experimental
stress–strain values was conducted using the commercial statistics
software Minitab

VR

. All material properties, initial condition, and
boundary condition values along with the source they were found
in are listed in Table 1.

2.13 Simulations. Seven different simulations were run
attempting to predict experimental results of tissue displacement,
water content, and internal tissue temperature. The maximum
applied temperature, hmax, varied from 120 �C to 200 �C, and sim-
ulations were run for 5 s (the same time period as the experiment).
The simulation was conducted in three steps: (1) the applied trac-
tion matching that of the applied force seen in the experiments
was applied during a 2 s step, (2) the temperature was applied dur-
ing a 1 s step, and (3) the temperature held for 2 s.

Mesh sensitivity studies were conducted to find the most effi-
cient simulation parameters. This was done by running a simula-
tion, halving the mesh size, rerunning the simulation, and

Fig. 5 (a) The temperature (�C) within the tissue for an applied 170 �C and an Sr 5 0:3 at the
end of 5 s. (b) and (c) The temperature at the center of the tissue as it is compared to published
experimental results [5]. Only one data point can be compared as all other experimental points
are located too far from the center plane of the tissue.
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comparing the solution vectors. This process was continued until
the norm of the difference of the solution vectors was less than
1%. As high-temperature gradients and vaporization rates can
occur during portions of the simulations, convergence often
depended greatly on time-step size. Time-step size was deter-
mined by choosing an initial time step of 0.0001 s and recording
the number of Newton–Raphson iterations required for conver-
gence during the current time step. If this value was greater than
or less than a certain threshold (seven iterations and two iterations,
respectively), the time-step size was halved or doubled for the
next step accordingly. Once the simulations were complete, the
results were compared with experimental measurements.

3 Results

Figure 5 shows the temperature profile within the tissue at the
end of a simulation (hmax ¼ 170 �C; tmax ¼ 5 s). The temperature
at the tissue center is then compared to published results by Cezo
et al. [27]. The results for the predicted temperature fall within
one standard deviation of measured experimental results. The
sensitivity analysis of the parameter, nvg, showed less than a 1%
difference in the solutions when changed by 20% (results not
shown); however, the value selected for the residual degree of sat-
uration parameter, Sr impacted the final predicted water content.
Figure 6 shows the water content by weight throughout the tissue
at the end of a simulation (hmax ¼ 170 �C; tmax ¼ 5 s) for Sr val-
ues of 0.25, 0.3, and 0.35. The water content falls within one
standard deviation of the mean measured experimental results in
each of the seven comparisons for all values of Sr and predicts

values closest to the measured experimental mean for an Sr of 0.3.
Figure 7 compares experimentally measured stress–strain curves
in the y-direction of the tissue to the simulated stress–strain curve
of the tissue as the load is applied before heating. The experimen-
tal model using a linear elastic constitutive model deviates from
the measured experimental results (mean standard error (MSE) of
0.33) for the majority of the curve, but ends at the same
stress–strain point at the end of loading. The bilinear constitutive
model and the exponential elastic models had a MSE of 0.21 and
0.18, respectively. The bilinear elastic simulation took an average
of 1.1 times longer than the linear elastic simulation, whereas the
simulation applying an exponential elastic material model took an
average of 1.4 times as long as the simulation using a linear elastic
material. Figure 8 displays the measured experimental and simu-
lated vertical deformation against time before and during heating
of the tissue. Before heating, the tissue deflects as expected for a
fully saturated porous medium. During heating, the experimental
results show an increase in downward deflection as the tempera-
ture increases. The simulation shows a decrease in downward
deflection with temperature increase, and then an increase in
deflection after a steady-state temperature is reached (	3 s). Each
simulation predicts a measured experimental deflection of within
15% throughout the simulation.

4 Discussion

This work provides a method for conducting TPM finite ele-
ment simulations of biological tissue enabling one to evaluate the
physics occurring within the tissue when loaded, thermally and/or

Fig. 6 (a) The water content at 5 s within the center plane of the tissue for a simulation apply-
ing 170 �C and an Sr 5 0:3. (b) Dots representing the average water content within the tissue
for applied temperatures of 120–200 �C for an Sr of 0.25, 0.30, and 0.35 are plotted against
measured experimental results. All simulated results of water content fell within one standard
deviation of the average experimental results with an Sr of 0.30 producing results nearest the
mean of the experimental results. Note: Experimental results include Cezo’s published results and
supplemental results obtained following the same procedure (T 5 150C and T 5 180C, n 5 12).
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mechanically, by an external source. The model incorporates the
fluid transport through the tissue, including phase change between
liquid water and water vapor, the heat transfer through the tissue,
and the deformation of the tissue. Using this method, the simula-
tions of thermal tissue fusion were then conducted and compared
to experimental results. The simulations were able to predict tem-
perature and water content even though limited by small deforma-
tion theory.

4.1 Temperature. Figure 5 shows the simulated temperature
at the end of an applied 170 �C temperature simulation. By this
point (5 s), the simulation has reached steady-state, and the tem-
perature at the center of the tissue is 169 �C which is 6 �C higher
than the mean published experimental results [27], though still
within a standard deviation of the results. This discrepancy is due
to the assumption of perfect thermal conduction at the jaw edge.
To better represent true device–tissue interaction, the conductivity
between jaw edge and tissue edge needs to be taken into account.
Even with the simplifying assumption of perfect conduction, the
simulation predicts the center tissue temperature within one stand-
ard deviation of the measured experimental mean.

4.2 Water Content. Each of the seven simulations run for
all values of the residual degree of saturation, Sr, predicted the
average final water content within one standard deviation of the
experimentally measured mean [26] with the value of Sr¼ 0.3 pre-
dicting final water content values closest to the mean measured
experimental value. The value of residual saturation represents the
amount of water left bound in the tissue that is impossible to be
driven out via a tissue fusion device. Ideally, it would be benefi-
cial to conduct separate experimental measurements to provide
the specific van Genuchten parameters; however, these parameters
prove particularly difficult to measure in biological tissue, and the
measurement of them is currently left as future work. Thus, the
sensitivity study presented here provides a baseline for researchers
moving forward with this type of analysis.

4.3 Deformation. The deformation predicted by the three
elastic constitutive models shown in Figs. 7 and 8 shows that
although the final displacement before heating is accurately pre-
dicted, the model is limited by its linear elastic, small strain
assumption. This is seen in Fig. 7 when the linear elastic
stress–strain curve of the tissue deviates significantly from the
measured stress–strain curve, and in Fig. 8 when the small defor-
mation assumption limits the ability of all three models to predict

the tissue deflection as the tissue is heated. Despite these limita-
tions, the model still accurately predicts the fluid and thermal
transport occurring in the arterial tissue and estimates the final
vertical deformation of the tissue to within 15% of the measured
experimental mean. A more inclusive TPM FE model utilizing
large deformation theory is needed for applications requiring
more accurate analysis. While the small deformation theory
may be limited, it is still a valuable tool for two reasons. First,
simulations assuming small deformations will decrease simulation
time significantly when compared to simulations utilizing full
nonlinear large deformation theory. This is already seen in the
comparison in computation time between the linear elastic and
exponential elastic simulations and would be exacerbated if com-
pared to full large deformation theory. This reduction in computa-
tional time would be valuable in applications where a real-time
prediction of tissue deformation is desired, but exact accuracy is
not necessary such as seen in the field of medical device robotics
and automation [34]. Second, the small deformation model pre-
sented here is valuable in modeling processes in which large
deformation does not occur, such as those seen during ablation [1]
or interaction with wearable electronic devices.

5 Conclusion

Ultimately, a novel method for modeling the physics occurring
within biological tissue interacting with external devices has been
presented. Despite the weakness of assuming small deformations,
the model was still able to predict temperature and water content
occurring in tissue during arterial tissue fusion to within a stand-
ard deviation of experimentally measured data. To the authors’
knowledge, while small deformation TPM models have been used
to simulate geomechanical processes [16] and food processing
[23,24], this is the first to do so for medical device interaction
with biological tissue, providing an initial step toward all-
encompassing, predictive models.
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