HOMEWORK 1

- Show all the work/derivation with neat writing (this counts for the score). Engineering paper should be used. Each student should finish the homework independently.

1. Consider a dart board below. This board is equally divided into four regions numbered from 1 to 4 , corresponding to the score if the dart lands in this region. Blindfolded, you throw two darts to the board. Assuming the darts always hit the board:
(a) What is the probability of you scoring 5 points in total?
(b) Considering the game as a thermodynamic system and assume each of the score is a micro-state, from a statistical mechanics viewpoint, what is the entropy of this system?

2. Consider two boxes, one contains 5 black particles and the other has 5 white particles. Assuming no interaction between particles, what is the change in entropy if these two boxes are combined into one?

3. Considering the problem similar to the class, a box contains 3 black and 2 white particles. Assuming the interaction energy between the white and black particles is $\epsilon_{w b}=1$ (i.e., the white and black particles repel one another).
(a) Draw each of the ten microstates and their respective internal energy.
(b) Find the probability of each of these microstates when $k T=0.1,1$ and 10 .
(c) What difference do you observe between this situation and the case studied in class, where $\epsilon_{b b}=$ 1 ?
4. Consider three boxes shown below, let's consider following operations:
a) Combine the latter two boxes in the way shown in (i-ii).
b) Further combine the two boxes (from ii-iii).

Let's assume the interaction energy between black particles is $\epsilon_{B B}=1$, and the energies for white-white or black-white interactions are zero. Compute the entropy S, the internal energy U and the Helmholtz free energy F of all these three states. Verify whether your result satisfies $U-T S=F$. Comment on how do U, S and F change from state ito iii and explain the trends.

(ii)

(iii)

5. A drunk is taking a random walk on the street. Let p be the probability of the drunk taking a step to the right, and $q=1-p$ is the probability of taking a step to the left. If the drunk takes N steps, the probability of the drunk's position m is computed by $P(m)=C_{N}^{(N+m) / 2} p^{(N+m) / 2} q^{(N-m) / 2}$.
(a) If the drunk does not favor any direction ($p=q=0.5$), using Matlab, plot the probability distribution P of the drunk's position as histogram at $N=50$ steps.
(b) If the drunk is more inclined to go right ($p=0.6, q=0.4$), using Matlab, plot the probability distribution P of the drunk's position as histogram at $N=50$ steps.
(c) For the above two cases, the mean of the drunk's position $\langle m\rangle$ and the standard deviation s^{2} can be computed by $\langle m\rangle=\sum_{m=-N}^{N} m P(m)$ and $s^{2}=\left\langle(m-\langle m\rangle)^{2}\right\rangle=\sum_{m=-N}^{N}(m-\langle m\rangle)^{2} P(m)$. Evaluate these two values for case (a) and (b) and compare them with the analytical solution.

Hints:

- The analytical solution for $\langle m\rangle$ and s^{2} are $\langle m\rangle=N(2 p-1)$ and $s^{2}=4 N p(1-p)$.
- For this problem, m can only be an even number. For the histogram plot, use Matlab command "bar".

