

IMECE 2022-88403

PROJECT OBJECTIVES & GOALS

Microfluidics is poised to drastically transform healthcare by bringing miniaturized state-of-the-art medical laboratories (lab-on-a-chip) to regions previously lacking comprehensive healthcare infrastructure. However, development has been slow for two primary reasons¹:

(1) Lack of integration <u>infrastructure</u>

(2) Lack of a scalable internal <u>pump</u> source.

Solution: Thermal Bubble-Driven Micro-Pumps

Aim 1:

Low-Cost, Rapid Fabrication

Aim 2: Fluid & Bio Applications

DATA & RESULTS. BUBBLE DYNAMICS

Bubble dynamics are dependent on the applied resistor firing conditions. Vapor bubbles should be fully developed for maximum net flow. As such, resistor firing settings were determined by varying the firing voltage. Imaged at **2 Mfps**.

Confined in a Channel

Thermal Bubble-Driven Micro-Pumps: The Building Blocks to Bring Microfluidics to the Masses

Brandon Hayes* and Robert MacCurdy* *University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering

thermal inkjet resistors (TIJ).

map to the average velocity

IMECE Track 16-1 NSF Research Poster Competition