HOMEWORK 5

- Show all the work/derivation with neat writing (this counts for the score). Engineering paper should be used. Each student should finish the homework independently.

1. Prove the following statement:

For small deformation, the Young's modulus E of a neo-Hookean material can be approximated by $3 n k T$, where n is the chain concentration and $k T$ is the thermo energy.
2. Consider two balloons that have the same Young's modulus E, balloon A has a wall of thickness h_{A} while the wall thickness of balloon B is $h_{B}=2 h_{A}$.
a) Based on the class note, plot the pressure (P)-volume (V) relationship of these two balloons in one plot.
b) Let's consider these two balloons are connected and are inflated from the same source (Fig. 1). Based on the $P-V$ curves you plotted in question (a), qualitatively describe the inflation process of this system.
(Hints: i. In this experiment, the pressure inside these two balloons is the same.
ii. Write your description based on following thoughts: are these two balloons inflated simultaneously over the inflation history? If yes, which balloon is inflated faster? If not, identify at what time you would see a different inflation state. Would one balloon grow while the other shrinks? Explain the physical reasons.)
c) If there is a pressure sensor at the inlet (Fig. 1a), what is the pressure (P) - volume (V) curve that you would obtain from this sensor?
(a)

(b)

3. Consider the relaxation test of a sample made of dynamic network of detachment rate k_{d}. At $t=0$, this sample is instantly stretched to a state, where the normalized covariant becomes $\boldsymbol{\mu}=$
$\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right]$. After then, the deformation is fixed $(\boldsymbol{L}=\mathbf{0})$ to let the stress relax.
a) Knowing that $\boldsymbol{\mu}$ changes in time by $\frac{d \boldsymbol{\mu}}{d t}=\boldsymbol{\mu} \boldsymbol{L}^{T}+\boldsymbol{L} \boldsymbol{\mu}+k_{d}(\boldsymbol{I}-\boldsymbol{\mu})$, derive the equation for $\boldsymbol{\mu}$ as a function of time.
b) Based on your result in (a), describe how does the stress along the vertical direction (σ_{22}) change in time. (Hint: for uniaxial tension, $\sigma_{11}=\sigma_{33}=0$)

Figure 2

