

DCC Draw-Through Wind Tunnel

Lavender Giebner

Test Engineer CAD / Manufacturing Engineer Electromechanical Engineer Electromechanical Engineer Anthony Fernandez Evan Fischer

Mechanical Engineering UNIVERSITY OF COLORADO BOULDER

Background & Motivation

Sam Gluskoter

- No wind tunnels larger than 1'x1' currently accessible for undergraduate use at CU
- Provides accessible test environment for CU's Collegiate Wind Competition (CWC) Team and Mechanical Engineering students
- · Designed for near laminar flow and adjustable flow velocity.
- Foster academic growth by offering hands on experience in aerodynamics, fluids, and renewable energy.

Settlement Chamber Straightens turbulent air into laminar flow. Designed to target critical Reynolds number for pipe flow ($Re_{crit} = 2.3 \times 10^3$) Turbulent $Re = 2.9 \ x \ 10^3$ $Re = 2.8 \times 10^3$ Honeycomb Screen(s) 9mm cell, ω_{cell} • 0.25" cell • 96.7 % Porosity, β_h • 82.1% Porosity, β_s • 2.12" Length, *L_h* $6 \le \frac{L_h}{\omega_{call}} \le 8$ $\beta = \frac{A_{flow}}{A_{total}} > 80\%$

Contraction Cone

Increases flow velocity via decrease in crosssectional area and maintains laminarity of flow.

- 4ct. Aluminum rib & lattice panels
- Smooth 5th-degree polynomial curve minimizes boundary layer separation at inlet and outlet o Industry standard for low-speed wind tunnels.
- 6' x 6' inlet (maximum size given 7' roof height in MBE Rm. 52.)
- 4' x 4' outlet to match test section.

Comparison of 5th order polynomial (left) vs. linear (right) profile pressure gradient

Requirements

Alex Revnolds

- Near laminar flow though test section
- 4' tall x 4' wide x 8' long test section • 16 - 36 ft/s flow velocity

Project Manager Logistics Manager Finance Manager Systems Engineer

Riley Menke

Conor McEntee

- Velocity output precision within ± 3 ft/s
- CWC turbine compliant mount

DIRECTION OF FLOW

- Universal mounting system
- User-friendly controls and means of data output · Meets noise and egress safety requirements: OSHA 1910.95 and OSHA 1910.36

- · Manufacture of contraction cone and diffuser
- Installation into MBE Room 52
- \circ Room Height = 7ft

Hanna Nachtigal

- \circ Room Length = 43.5ft
- Modular design to accommodate moving components through standard single 34" door

Model of Room 52

 Calibration setup fits into existing door openings in test section. o Gantry system allows for x and z translation o 0.25" step size allows for development of complete cross-sectional flow profiles

- A 17-point profile will be created for 6 speeds.
- Speeds range from 16-36 fps in 4 fps increments.

Calibration & Testing

• Turbulence intensity is calculated using the population mean and data collected.

Fan & Controls

Draws air through the tunnel.

- System Curve The amount of pressure needed to move air through the tunnel.
- 60" Diameter CSA > Test Section CSA
- 10 HP 3-Phase 480V
- 57200 CFM 880 RPM
- Turn down 1/6th Max RPM
- Custom Fan Casing Width 33"
- Variable Frequency Drive Controller o User friendly
- Adjustable in .1 Hz (1.45 RPM) increments
- o Emergency stop switch

Special Thanks to: Old Sole Fabrication, Bobby Hodgkinson, Julie Steinbrenner, Daria Kotys-Schwartz, Victoria Lanaghan, IdeaForge Staff

Overall Dimensions:

23' long

7' tall 6' wide

iest Section

Portion where flow is constant, and objects are tested.

• 4' x 4' cross section, 8' length

l i

- 4ct. Welded steel frame pieces to fit size constraints. • Smooth interior minimizes turbulent boundary layer
- growth. $\circ \approx$ 2-inch boundary layer growth across length
- Pitot tube array at inlet to measure flow rate through test section.
 - o 9 pitot tubes mechanically average via manifold.
- 3 removable polycarbonate doors for access to interior. · CWC spec turbine mount and t-slot rails for test object mounting options
- · Wire mesh debris filter at outlet.

Diffuser

Minimize pressure drop across fan and slowing the flow's velocity

- 5° conical angle, 6' length Reduces pressure drop
- 4ct. Aluminum straight-to-circular rib & lattice panels
- Reduces work done by fan by raising pressure back towards atmospheric pressure.

$$v_e = \arctan(\frac{1}{2*}\frac{\sqrt{A_r - 1}}{\frac{L}{D_{h1}}})$$
$$A_r = \frac{A_{outlet}}{A_{inlet}} < 2.5$$