Graduate Student Orientation - CLASIC

August 22, 2024

Susan Windisch Brown

Welcome to CLASIC

Computer Science Department School of Engineering

A S Department of Linguistics School of Arts and Sciences

People

- CLASIC Director
 - Susan W. Brown Susan.Brown@Colorado.EDU
- CLASIC Program Coordinator
 - Kris Stenzel <u>clasic_contact@colorado.edu</u>
- CLASIC Director Emerita
 - Martha Palmer Martha.Palmer@colorado.edu
- Other Faculty
 - ▶ Jim Martin, Maria Pacheco Gonzalez, Alexis Palmer
- Boulder NLP weekly lab meetings (CompSem)
 - 11:30-1:00, Wednesdays, MUEN D430

CLASIC Advisory Board

- Salim Roukos (IBM)
- Marjorie Freedman (ISI)
- Peter Foltz (CU, formerly Pearson)
- Fei Xia (University of Washington)
- Claire Bonial (Army Research Lab)
- Katrin Erk (University of Texas)
- Yunyao Li (Adobe Experience Platform)

4

Sebastian de la Chica (Microsoft)

Former board members

- Miriam Eckert (Nuance)
- Alessandro Moschitti (Amazon)
- Bill Dolan (Microsoft)
- Nancy Chang (Google)

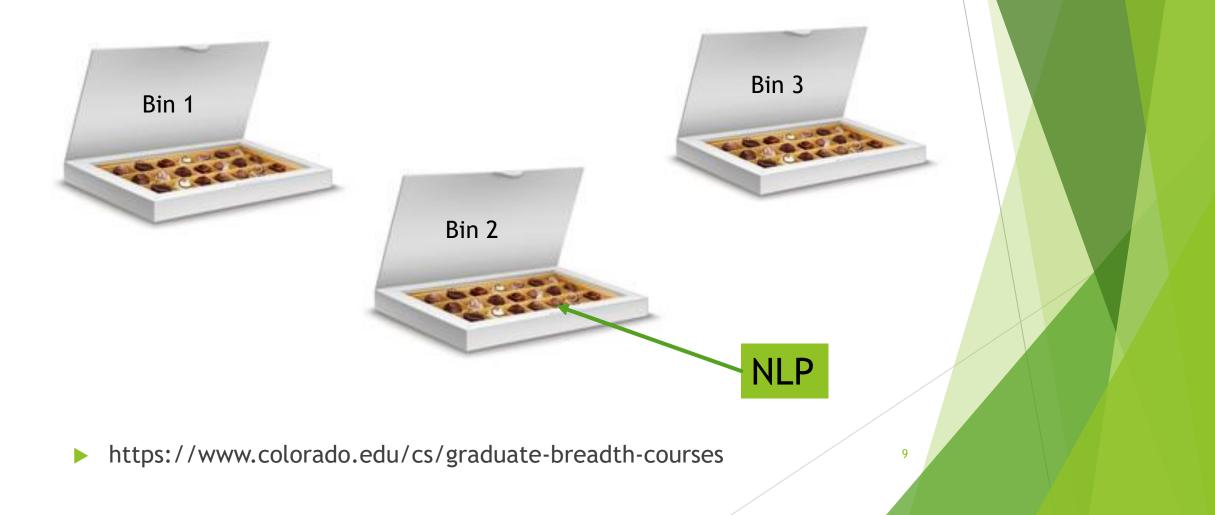
Work opportunities

- Professional masters students are ineligible for teaching or research assistantships (TA and RA positions).
- Any hourly paid position at the university is fine.
- Common types:
 - Grading for computer science classes
 - Hourly student positions in research labs (CLEAR has several grant-funded research projects that often hire students.)

6

Continuing summer internship during the school year

Registering for classes


- Advising session via Zoom or in person each semester
- Submit any prerequisite forms for CS classes
- Register directly for LING and CS classes
- Contact Kris Stenzel if you have problems registering for any classes

Degree Overview - 32 credit hours

CS Core - 6 credit hours	LING Core - 9 credit hours	CLASIC Core - 17 credit hours		
		Computational Linguistics Classes - 9 credit hrs	2 Electives - 6 credit hrs	Capstone Research Project - 2 credit hrs
 1 class from CS Bin 1 1 class from CS Bins 1, 2 or 3 	 2 of these 3 courses: Syntax Semantics & Pragmatics Phonetics +1 of any advisor- approved LING course 	 Courses: Natural Language Processing Computation al Lexical Semantics Computation al Phonology 	 Choose from: Topic Modeling Speech Recognition Formal Semantics etc. 	 Summer Internship or university project Course in Spring of Year 2

8

Computer Science Core: 3 breadth areas ("Bins")

Computer Science Core: Our recommendations:

Bin One

- » CSCI 5229 Computer Graphics
- SCI 5254 Convex Optimization
- SCI 5434 Probability for Computer Science
- SCI 5444 Introduction to Theory of Computation
- » CSCI 5446 Chaotic Dynamics
- » CSCI 5454 Design and Analysis of Algorithms
- » CSCI 5576 High-Performance Scientific Computing
- » CSCI 5606 Principles of Numerical Computation
- » CSCI 5636 Numerical Solution of Partial Differential Equations
- » CSCI 5646 Numerical Linear Algebra
- » CSCI 5654 Linear Programming
- » CSCI 5676 Numerical Methods for Unconstrained Optimization

Computer Science Core:

Bin Two

- » CSCI 5302 Advanced Robotics
- » CSCI 5322 Algorithmic Human Robot Interaction
- » CSCI 5352 Network Analysis and Modeling
- » CSCI 5402 Research Methods in Human Robot Interaction
- » CSCI 5502 Data Mining
- » CSCI 5616 Introduction to Virtual Reality
- » CSCI 5622 Machine Learning
- » CSCI 5722 Computer Vision
- » CSCI 5832 Natural Language Processing
- » CSCI 5839 User Centered Design
- » CSCI 5849 Input Interaction and Accessibility
- SCI 5922 Neural Networks and Deep Learning

11

Computer Science Core:

Bin Three

SCI 5135 – Computer-Aided Verification

» CSCI 5253 – Datacenter Scale Computing

- » CSCI 5273 Network Systems
- » CSCI 5403 Intro to Cyber Security
- » CSCI 5413 Ethical Hacking
- » CSCI 5448 Object-Oriented Analysis and Design
- » CSCI 5525 Compiler Construction
- » CSCI 5535 Fundamental Concepts of Programming Languages
- » CSCI 5573 Advanced Operating Systems
- » CSCI 5673 Distributed Systems
- » CSCI 5828 Foundations of Software Engineering
- SCI 5854 Theoretical Foundation of Cyber-Physical System

Linguistics Core: 2 of the following 3 LING courses +1 approved LING course


- LING 5030 Phonetics (offered in fall)
- LING 5420 Morphology and Syntax (offered in fall)
- LING 5430 Semantics and Pragmatics (offered in spring)

Possible Linguistics electives

- LING 5200 Computational Corpus Linguistics
- LING 5800 Machine Learning and Linguistics
- LING 6300/3800 Formal Models of Linguistics
- LING 6200 Issues and Methods in Cognitive Science
- LING 7800 Open Topics in Linguistics

CLASIC Core: 5 courses

*Jim Martin wrote the book

- REQUIRED: CSCI/LING 5832 Natural Language Processing
- REQUIRED 2 of 3:
 - CSCI 7000/LING 7800 Computational Lexical Semantics
 - CSCI/LING 7565 Computational Morphology and Phonology
 - LING 7800 Computational Models of Discourse
- > 2 Electives, approved by advisor

CLASIC Core: 2 electives

Bin Two

- » CSCI 5302 Advanced Robotics
- » CSCI 5322 Algorithmic Human Robot Interaction
- » CSCI 5352 Network Analysis and Modeling
- » CSCI 5402 Research Methods in Human Robot Interaction
- » CSCI 5502 Data Mining
- » CSCI 5616 Introduction to Virtual Reality
- » CSCI 5622 Machine Learning
- SCI 5722 Computer Vision
- » CSCI 5832 Natural Language Processing
- » CSCI 5839 User Centered Design
- » CSCI 5849 Input Interaction and Accessibility
- SCI 5922 Neural Networks and Deep Learning

CLASIC Core: Other possible electives

- LING 6520 Topics in Comparative Grammars: Computational Grammars
- CSCI 7000 Inference, Models and Simulation for Complex Systems
- CSCI 5822 Probabilistic Models of Human and Machine Intelligence
- CSCI 7222 Topics in non-symbolic AI: Representation Learning for Language
- LING 5200 Computational Corpus Linguistics
- LING 5800 Machine Learning and Linguistics
- LING 7800 Open Topics in Linguistics
- INFO 5604 Applied Machine Learning

Degree Overview - 32 credit hours

CS Core - 9 credit hours	LING Core - 9 credit hours	CLASIC Core - 14 credit hours		
		Computational Linguistics Classes - 6 credit hrs	2 Electives - 6 credit hrs	Capstone Research Project - 2 credit hrs
 NLP (req) Bin 2 1 class from CS Bin 3 1 class from CS Bin 1, 2 or 3 	 2 of these 3 courses: Syntax Semantics & Pragmatics Phonetics +1 of any advisor-approved LING course 	 2 of these 3 Courses: 1. Comp. Lexical Semantics 2. Comp Phonology 3. Comp Models of Discourse 	 Choose from: Topic Modeling Speech Recognition Formal Semantics etc. 	 Summer Internship or university project Course in Spring of Year 2

- We expect students to get at least a B
- CS Bin courses must be B or higher (no B-)
- Graduate School only accepts C or higher (no C-)

Capstone Project and Class Timeline

- Spring 2025 Find an internship or CU-based research project.
- May 2025 Develop a training and research plan in collaboration with your Capstone project leader.
- August 2025 Write short summary of internship, approved by project leader at the end of the internship.
- Spring 2026 Prepare a technical report during the Capstone class on the completed project, which will be presented to your fellow cohort members and submitted to a conference or workshop in Spring 2025.

Finding the internship

In mid fall, we will have an internship information session

Questions?