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Augmentation Strategies

Existing NLP methods are not as effective for low-resource languages, ® Der-Excr INs-Cony, INS-INTJ ® Upp-TAM DEL Uspanteko
as they lack sufficient labeled training data. One way to overcome this Dup ® Ixs-NoIsE PERM DEL-EXCL: Randomly deletes a word by index, excluding verbs
is through creating synthetic data using data augmentation. We y 2 6 INS-CONJ: Inserts a random conjunction or adverb at the start of the
compared two categories of augmentation strategies, linguistically- . sentence
motivated and random, through experiments on two low-resource 41 UPD-TAM: Updates the aspect marker on the verb
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Difference in (test set) chrF score for various individual augmentation strategies from the entonces dice

baseline for Uspanteko (top) and Arapaho (bottom). Averaged over three runs at each point. _
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We used the Ginn et al. (2023) datasets to train google/byt5-small

models using curriculum learning for both languages. ® DeL-ExcL INs-Cony, INS-INTJ ® Urp-TAM DEL INS-CONJ — Uspanteko
Dup ® INs-NOISE PERM

Our augmentation methods were inspired by careful review of 0.4- 1.0-
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grammars and IGT glosses of the languages, as well as easy data 0.6 . | _
augmentation (EDA) as proposed by Wei and Zou (2019). They were i 0-3 i n gee.whiz IC.all.powerful-4S said.to.s.o .
evaluated on three tasks: machine translation in both directions and £02 £ 04 c 06 Gee whiz the Lorada said to him
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Average difference in (test set) chrF score between combinations including a given
strategy and combinations excluding that strategy. Averaged over all runs and training sizes.
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