

Paul M. Rady Mechanical Engineering UNIVERSITY OF COLORADO BOULDER

Background

- Vibration tables are used to verify that components will be able to withstand the vibrations they endure during operation
- Micro Motion produces flow meters of various sizes; smaller flow meters contain electronic components that need to be tested on a small vibration table
- Micro Motion desires to find resonant frequencies of these components

Design Objectives

Mechanical System

- Horizontal slip table **12 in. x 12 in.** working area
- **50 lb** payload capacity
- Threaded fixture holes
- Vibration isolation system
- Slip bearing lifetime >1 year
- Removable shaker
- Maneuverable by one person

Control System

- Frequency range **5 3000 Hz**
- Sine, Sine Sweep, and Random PSD vibration
- 4x accelerometer inputs w/ BNC connections
- User friendly graphical user interface (GUI)
- Signal error **less than 5%**

Control System

- Based on National Instruments hardware (cRIO + DAQmx) and software (LabView)
- Real-time adaptive control via Inverse Plant Estimator
- Finite Impulse Response (FIR) filter used as controller
- 51.2 kHz sampling frequency

Hardware Block Diagram

Many thanks to: Tony Pankratz, Marcus Schmidt, Amiy Yadiv, Dr. Julie Steinbrenner, Dr. Daria Kotys-Schwartz, Idea Forge Staff

The Vibe Table Micro Motion Inc | University of Colorado Boulder | Design Center Colorado Wesley Jedlicka | Jared Lewis | Grace Shelchuk | Davis Tuzinkiewicz | Austin Vancil | Andrew Victory

