In the Soft Matter Mechanics lab, we study the relationship between structure and behavior of soft materials, which include polymers, biopolymers, hydrogels and biologically active materials such as cells. We particularly focus on the out-of-equilibrium regime, that displays a rich variety of phenomena that rely on interpays between various characteristic and fundamental time scales. For this, we take a multi-scale approach (see figure below) where we decompose a microstructure into its components and analyse the effect of each of these parts on the macroscopic response (elasticity, rheology, adhesion or fracture resistance) of a material. This is achieved via the development of analytical (statistical mechanics & continuum mechanics) and computational approaches (finite element, discrete networks and particle methods), that are integrated with experimental data (see figure below). Results from this work has a wide range of practical applications in the design of smart polymers to be used in medicine, soft robotics and industrial applications, with a focus on the themes highlighted below. 


Synthetic and dynamic polymers

Mechanics, adhesion and fracture of dynamic polymers. Dynamic polymers are made of molecular networks with transient connections, which makes then visco-elastic, self-healing and potentially recyclable. While omnipresent in biology, their synthetic counterparts have only been recently made in labs (such as vitrimers or covalent adaptable networks for instance). Due to...


Living and active matter

Cells are known to change their mechanical and physical properties upon maturation and disease. The ability to easily and quickly detect these changes over time is a key to early cancer prognosis or increasing the outcome of in-vitro fertilization procedures. Our team develops computational models of the cell cytoskeleton and...


Marriage of synthetic (polymeric) and living matter

Bio-printing and tissue engineering is based on the development of high precision polymers that, when seeded with cells, can drive the developement of healthy tissues and organs. These materials should therefore behave as fluids during their injection to a defect, (such as a bone fracture or a cartilage defect) but...