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PROJECT OBJECTIVES & GOALS BACKGROUND

Thermal bubble-driven micro-pumps are high power, thin film

thermal inkjet resistors (T1J).

* Fluid heated to near its critical temperature (300 °C) in us’s?

* Explosive nucleation creates a high pressure vapor bubble

 Vapor bubble expansion and collapse results in net fluid
motion when placed asymmetrically in a channel’

Microfluidics is poised to drastically transform healthcare by
bringing miniaturized state-of-the-art medical laboratories
(lab-on-a-chip) to regions previously lacking comprehensive
healthcare infrastructure. However, development has been
slow for two primary reasons?:

(1) Lack of integration infrastructure

(2) Lack of a scalable internal pump source.

Conventional fabrication takes weeks/months*. Laser cutting
single material thin films reduces lead time to hours/days.

Solution: Thermal Bubble-Driven Micro-Pumps

Aim 2:
Fluid & Bio Applications

Aim 1:

Low-Cost, Rapid Fabrication
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DATA & RESULTS. BUBBLE DYNAMICS

Bubble dynamics are dependent on the applied resistor firing
conditions. Vapor bubbles should be fully developed for
maximum net flow. As such, resistor firing settings were
determined by varying the firing voltage. Imaged at 2 Mfps.

DATA & RESULTS. FLOW RATE ANALYSIS

Particle tracking was used to measure the net flow rate, but
particles are non-uniformly distributed so we cannot simply
take the distribution average.

Confined in a Channel Solution: estimate the maximum velocity and use theory to

map to the average velocity
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EXPERIMENTAL SETUP
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CONCLUSIONS

Fabrication time of TIJ resistors reduced
from weeks/months to hours/days
Low-cost (< $6,000), custom, open-source
control and imaging system developed

* Saturated flow rate of 3.34 nL/pulse with a
300 x 700 um? resistor in a 515 x 315 pum?
channel of length 13.268 mm

e Laser ablation of thin films is a low-cost,

rapid way to make these micro-pumps

FUTURE STUDIES

In future studies, fluid and biological applications (aim 2) of thermal bubble-driven micro-
pumps will be investigated such as inertial focusing, cell sorting, and cell lysing.
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