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An Eulerian/XFEM formulation for the large deformation of cortical cell membrane

Franck J. Vernerey* and Mehdi Farsad

Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, CO 80309-0428, USA

(Received 6 August 2010; final version received 8 October 2010)

Most animal cells are surrounded by a thin layer of actin meshwork below their membrane, commonly known as the actin
cortex (or cortical membrane). An increasing number of studies have highlighted the role of this structure in many cell
functions including contraction and locomotion, but modelling has been limited by the fact that the membrane thickness
(about 1mm) is usually much smaller than the typical size of a cell (10–100mm). To overcome theoretical and numerical
issues resulting from this observation, we introduce in this paper a continuum formulation, based on surface elasticity, that
views the cortex as an infinitely thin membrane that can resists tangential deformation. To accurately model the large
deformations of cells, we introduced equilibrium equations and constitutive relations within the Eulerian viewpoint such
that all quantities (stress, rate of deformation) lie in the current configuration. A solution procedure is then introduced based
on a coupled extended finite element approach that enables a continuum solution to the boundary value problem in which
discontinuities in both strain and displacement (due to cortical elasticity) are easily handled. We validate the approach by
studying the effect of cortical elasticity on the deformation of a cell adhering on a stiff substrate and undergoing internal
contraction. Results show very good prediction of the proposed method when compared with experimental observations and
analytical solutions for simple cases. In particular, the model can be used to study how cell properties such as stiffness and
contraction of both cytoskeleton and cortical membrane lead to variations in cell’s surface curvature. These numerical
results show that the proposed method can be used to gain critical insights into how the cortical membrane affects cell
deformation and how it may be used as a means to determine a cell’s mechanical properties by measuring curvatures of its
membrane.

Keywords: cell deformation; cortical membrane; surface elasticity; extended finite element method

1. Introduction

Functions and health of biological tissues such as skin,

cartilage and cardiac tissues rely on the interaction

between population of cells (e.g. fibroblasts and

chondrocytes) and their surrounding fibrous extracellular

matrix (ECM). These interactions strongly depend on

many internal characteristics, including ECM and cell

properties, deformation and orientation, as well as on

external factors such as the existence of external loads and

their variation in time (Schwarz and Bischofs 2005). Any

change in cell behaviour and morphology (due to disease,

for instance), ECM properties and structure (from ageing

or injuries) or external forces affects the mechanical and

chemical equilibrium of tissues. This may result in

significant consequences, including tissue remodelling

and reorganisation (Harris et al. 1980), change in cell

phenotype, angiogenesis (Butcher et al. 2009) or apoptosis

(Wang et al. 2000; Levental et al. 2006). Research

advances will depend on our ability to characterise and

predict the very factors that determine cell shapes in

various environments. In this quest, the derivation of

accurate mechanical models of cell deformation plays a

key role. Traditionally, research on cell mechanics

has concentrated on the deformation of the cytoplasm

(that comprises the cytoskeleton and the cytosol) for

which three main families of models were developed:

structural models, polymer-based models and multiphasic

models. Structural models, such as the tensegrity model

(Stamenovic et al. 1996; Wang et al. 2001; Ingber 2003a,

2003b), have been successful at relating the general

deformation of cells to the nature of their individual

components, including actin filaments and microtubules.

In contrast, continuum models such as polymer-based

theories (MacKintosh et al. 1995) and biphasic mixtures

(Guilak et al. 2002; Ateshian et al. 2006) provide a less

precise but more flexible platform for the description of a

wider range of phenomena. For instance, polymer-based

models are able to explain the inherent stress stiffening of

the cytoskeleton filament network measured in exper-

iments (MacKintosh et al. 1995), whereas biphasic models

are ideal to describe the flow-dependent behaviour of the

cytoplasm (Ateshian et al. 2006).

In addition to the cytoplasm, recent studies have

highlighted the role of the cortical membrane on cell

deformation. This important component of the cell’s

cytoskeleton can be described as a dense layer of actin

bundles beneath the surface membrane (Hogan and Feeney

1963; Stehbens 1966) that acts as a protective layer against
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cell damage. This thin actin layer is also known to play a

large role during cell migration in 3D environments by

initiating bleb formation on the surface of cells (Dai and

Sheetz 1999; Fackler and Grosse 2008; Tinevez et al.

2009). A number of models were proposed to better

understand the behaviour of the cortical membrane and its

role in cell morphology. Hansen et al. (1996, 1997)

developed a numerical network model to establish a

connection between the elasticity of red blood cell

membrane and its random molecular structure. Other

relevant studies include the work of Bar-Ziv et al. (1999) on

the phenomenon of pearling caused by mechanical

interactions between the surface tension and the elasticity

of the actin cortex below the membrane (Hartwig and

Shevlin 1986; Keller and Eggli 1998). In this approach, a

simple model based on a line tension approximation of

cortical membrane elasticity provided good prediction of

cell shape in different environments. This was followed by

the work of Bischofs et al. (2008), in which the authors

derived an analytical model based on Laplace’s law to

investigate the influence of the cortical membrane on the

shape of contractile fibroblasts attached to periodically

distributed adhesion islands. By comparing their model

with experimental observations, they showed that the

method could predict the magnitude of the membrane

curvature for cells of different sizes. Although the

aforementioned studies concentrated on the role of cortical

membrane only, the properties of the (bulk) cytoskeleton

are also known to play a significant role on cell

morphology. Accurate mechanical models of cells should,

therefore, consider the combined effects of bulk cytoske-

leton and cortex elasticity. However, from a computational

viewpoint, the difference of length scales between a cell

(50–500mm) and its cortical membrane thickness (less

than a micron) poses a challenge that is inherent to most

multiscale problems (Vernerey, Liu and Moran 2007;

Vernerey, Liu, Moran and Olson 2007, 2009), providing an

accurate description of the cortical membrane on the length

scale of a single cell results in a very expensive numerical

problem and vice versa. This may explain why existing

models of cell deformation have neither considered the

cortical membrane nor presented a coarse description of

it (Unnikrishnan and Unnikrishnan 2007).

To overcome this issue, we in this study propose to

consider the actin cortex as a 2D membrane, of negligible

thickness, surrounding the cell. In this context, modelling

cortical membrane mechanics can be cast within the

framework of surface elasticity, originally introduced by

Gurtin (1998). Existing work on surface elasticity has

traditionally concentrated on surface effects in nanomater-

ials (Yvonnet et al. 2008; Farsad et al. 2010) in the context

of infinitesimal deformation. However, because cell

deformation can be quite significant in many applications,

a contribution of this paper is to extend the surface elasticity

formulation in the case of large deformation and to

investigate its predictive power on the influence of cortical

membrane on cell deformation. The equations of surface

elasticity are, therefore, redefined in the general case of

large deformation, following an Eulerian approach. As such,

we develop the equation of equilibrium for the general case

of a cell embedded in a matrix, for which the effect of the

cortical membrane is important. A numerical strategy, based

on the extended finite element method (XFEM), is then

introduced in order to solve the system of coupled partial

differential equations. The presented method possesses the

following advantages. First, the presented framework uses

Eulerian formulation that is suitable for large deformations

of the cell. Second, the geometry of the cell is entirely

defined by level-set functions that are defined independently

from the finite element mesh. Simple, regular FEM meshes

may, thus, be used regardless of the geometric complexity

of the cell. Third, and finally, the different elastic properties

and constitutive response of cell cortex are described with a

continuum description that naturally fits into the XFEM

methodology. Thus, no special treatment is necessary to

model jumps in stress, strain and displacement arising due to

the cortical membrane.

This paper is organised as follows. In the next section, a

description of the cell’s deformation is provided and

relevant kinematic variables are introduced. In section 3 we

then concentrate on deriving the governing equations of

surface elasticity and introduce a set of simple elastic

constitutive relations for the cytoskeleton and cortical

membrane. Numerical considerations are subsequently

discussed in Section 4 with the description of an updated

Lagrangian XFEM/level-set formulation that is used

to investigate the effect of cortex elasticity on the

deformation of a contractile cell (Section 5). A summary

of the method and concluding remarks are finally provided

in Section 6.

2. Kinematics

The first step in deriving the surface elasticity formulation

for large deformation is to define consistent measures of

deformation. Although the Lagrangian formalism can be

used to define total strain measures, many of the

complexities associated with mapping mathematical

quantities from one material configuration to another can

be avoided by using an Eulerian approach. This section,

therefore, introduces a rate form of material motion and

deformation consistent with the Eulerian framework.

2.1 Generalities

Let us consider a 2D domain V in the x–y plane

representing a cell Vc and its surrounding matrix (Vm)

such that V ¼ Vc <Vm (Figure 1). The interface between

the two domains (representing the cell–matrix interface) is

denoted as G.

F.J. Vernerey and M. Farsad434



In order to introduce the kinematics in the context of

large deformations, let us first consider the above domain

in two different configurations as shown in the figure.

At an initial time t ¼ t0, we represent the medium in the

so-called reference configuration (in which the domain and

its boundary are represented by V0 and G0, respectively),

such that the coordinate of a material point P in a Cartesian

coordinate system ðx; yÞ is given by X ¼ {X; Y}. A current

configuration (in which the domain and its boundary are

represented by V and G, respectively) is then introduced at

an arbitrary time t such that the coordinate of the material

point P is now given by x ¼ xðX; tÞ, where x is assumed to

be a smooth function of time and space, except on G.

Adopting an Eulerian approach, we can relate the bulk

deformation of the cell and the matrix to the velocity vðx; tÞ
of material point at any time such that

vðx; tÞ ¼
Du

Dt
; where u ¼ x2 X; ð1Þ

where u is the displacement and D=Dt denotes the material

time derivative that evaluates the variation of a field (u in

the above equation), following a particle P in its motion.

2.2 Deformation measures

In order to accurately describe the deformation of a cell

and its surrounding thin cortical membrane, the present

work introduces three strain measures that are associated

with (a) the deformation of the cell body, (b) the

decohesion between the cell and the surrounding matrix

and (c) the deformation of the cortical membrane.

Following the Eulerian framework, we provide a

description of the bulk deformation and rotation of the

cell by the rate of deformation tensor Dðx; tÞ and the spin

Wðx; tÞ as follows:

D ¼
1

2
ð7vþ ð7vÞTÞ and W ¼

1

2
ð7v2 ð7vÞTÞ; ð2Þ

where 7 represents the gradient operator with respect to x

and the superscript T is used for the transpose operation.

In addition, the present approach allows for a discontinuous

velocity field across the cell–matrix interface G. As such, a

measure of cell–matrix decohesion can simply be

introduced through the discontinuity (or jump) ½v�ðx; tÞ in

velocity as follows:

½v�ðx; tÞ ¼ vþðx; tÞ2 v2ðx; tÞ; ð3Þ

where x belongs to G and vþðxÞ and v2ðxÞ denote velocities

on different sides of the interface. Finally, assuming a thin

cortical membrane compared to the size of the cell, its

deformation may be defined by invoking the concept of

surface strain, originally introduced in Gurtin (1998).

For this, we introduce a tangential projection operator

(in the current configuration) on the cell boundary at point x

as follows:

P ¼ I2 n^ n; ð4Þ

where I is the second-order identity tensor, while n ¼

nðx; tÞ is the normal vector to the cell surface in the current

configuration. With this definition, the components of the

projection of a vector a and a tensor A on a surface of

normal n are given by

as ¼ P · a and As ¼ P ·A ·P: ð5Þ

This geometrical preliminary may now be applied to

the definition of the rate of deformation Ds of the cortical

membrane as the tangential projection of the bulk rate of

deformation D onto the cell surface:

Ds ¼ P ·D ·P: ð6Þ

Note that tensor Ds keeps the same dimension as D but

represents a deformation in space (tangential space) whose

dimension is smaller than the original space V.

2.3 Evolution equation of the cortical membrane
orientation

In general, the cell and matrix geometries are defined in

the initial configuration. This means that while the normal

vector n0 and projection operator P0 ¼ I2 n0 ^ n0 are

entirely known, their counterparts n and P in the current

configuration need to be determined. Using the fact that

n ¼ Q · n0 and P ¼ Q ·P0 ·QT; ð7Þ

where Q is the orthonormal transformation (rotation) that

maps normal vector from the initial to current configur-

ation. Using the fact that W ¼ _QQT, one can show that

_n ¼ W ·n and _P ¼ WPþ PWT; ð8Þ

where a superimposed dot denotes the material time

derivative. Equation (8) may thus be integrated in time

Figure 1. Initial and current configuration of a cell in a 2D plane
x2 y.

Computer Methods in Biomechanics and Biomedical Engineering 435



in order to determine n and P and compute the rate of

surface deformation Ds appearing in (6).

3. Governing equations and constitutive relations

This section concentrates on deriving the equations

governing the mechanical equilibrium of a cell undergoing

a combination of deformations as introduced above.

The equilibrium equations are derived from the energetic

considerations, whereas simple elastic relations are given

to describe the cell response.

3.1 Principle of virtual power and governing equations

Considering a first-order continuum theory in quasi-static

conditions (the kinetic energy of the system is negligible in

comparison with deformation and external energies), one

can introduce a virtual internal power dP int associated

with the medium contained in V as follows:

dPint ¼

ð
V

ðT2 T0Þ : dD dV

þ

ð
G

Ts 2 T0
s

� �
: dDsdGþ

ð
G

Td · ½d v� dG;

ð9Þ

where ‘:’ is the double tensor contraction and dD, dDs and

½d v� are small virtual variations of bulk deformation,

surface deformation and decohesion around the equili-

brium state, respectively. The quantities T, Ts and Td are

then defined as power conjugates to the aforementioned

deformations and are recognised as the conventional

Cauchy stress, surface Cauchy stress and cohesive force,

respectively. Furthermore, we also introduced T0 and T0
s

as the contractile stresses in the bulk and in the interface,

respectively.

Before we write the form of the virtual external power,

we make the assumption that the cell is entirely contained

in the domain V, such that its boundary G does not

intersect with the domain boundary ›V. This assumption

simplifies our analysis as there are no boundary conditions

applied on the cell membrane G. Furthermore, the domain

boundary ›V is decomposed into two parts according to

the nature of the boundary conditions. Introducing as ›Vu

the section of the domain boundary on which a fixed

velocity �v is applied and as ›Vt the section of the boundary

subjected to a surface traction �t, the entire boundary can be

reconstructed as ›V ¼ ›Vu < ›Vt. Thus, the external

virtual power dPext finally takes the form:

dPext ¼

ð
V

r b · dv dVþ

ð
›Vt

�t · d v d›V; ð10Þ

where r is the mass density and b is a body force per unit

mass. We also note that the virtual field dv must vanish on

the boundary ›Vu as required by variational principles

(Figure 2). Mechanical equilibrium of the cell and its

surrounding matrix is then satisfied upon minimalisation

of the total potential energy of the system. In other words,

the virtual power

dP int 2 dPext ð11Þ

vanishes for any virtual velocity field in V and on G.

We next use Equation (11) to derive the governing

equations (strong form) driving the motion of the cell and

its cortical membrane. First, integrating (9) by parts and

using the divergence theorem, we can rewrite the virtual

internal power as

dPint ¼2

ð
V

ð7 · ~TÞ · dv dV2

ð
G

½ð ~T ·nÞ · dv� dG;

2

ð
G

7s · ~Ts · dvs dGþ

ð
G

Td · ½dv� dG

þ

ð
›Vt

ð ~T · nÞ · dv d›V;

ð12Þ

where n is the normal unit vector to the surfaces G and ›V,
~T ¼ T2 T0 and ~Ts ¼ Ts 2 T0

s . Furthermore, we intro-

duced the notation 7s · ~Ts to represent the surface

divergence of the surface stress ~Ts. At this point, it is

necessary to introduce the average operator kl that

computes the average of an arbitrary field f on the interface

G. We write

kf l ¼
1

2
ðf þ þ f 2Þ; ð13Þ

where f þ and f 2 denote the value of f on opposite sides of

the interface. Referring to the work of Gurtin (1998),

we can now use the following equalities:

½ð ~T ·nÞ · dv� ¼ ½ ~T ·n� · kdvlþ k ~T · nl · ½dv�; ð14Þ

7s
~Ts · dvs ¼ 7s

~Ts · kdvl; ð15Þ

together with (12) and (11), to obtain a useful form of the

principle of virtual power. For any virtual fields d v, ½d u�

Figure 2. The general outline of a cell along with the
surrounding matrix and boundary conditions.
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and kd ul, we have

2

ð
V

ð7 · ~Tþ r bÞ · d v dV2

ð
G

ð½ ~T ·n� þ 7s
~TsÞ · kdvl dG

2

ð
G

ðk ~T ·nl2 TdÞ · ½d v�dGþ

ð
›Vt

ð ~T ·n2 �tÞ · dv d ›V ¼ 0:

ð16Þ

This implies that each integrand appearing in the above

expression must vanish for any material point in V, G and

›Vt. This leads to a system of three coupled differential

equations for stresses as follows:

7 · ~Tþ r b ¼ 0 in V; ð17Þ

½ ~T ·n� þ 7s
~Ts ¼ 0 on G; ð18Þ

k ~T ·nl2 Td ¼ 0 on G; ð19Þ

subjected to boundary conditions

~T ·n ¼ �t on ›Vt

v ¼ �v on ›Vv

(
ð20Þ

Equations (17)–(19) represent the bulk equilibrium,

the balance of forces in the cortical membrane and the

balance of cohesive forces between a cell and the ECM,

respectively.

3.2 Constitutive relation

For the sake of simplicity, we now introduce a set of

simple elastic constitutive relations for the cytoskeleton

and the cortical membrane. Although the present analysis

is general enough to consider more realistic nonlinear

material responses, the present work concentrates on linear

elastic relations between stress and strain. The Eulerian

framework described here requires that constitutive

relations are given in a rate form, i.e. it is written in

terms of a material time derivative of the Cauchy stress

and rates of deformation. However, to ensure that elastic

energy is conserved during deformation, it is important to

describe the elastic response of the cytoskeleton in terms

of a hyper-elastic potential C, that is a function of the

deformation gradient F ¼ 7Xx, where 7X is the gradient

operator in the reference configuration. A common model

used for isotropic elastic materials is provided by the neo-

Hookean model, for which the strain energy function C is

expressed in terms of the Lame constants l and m as

follows:

r0C ¼
1

2
lðln JÞ2 2 m ln J þ

1

2
mðI1 2 3Þ; ð21Þ

where r0 is the mass density of the cytoplasm in the

reference configuration and the strain invariants I1 and J

are given by I1 ¼ traceðFTFÞ and J ¼ detðFÞ. Following

(Belytschko et al. 2000), we can show that the above

model implies that an objective stress rate TsJ (more

specifically the Jaumann rate) can be written in terms of

the rate of deformation D introduced in (2) as follows:

TsJ ¼ CsJ : D; ð22Þ

where the components of the fourth-order elastic matrix

CsJ take the form

CsJ
ijkl ¼ 2ðm2 l ln JÞdikdjl þ ldijdkl: ð23Þ

In the above equation, d is the Dirac delta function. Let

us now introduce the elastic response of the cortical

membrane. Concentrating on plane stress problems, we

may view the membrane surrounding the cell as a 1D cable

undergoing axial deformation 1. As a result, the cortical

stiffness may be defined in terms of a scalar quantity

denoted as Ks, such that the rate of elastic energy Ps

corresponding to an axial strain rate _1 is written as follows:

Ps ¼
1

2
Ks _1

2 ¼
1

2
Ks Ds : Ds; ð24Þ

where we used the fact that Ds : Ds ¼ _12. An objective

rate of surface stress Ts;sJ may, thus, be defined as the

derivative of Ps with respect to the rate of deformation Ds

as

Ts;sJ ¼
›2Cs

›Ds ›Ds

: Ds ¼ Ss : Ds; ð25Þ

where the components Ss;ijkl of the cortical membrane

elastic tensor are written in terms of the cortex stiffness Ks

as follows:

Ss;ijkl ¼ Ks dik djl: ð26Þ

Finally, this study concentrates on the case of

‘free cells’ that are not interacting with an ECM.

The surrounding matrix material is, therefore, not

considered, and thus, no cohesive forces are present. This

means that Td ¼ 0 throughout this study. To complete the

form of the constitutive framework, it is now of interest to

relate the material time derivative of stresses (that is not an

objective measure) to the Jaumann stress rate introduced

above. Following (Belytschko et al. 2000), we write

_T ¼
DT

Dt
¼ TsJ þW ·Tþ T ·WT; ð27Þ

where W is the spin tensor defined in (2). It can be shown

that the above equation is true for both bulk and surface
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stress and, thus, can be used to compute rates of Ts, T
0
s and

T0 appearing in this study.

4. Numerical solution: an XFEM strategy

This section provides a numerical strategy to solve

governing Equations (17)–(19), together with constitutive

relations (25) and (22). A particularity of these equations

is that they give rise to discontinuities in strain rate and

velocities across the cell’s interface, a feature that cannot

be naturally handled with linear finite elements.

The XFEM formalism (Dolbow et al. 2001; Belytschko

et al. 2003) is, therefore, utilised to overcome this issue.

4.1 Extended XFEM

The XFEM equations are developed within the so-called

updated Lagrangian method (for more information on this

method, the reader is referred to Belytschko et al. (2000),

by using the final weak form derived in (16). The solution

of these equations typically gives rise to discontinuities

across the interface G. Indeed, the existence of surface

tension is associated with a jump in strain across the

interface (commonly called weak discontinuity), whereas

the existence of a decohesion (through the cohesive law)

leads to a jump in displacement across G (commonly

called strong discontinuity). Many numerical techniques,

such as the FEM, are developed for continuous fields and,

therefore, fail to describe such discontinuities. To address

this issue, the XFEM was first introduced to incorporate a

jump in displacement occurring as a result of a

propagating crack in a continuous medium (Dolbow et al.

2001; Hettich et al. 2008). A key feature of this method is

that the description of the discontinuity is independent of

spatial discretisation. Thus, Belytschko et al. used XFEM

in Belytschko et al. (2003) and Belytschko and Gracie

(2007) to define solids by implicit surfaces and also to

model dislocations and interfaces. The method was further

improved to model weak discontinuities, such as that

described in Moes et al. (2003). This method provides a

natural platform on which (16) can be solved with great

flexibility and minimal computation cost. In the present

formulation, domain V is first subdivided into four-node

quadrilateral elements in which an approximation ~vðxÞ of

the velocity field is sought. To account for the existence of

continuous, strong and weak discontinuous fields within an

element, we write ~vðxÞ as the sum of three terms that are

parametrised by v, �v and v
¼

as follows:

~veðxÞ ¼
Xn
I¼1

NIðxÞvI þ
Xm
J¼1

NJðxÞðHðxÞ2 HðxJÞÞ�vJ

þ
Xm
J¼1

NJðxÞxJðxÞv
¼
J ; ð28Þ

where

NIðxÞ ¼
NIðxÞ 0

0 NIðxÞ

" #
: ð29Þ

Functions NIðxÞ are finite element shape functions

associated with node, I;NJðxÞ are the shape functions

associated with the nodes of an element that has been cut by

the interface (see Figure 3) and n is the total number of

nodes per element, whereas m is the number of enriched

nodes ðm # nÞ. Furthermore, the quantities HðxÞ and xðxÞ

are enrichment functions with the required discontinuities

(Heaviside function and ridge function, respectively (Moes

et al. 2003; Mohammadi 2008)). Referring to Figure

3(c),(d), the Heaviside function introduces a jump in

velocity (strong discontinuity), in contrast, a ridge function

causes a jump in the spatial derivative of the velocity (weak

discontinuity) across the interface. In 1D, the Heaviside and

ridge functions take the form

HðfÞ ¼
1 f . 0

0 f , 0
and xjðxÞ ¼ jfðxÞj2 jfðxjÞj

(
:

ð30Þ

To define the geometry of a cell in the reference

configuration (defined by V0 and G0), we introduce

Figure 3. (a) Enriched nodes and completely enriched elements for a closed interface. (b) Level-set function and cutting plane to define
a circular cell in a square domain. (c) A typical Heaviside (step) function to define strong discontinuity and (d) A typical ridge function to
define weak discontinuity.
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a level-set function fðXÞ such that the interface (or cell

boundary) is defined as the intersection of a level-set

surface with a cutting plane, as depicted in Figure 3(b).

With this description, the sign of f is opposite in two sides

of the discontinuity. An attractive feature of using a

levelset formulation is that initial unit vectors n0 that are

normal to the interface are determined by the gradient of

the function fðXÞ with respect to the initial coordinates

X as follows (Figure 1):

n0ðxÞ ¼
7XfðxÞ

k7XfðxÞk
: ð31Þ

Using this definition and evolution Equation (8), the

projection operator P in the current configuration may be

obtained by time integration.

4.2 Linearised XFEM equations

To derive a finite element form of the governing equation,

we first associate each node of an element with velocity

degrees of freedom ve that comprise contributions from

three terms introduced in (28):

ve ¼ v �v v
¼

h iT

: ð32Þ

Note that the full set of degrees of freedom only appear

when an element intersects with the cell boundary. Using

the XFEM approximation (28), we write the rates of

deformation {De} and {De
s} within an element in Voigt

notation as

{De}¼

De
11

De
22

2De
12

2
664

3
775¼B ·ve and De

s

� �
¼

De
s11

De
s22

2De
s12

2
664

3
775¼Mp ·{De};

ð33Þ

where the B matrix relates nodal velocities and rate of

deformation and takes the form

B ¼ B1 B2 . . . Bnþm

h i
and BI ¼

› �NI ðxÞ
›x1

0

0 › �NI ðxÞ
›x2

› �NI ðxÞ
›x2

› �NI ðxÞ
›x1

2
66664

3
77775;

ð34Þ

while the matrix Mp represents the tangential projection

(in Voigt notation) of the bulk quantity D to obtain the rate

of surface deformation Ds as shown in (6). It can be shown

(Yvonnet et al. 2008) that Mp can be written as

Mp ¼

P2
11 P2

12 P11P12

P2
12 P2

22 P22P12

2P11P12 2P22P12 P2
12 þ P11P22

2
664

3
775; ð35Þ

where Pij are the components of the projection tensor P

introduced in (4). To obtain a discretised weak form of the

governing equation, let us first consider the virtual powers

considered in (9) and (10) and then decompose the

integration over the entire domain V into a sum of

integration over element domains Ve. Furthermore, using

the XFEM interpolation (33), one can show that numerical

approximations d ~P int and d ~Pext of virtual powers (9) and

(10) can be written as follows:

d ~Pint ¼
X
e

ð
Ve

{dDe}T · {T}dVþ

ð
G

dDe
s

� �T
· {Ts}dG

�

2

ð
Ve

{dDe}T · {T0}dV2

ð
Ge

dDe
s

� �T
· T0

s

� �
dGe

�

d ~Pext ¼
X
e

ð
Ve

rdðveÞT ·b dVþ

ð
›Vte

dðveÞT · �t d›Vte

� �
;

ð36Þ

where stress measures are written in Voigt notation in

the form {T} ¼ T11 T22 T12½ �T. Moreover, because we

assumed that there is no cohesion between cell and its

surrounding matrix, the above equation is true for a

vanishing cohesive term Td ¼ 0. To derive a numerical

solution of the nonlinear governing equations, it is now

necessary to linearise the above expressions. For this, we

linearise stresses following {T} ¼ {T} þ { _T}dt, where

dt is a small time increment. Following expressions (27)

for the material time derivative of Cauchy stresses, the

spin dependence of the objective stress rate takes the

form:

{W ·Tþ T ·WT} ¼ TvW ¼ TvðG · _deÞ; ð37Þ

where

Tv ¼ 2T12 2 2T12T22 2 T11½ �T;

and

G ¼ G1G2 . . .Gmþn

� �
and GI ¼ 0:5

› �NIðxÞ

›x2

2
› �NIðxÞ

›x1

	 

: ð38Þ

Equation (37) can also be written for surface and

contractile stresses Ts, T
0 and T0

s , respectively. Finally,

using constitutive relations (22) and (25), linearised
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versions of the virtual powers read

d ~Pint ¼
X
e

ð
Ve

ðB ·dveÞTð{T}þ{C}·ðB ·veÞ ·dt

�

þTvðG ·veÞ ·dtÞdVe

þ

ð
Ge

ðMp ·B ·dveÞTð{Ts}þ{Cs}·ðMp ·B ·veÞ ·dt

þTv
s ðG ·veÞ ·dtÞdGe

2

ð
Ve

ðB ·dveÞT ·ð{T0}þ{T0}sJ ·dt

þT0;vðG ·veÞ ·dtÞdVe

2

ð
Ge

ðMp ·B ·dveÞT · T0
s

� �
þ T0

s

� �sJ
·dt

�

þT0;v
s ðG ·veÞ ·dt

�
dGe



;

ð39Þ

d ~Pext ¼
X
e

ð
Ve
rðN ·dveÞT ·bdVeþ

ð
›Ve

t

ðN·dveÞT ·�td›Ve
t

 !
:

ð40Þ

In the above equation, the second-order matrices {C}

and {Cs} are the cytoskeleton and the cortical membrane

elastic matrices in Voigt notation, respectively (note that

we deleted the superscript ‘sJ’ and ‘e’ to lighten the

expression). In addition, the relationship between the

stiffness matrix {Cs} of cortical membrane and its

elasticity matrix {S}s was taken as

{Cs} ¼ MT
p {S}sMp; ð41Þ

where Mp is defined in (35). After factorising and

simplifying the above expressions, one can derive a more

convenient form of the virtual powers as follows:

d ~Pint ¼
X
e

dveT
ð
Ve

BTð{T}þ{C}·ðB ·dveÞ

�

þTvðG ·dveÞÞdVe

þ

ð
Ge

BT ·MT
p {Ts}þ{Cs}·ðMp ·B ·dveÞ
�

þTv
s ðG ·dveÞ

�
dGe

2

ð
Ve

BT ·ð{T0}þ{dT0}þT0;vðG ·dveÞÞdVe

2

ð
Ge

BT ·MT
p · T0

s

� �
þ dT0

s

� �
þT0;v

s ðG ·dveÞ
� �

dGe



;

ð42Þ

d ~Pext ¼
X
e

dveT
ð
Ve

rNT ·b dVe þ

ð
›Ve

t

NT · �t d›Ve
t

 !
:

ð43Þ

Finally, using the principle of virtual power (11) and

substituting the approximations of the virtual powers (42)

and (43), we obtain the following finite element equation:X
e

Ke
int

� �
· d d ¼

X
e

Fe
ext 2 Fe

int

� �
; ð44Þ

where Ke
int denotes the internal stiffness of element e and

takes the form

Ke
int ¼

ð
Ve

BT · {C} ·Bþ BT ·Tv ·G dVe

þ

ð
Ge

BT ·MT
p · {Cs} ·Mp ·B

þ BT ·MT
p ·Tv

s ·G dGe

2

ð
Ve

BT ·T0;v ·G dVe

2

ð
Ge

BT ·MT
p ·T0;v

s ·G dGe; ð45Þ

while the internal and external forces associated with

element e are written as follows:

Fe
int ¼

ð
Ve

BT · {T}dVe þ

ð
Ge

BT ·MT
p · {Ts}dGe

2

ð
Ve

BT · {T0}dVe

2

ð
Ge

BT ·MT
p · T0

s

� �
dGe; ð46Þ

Fe
ext ¼

ð
Ve

rNT ·b dVe þ

ð
›Ve

t

NT · �t d›Ve
t : ð47Þ

The quantities are then numerically evaluated using

Gaussian quadrature for which four integration points are

considered in normal and partially enriched elements.

However, integration in fully enriched elements is carried

out by subdividing elements into sub-triangles following

(Dolbow 1999), and integration on the cell surface follows

from the assumption that the interface is straight within an

element (this only requires two integration points on the

interface). The reader is referred to Farsad et al. (2010) for

a more complete description of the integration scheme

used in this study. The finite element Equation (44) has

been implemented in a Fortran computer program

following the flow chart presented in Figure 4. To

summarise, a solution d of the nodal displacements is

obtained as a function of time by computing a solution of

(44) at different time increments Dt and proceeding to time

integration of various quantities such as velocities and the

projection operator. At each time increment, the

determination of incremental displacements Dd follows
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from an iterative Newton–Raphson procedure such that

Dd ¼
P

nitrdd, where vector d d denotes the nodal

displacements of each iteration and nitr stands for the

number of nonlinear iterations. After each iteration,

stresses, coordinates and normal vectors are updated using

general evolution Equations (27) and (8). Finally, the total

nodal displacements are calculated by d ¼
P

nincDd,

where ninc stands for the number of increments.

A significant advantage in using the above formulation

is that the complex shapes of cells (Figure 2) are described

with a level-set function independently of finite element

discretisation. Issues related to meshing complex shapes

(in two and three dimensions) are, therefore, totally

alleviated. Another important remark is that while, in

general, cell motion depends on the deformation of the

external matrix due to cell-matrix cohesion, the lack of a

cohesive stress Td precludes these interactions. As a result,

cell and matrix may be considered as two independent

bodies undergoing independent deformations. Since the

two bodies are originally defined as connected domains on

a single finite element mesh, the capability of XFEM to

describe discontinuities in velocities between the two

domains is critical.

5. Numerical investigation of the role of the cortical

membrane on cell deformation

The objective of this section is to validate the model and

provide a general analysis of the role of the cortical

membrane on cell deformation using the proposed model.

For the sake of simplicity, this study concentrates on an

initially square cell whose displacements are constrained at

its four corners in order to mimic adhesion to a stiff substrate

(Figure 5(a)). Furthermore, the cell is described by material

properties shown in Table 1 and following (Deshpande et al.

2006), we subjected the cytoskeleton to an isotropic

contractile stress T0 ¼ T 0I generated by randomly oriented

stress fibres in the cytoskeleton. On the computational side,

domain V was discretised into a 19*19 regular finite

element square mesh of total size 50mm. The cell domain

Vc was defined by a level-set function representing a square

domain spanning about 15 elements, for which the four

corner elements were subjected to a constrained displace-

ment. We have shown that this choice of discretisation gave

a good combination of efficiency and convergence.

5.1 Effect of cortical stiffness on cell deformation

The first example consists in investigating the general

effect of the cortical membrane on cell deformation. The

deformed configuration of the cell is then studied in two

Figure 4. The updated Lagrangian algorithm used in the
nonlinear solution of the XFEM equations to determine cell
deformation.

Figure 5. (a) Initial configuration, (b) deformed configuration
of a cell on adhesion islands Bischofs et al. (2008), (c) deformed
configurations of a square cell without and (d) with cortical
membrane.

Table 1. Physical constants used in simulations.

Constant Value Reference

E 77 Pa Deshpande et al. (2006)
n 0.3 Deshpande et al. (2006)
Ks 0.1 N/m
T0
s 0 N/m

T 0 45 Pa Deshpande et al. (2006)
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cases: (a) no cortical stiffness and (b) the cortical stiffness

given by Ks ¼ 0:1N=m.

As shown in Figure 5, the presence of a cortical

membrane (when Ks ¼ 0:1N=m) results in the homogen-

isation of surface strains and surface curvatures. This is

not surprising as cortical stiffness acts against surface

deformation. A consequence of this is that the cell boundary

is characterised by a circular shape between two adhesion

regions, a result that is confirmed by the experimental work

of Bischofs et al. (2008) on fibroblasts (Figure 5(b)).

Furthermore, upon observing the stress distribution in the

cytoskeleton in Figure 5, one sees that a cell without cortical

membrane is subjected to a large stress concentration near

its corner, whereas internal stresses are more uniform when

cortical stiffness increases. This suggests a possible role of

the cortical membrane in protecting the cell against large

stresses and possible damage, especially in adhesion regions

that are prone to undergo large variations of both surface

and bulk deformations.

5.2 Relationship between cortical stiffness and
membrane curvature

Let us now investigate how membrane curvature varies in

terms of cortical stiffness Ks and contractile stress T 0.

In particular, it is of interest to compare the numerical

solution derived in this paper to the analytical solution of

a cable, attached at its two ends and subjected to a

distributed external force T 0 acting perpendicular to the

cable’s direction (Figure 6(b)). If we consider the external

force as the cytoskeleton’s contractile stress, then this

problem provides a benchmark with which our numerical

solution can be compared, when cytoskeleton elasticity

becomes negligible compared with cortical stiffness.

Considering that the spanning distance, d, does not

change during deformation and that the cortex has constant

curvature with line tension Ts and stiffness Ks, one can

show that the radius of curvature, R, of the membrane is

(Bischofs et al. 2008)

R ¼
Ts

T 0
¼

Ks

T 0

L2 ad

ad

� 

; ð48Þ

where L ¼ 2R arc sinðd=2RÞ and ad are the current and

reference length of the arc, respectively. Rearranging

the equations finally leads to the following relationship

between the cortex curvature k, the cortical stiffness Ks

and the contractile stress T 0:

1

kd
¼

Ks

T 0d

2

akd
arc sin

kd

2

� 

2 1

� 

: ð49Þ

To compare analytical and numerical prediction, we

then studied the relationship between the non-dimensional

surface curvature kd and the ratio K s=T 0d of cortical

stiffness and contractile stress as depicted in Figure 7.

Results show a net decrease in membrane curvature with

increasing cortical stiffness, with noticeable differences

between the analytical and numerical predictions for small

values of K s=T 0d. These trends may be explained as

follows. For large values of K s=T 0d, the stiffness of the

cortical membrane is significantly higher than the stiffness

of the bulk cytoskeleton, and the assumptions of the

analytical model are acceptable. As a consequence,

numerical and analytical predictions coincide. However,

for small values of K s=T 0d, the effect of the bulk

cytoskeleton has a large influence on cell deformation, a

feature that is not predicted by the analytical model. In this

case, bulk stiffness provides a resistance to membrane

Figure 6. The models used in the analytical and numerical solutions. (a) the deformed configuration of the cell to be modelled, (b) the
analytical model and (c) the numerical model.

Figure 7. Effect of normalised cortex’s stiffness on normalised
membrane curvature predicted by the numerical (XFEM) and
theoretical solutions.
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curvature by limiting the deformation of the internal

cytoskeleton. These results show significantly smaller

surface curvature than those of analytical prediction.

These results are important for two reasons: (a) they

validate the proposed numerical method to study the effect

of the membrane cortex on cell deformation in the region

of large cortical stiffness and (b) they extend the range of

prediction provided by the analytical solution by

incorporating the role of cytoskeleton elasticity on

membrane curvature.

5.3 Relative influence of cytoskeleton and cortical
membrane on cell contraction

Next, we propose to investigate the effects of three intrinsic

cell properties (cytoskeleton’s Young’s modulus E,

cytoskeleton’s Poisson’s ratio n and cortical tension T0
s ) on

the curvature of the cortical membrane. Such knowledge is

potentially relevant in understanding how cells can modify

their shape by adjusting the properties of their cytoskeleton.

5.3.1 Young’s modulus

In this example, the Eulerian XFEM formulation is used to

assess the effect of cytoskeleton’s Young’s modulus on the

cell membrane curvature after deformation. For this, we

considered a cell whose properties are given in Table 1 and

for which Young’s modulus is varied from 77 to 150 Pa.

Results are summarised in Figure 8.

The results show how an increase in cytoskeleton’s

Young’s modulus tends to decrease membrane curvature.

This effect is particularly noticeable for small values of

cortical stiffness. These results, therefore, emphasise the

fact that the role of the cortical membrane on cell’s

deformation is increasingly important and cannot be

neglected, as cytoskeleton stiffness decreases.

5.3.2 Poisson’s ratio

Another material parameter of interest is Poisson’s ratio of

the cytoskeleton. The next investigation, therefore,

consisted in varying the value of n from 0 to 0.5 (for

which the cytoskeleton becomes an incompressible

material), while keeping the other material parameters

constant and equal to those presented in Table 1. Figure 9

shows the changes of cortex curvature with cortex stiffness

(Ks=T
0d) as the Poisson’s ratio of the cytoskeleton is varied.

General trends show that increasing Poisson’s ratio

results in increasing the resistance of the cytoskeleton and,

therefore, decreasing membrane curvatures. Moreover, it

is observed that for high Poisson’s ratio (close to 0.5), the

curvature becomes independent of the surface stiffness for

small values of the cortical stiffness. This may be

explained by the fact that for high Poisson’s ratios, the

cytoskeleton becomes nearly incompressible and shear

deformation is favoured over volume changes. Cytoske-

leton stress is thus modified near the membrane, limiting

the magnitude of tangential stretch and homogenising

membrane curvature, even for relatively low membrane

stiffness. Furthermore, it is interesting to note that even for

an incompressible cytoskeleton ðn < 0:5Þ, we observe a

change in cell area. In fact, our results show that due to the

plane stress assumptions, an increase in cell’s thickness is

possible (with increasing out-of-plane deformation) such

that the global volume of the cell is preserved.

5.3.3 Cortical contraction

In addition to cytoskeletal contraction T 0, contractile

cells may change their shape by applying a cortical

tension T0
s . This process is thought to be at the origin of

cell blebbing (Tinevez et al. 2009). The last example,

therefore, investigates how the application of surface

tension T0
s triggers changes in cell deformation, as shown

in Figure 10.

Results indicate that the application of surface tension

tends to decrease surface curvature, and that this effect is

increasingly pronounced as surface stiffness decreases.

In the case of high surface stiffness, surface tension has a

Figure 9. Effect of cytoskeleton’s Poisson’s ratio on the
normalised curvature of cortical membrane.

Figure 8. Effect of the cytoskeleton’s Young’s modulus on the
normalised curvature of the cortical membrane.

Computer Methods in Biomechanics and Biomedical Engineering 443



small effect on cortical deformation and thus becomes

negligible on the general deformation of the cell. These

trends can be explained by viewing the tensed cortical

membrane as a cable that is straightened by applying

an axial force on its two ends. In a similar way, surface

tension works to make the cortical membrane return

to its original straight line, providing an efficient way for

the cell to control its shape through active cortical

contraction.

6. Summary and conclusions

In summary, this paper presented a new theoretical/com-

putational framework to model the large deformation of

cells, accounting for the effect of a stiff surrounding cortical

membrane. Under the assumption of a very small cortical

thickness, we developed the equations of surface elasticity,

originally developed for free surface stresses in solids, in

the case of large deformations following the Eulerian

description. A numerical formulation, based on the

XFEM/level-set method, was then introduced and utilised

to study the effect of cortical elasticity on the deformation

of a contractile cell. The contributions and advantages of

the proposed method can be summarised as follows:

(1) the geometry of the cell is entirely represented by

level-set functions that are defined independently

from the finite element mesh. Simple, regular FEM

meshes may, thus, be used regardless of the

geometric complexity of the cell;

(2) discontinuities in velocities and deformations result-

ing from the governing equations are naturally taken

into account within the XFEM methodology and

(3) the model provides an efficient and flexible way to

incorporate the contribution of cortical membrane in

cell mechanics. In particular, it can easily be extended

to incorporate more sophisticated descriptions of the

cell’s cytoskeleton and its cortical membrane.

Our analysis on the effects of the cortical membrane on

cell deformation generally showed that by adding stiffness

to the cell’s surface, the presence of the cortex induced

homogeneous membrane strains and curvature. Although

this aspect had been shown with a simple analysis

considering a cable deforming under the action of an

external perpendicular force, the model neglected the

effects of cytoskeletal elasticity on surface deformation.

Because it is able to incorporate the effect of both

cytoskeleton and cortical membrane deformation, the

proposed framework could overcome these limitations and

accurately capture the distinct role of surface and bulk

elasticity in cell deformation. Results showed that

although the analytical solution provides a good

approximation of membrane curvature when the cytoske-

leton is much softer than the cortical membrane, it greatly

overestimated its value for low values of cortical stiffness.

The numerical method was then used to investigate the

variation of cell deformation for various cytoskeletal

elastic parameters as well as cortical tension and elasticity.

This technique may, therefore, prove very useful in the

determination of cell properties through the analysis of its

shape. Besides this, the proposed framework establishes a

fast and efficient method that can accurately account for

cortical elasticity in future research on cell contraction,

migration and cell-matrix interactions.
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