

#### X Background

- Iron Will Outfitters is a leader in premium archery equipment
- Experiencing broadhead failure while on the hunt inspired a desire to improve and quantify broadhead performance
- 3-blade broadheads increase cutting area but are limited by tip sharpness and penetration force

# **X** Objective

- Design and optimize a 3-blade broadhead
- Benchmark competitor broadheads
- Quantify broadhead performance for the following characteristics
- Strength and durability
- Penetration Force
- Flight characteristics

#### X Key Requirements

- **1**. Broadhead weight is 100 grains  $\pm$  3 grains (~6.48 grams)
- 2. Broadhead blades are removable
- 3. Broadhead has no loose parts when fully assembled
- 4. Blades do not bend, break or come loose from ferrule during its lifetime
- Lifetime is defined as 5 impacts
- 5. Broadhead has a maximum force to penetrate hide of 20lbs

# **Flight Characteristics Determined**

- Flight characteristics determine the stability and accuracy of flight
- Decreasing lift and drag reduces the overall aerodynamics forces on the arrow, allowing for stable and accurate shots
- Achieved a 34% decrease in required restoring torque and **3.3% decrease** in drag over Iron Will S Series



Broadhead

Special thanks to Bill Vanderheyden, John Gordon, No Limits Archery, and the ME Senior Design Staff

# Three Blade Broadhead

Tara Fisch | Alex Clementson | Bryce Johnson | Josh Tadesse | Walker Nesbitt | Daniel Carranza

## X CU 3-Blade Final Design Overview

#### Image Removed for Intellectual **Property Considerations**

#### Conclusion and Next Steps $\rightarrow$

Final design outperformed prototype 1, passing the 5-impact lifetime requirement Final design exceeds penetration force requirement and exceeds sharpness of all 3-blade competitors Improved performance is due to A2 Tool Steel replacing the stainless-steel blades in prototype 1 Next design iteration will incorporate tooling to tighten the collar to simplify assembly Next design will incorporate design changed to increase weight ~ 7 grains

| By           | y CFD                 |                       |                    | Sharp                                                         |
|--------------|-----------------------|-----------------------|--------------------|---------------------------------------------------------------|
|              | Average<br>Drag (lbf) | Average<br>Lift (lbf) | Torque<br>(lbf-in) | <ul> <li>Sharpne</li> <li>Smaller</li> <li>Sharpne</li> </ul> |
| es           | 0.016                 | 0.034                 | 0.38               |                                                               |
|              | 0.015                 | 0.024                 | 0.25               | 3-Bi<br>Broad                                                 |
|              |                       |                       |                    | Protot                                                        |
| <b>,</b><br> | Airspeed: 276 ft/s    | Final C               |                    |                                                               |
|              |                       |                       |                    | Iron Will<br>(Single                                          |
|              |                       |                       | Torqu              | Je Compe                                                      |
|              |                       |                       |                    | Compe                                                         |



# ness Testing

ss is measured in grams required to cut a wire value corresponds to sharper edge ess is measured before and after durability testing

| e<br>ad         | Before (g) | After (g) | % Change |
|-----------------|------------|-----------|----------|
| <b>De 1</b>     | 464.4      | 504.4     | 8.6%     |
| sign            | 342.0      | 368.8     | 7-3%     |
| Series<br>evel) | 142.3      | 164.7     | 15.7%    |
| tor 1           | 556.7      | 773.5     | 38.9%    |
| tor 2           | 679.6      | 716.5     | 5.4%     |

impacting large game for testing

- Ballistics gel to mimic muscle and organs
- Synthetic bone
- Real deer hide



# **Penetration Force Test**

MTS pushes broadhead through the test stack to collect force data as it penetrates the testing stack



### **Durability Testing**

- Visual deformation
- Blade movement







#### Simulating Large Game

- The following materials were layered to simulate the broadhead

Broadhead lifetime is defined as 5 impacts without blades bending, breaking or coming loose from the ferrule Broadhead is shot with 6o-pound draw weight

After each shot into test set up broadheads are inspected for

Shooting Machine 15 yards Broadhead Pass/Fail

Fail Prototype 1 **Final Design** Pass Competitor 1 Pass Competitor 2 Pass