Crustal Deformation AKA – Structural geology

(adapted from Brunkel, 2012)

Study the architecture and processes responsible for deformation of Earth's crust.

Folding and Faulting

How Rocks Deform: 4 Controls

- Rock Type i.e., sandstone is more brittle than shale.
- Temperature higher T = more ductile
- Confining Pressure high lithostatic stress = more ductile
- Time more time = more ductile (i.e., karate chop)

Stress and Strain Relationships

The result of rock deformation can be seen at the surface as folds and faults

A few things we need to know

- Law of original horizontality
- Superposition
- Cross-cutting relationships
- Strike and dip

Law of original Horizontality

Superposition

Youngest on the top

Oldest on the bottom

Principle of Cross-cutting Relationships

i.e., These sandstone beds were deposited as horizontal layers before they were faulted.

Strike and Dip- when rocks are no longer horizontal

Strike and Dip- how do we describe their orientation

Strike and dip rules

- Strike is the direction on the surface of the rock formation – described by two directions ie. N-S, E-W, NE-SW
- Dip is always perpendicular to strike and is described by only one direction – N, S, E, W or NW, SE etc.
- Often it is easier to find the dip of a rock unit first and then describe the strike

Strike and Dip

Strike and Dip

Dip and Strike (Courtesy of Dresser Atlas)

Folds

- How do rocks fold?
- Ductile deformation
- What environments lead to ductile deformation?

Folds

• Folds wave-like undulations in rock that form mainly from compressional stress that shortens and thickens the crust

Fold Parts

- Limbs —the two planar sides of a fold
- Axis imaginary line marking the crest or trough of each layer
- Axial plane an imaginary plane of symmetry through the center of the fold

Types of folds

Anticlines – "A" shape

Folds Syncline- think of a sink

Paired and tilted anticline and syncline

folds

folds

Overturned folds

folds

Folding on a large scale to produce large landforms

Sheep Mountain, WY: <u>Plunging Anticline & Syncline</u>

- Note Outcrop "V"s, Plunge Arrows, Anticline Symbol, Syncline Symbol
- Note Oldest & Youngest Layers

Plunging folds

Fold axis dips below the surface

- Anticline upfold
 - Oldest rock in center
 - Point of mapped outcrop "V" in the direction of plunge.
- Syncline downfold
 - Youngest rock in center
 - Open end of mapped outcrop
 "V" is in the direction of plunge.

DOME

Folds in map view

Anticlines - eroded tops of anticlines reveal a characteristic map pattern of rock ages

- Oldest rocks exposed in the middle with bands getting younger as you go out
- e direction of dip of the bed will provide clues to what type of structure it is

Folds in map view

Synclines -eroded synclines reveal a characteristic map pattern of rock ages

- Youngest rocks exposed in the middle with bands getting older as you go out
- The direction of dip of the bed will provide clues to what type of structure it is

Geologic Maps

B. Block diagram

- Faults fractures in rocks along which appreciable displacement has taken place – brittle deformation of the rock or layers of rock
 - 2 basic Types:
 - Dip Slip Movement is mainly parallel to the dip of the fault surface
 - Strike Slip Movement is mainly parallel to the strike of the fault surface

Dip and Strike

(Courtesy of Dresser Atlas)

Dip-Slip Faults

- Two main types –
- Normal Hanging wall moves down in relation to foot wall
- Reverse or Thrust Hanging wall moves up relative to footwall

Tensional forces cause normal faulting

Normal Faults

Scarps

Normal Faults

- Form fault-block mountains
- Horst = high upthrown block
- Graben = low downthrown block

Reverse Faults

Reverse Fault

Thrust Fault

Thrust

 Faults are a
 low angle
 reverse
 fault

Overlapping thrust sheets build up mountain ranges

Thrusts are low angle reverse faults

The Canadian Rockies were built up as a series of thrust sheets

Shear stresses cause strike-slip faulting

Strike-Slip Faults

- Right-lateral as you face the fault, the block on the opposite side of the fault moves to the right
- Left-lateral as you face the fault, the block on the opposite side of the fault moves to the left

Engineering and Faults

Fractures to Faults

