RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

August, 2020

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

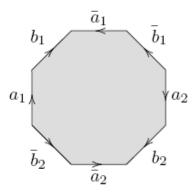


Figure 1: $O \subseteq \mathbb{R}^2$ with gluing data for Σ

Topology

Problem 1.

Let $f: X \to Y$ be a function between topological spaces.

- (a) Prove that if f is continuous, then whenever a sequence (x_n) converges to x in X, then $(f(x_n))$ converges to f(x) in Y.
- (b) Prove that the converse of (a) holds if X is first countable.

Problem 2.

Consider the closed octagonal disk O as in the figure, topologized as a subspace of \mathbb{R}^2 . Let Σ be the quotient space obtained by identifying the directed edge a_1 with \bar{a}_1 , a_2 with \bar{a}_2 , b_1 with \bar{b}_1 and b_2 with \bar{b}_2 . Use the Seifert Van-Kampen Theorem to determine the fundamental group of $\pi_1(\Sigma, y)$ in terms of generators and relations for any base point $y \in \Sigma$.

Problem 3.

Let $\mathbb{R}P^n$ be the quotient of the unit sphere $S^n \subseteq \mathbb{R}^{n+1}$ by the anatipodal map $a: S^n \to S^n$, a(x) = -x. You may assume that $\mathbb{R}P^n$ is path connected, locally path connected and semilocally simply-connected. You may assume that the product of path connected spaces is path connected and that the product of semilocally simply-connected spaces is semi-locally simply-connected.

- (a) Prove that the product $X_1 \times X_2$ of locally path connected spaces X_1 and X_2 is locally path connected.
- (b) Determine the number of equivalence classes of path connected covering spaces over $\mathbb{R}P^n \times \mathbb{R}P^n$. Give a representative for each equivalence class. Prove any claim you make about the fundamental groups of $\mathbb{R}P^n$ and $\mathbb{R}P^n \times \mathbb{R}P^n$.

Geometry

Problem 4.

- (a) Give a careful definition of the tangent bundle of a manifold M. Define the manifold structure of TM.
- (b) Show that the tangent bundle of the sphere S^2 is not bundle isomorphic to $S^2 \times \mathbb{R}^2$.

Problem 5.

Consider the following two vector fields on \mathbb{R}^3 :

$$X = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$
 and $Y = \frac{\partial}{\partial x} - \frac{\partial}{\partial z}$.

Show that there is no nonempty smooth surface $S \subset \mathbb{R}^3$ that is tangent to both vector fields at each of its points.

Problem 6.

- (a) Let $a: S^n \to S^n$ be the antipodal map. Suppose that ω is a smooth form on S^n such that $a^*\omega = \omega$. Prove that if ω is exact, then there is a smooth form η with $\omega = d\eta$ and $a^*\eta = \eta$.
- (b) Use (6a) to deduce that on the projective space \mathbb{RP}^n every closed k-form with 0 < k < n is exact.

Hint: You may use that for 0 < k < n every closed k-form on S^n is exact.