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ABSTRACT: The macroscopic mechanical response of poly-
mers can be traced down to the microscale physics of the
network by using a statistical approach for the description of the
configuration state of the polymer chains. In this paper we
present a micromechanical model to capture the macroscopic
behavior of polymers by tracking the evolution of a distribution
function describing chain configurations, more specifically the
statistics of the end-to-end distance on the network chains.
Damage, manifested in the softening and hysteresis under cyclic
loading, is accounted for through the scission of chains, whose
occurrence is evaluated on the basis of the probability of failure, also settled in the configuration space. The proposed
micromechanical model can easily accommodate also the mechanics of dynamic network with reversible cross-links, thereby
providing a general and physics-based approach to the study of polymers and polymer-like materials.

1. INTRODUCTION

Elastomers and gels are increasingly used in applications such
as artificial muscles, tissue engineering, soft robotics, adhesives,
and stretchable electronics. One reason these polymers are so
desirable is because they can combine a myriad of
functionalities with the ability to undergo very large
deformations under fairly small forces. Despite these attractive
properties, gels are often found to be brittle, which significantly
limits their potential as structural materials (such as tissue
scaffold). Although they can often undergo larger deformation,
soft polymers are also limited by failure which may take the
form of necking, fracture, or fatigue failure. These failure
mechanisms may be better understood by taking a closer look
at the molecular mechanisms at play. Elastomers and gels
consisting of molecular networks of cross-linked chains are
mainly governed by entropic elasticity. In other words, thermal
fluctuations enable chains to explore a large configurational
space in the absence of stretch. When chains are stretched,
however, the number of configurations they can explore is
reduced and the entropy of the network decreases. Statistical
models have been successful at explaining the nonlinear elastic
response of polymers based on this change of entropy.6,12,20,43

In the context of this work, we are particularly interested in the
failure mechanisms that occur when individual chains are
stretched beyond their load carrying capacity, i.e., their end-to-
end distance become close to their contour length. In this case,
entropic elasticity predicts a pronounced strain stiffening of the
network, followed by a progressive failure of the constituent
chains as they reach their critical rupture force, which leads to
macroscale failure events such as necking or crack nucleation.
A number of strategies have been proposed to increase the

toughness of soft polymers by increasing the dissipation
mechanisms in the network during failure. One of them has

been to create particle-reinforced polymer composites in which
the process of particle debonding combined with polymer
deformation significantly enhance dissipation. Increase in
toughness, measured by the fracture energy, up to an order
of magnitude24 was observed by this approach. Other
approaches rely on the introduction of reversible bonds that
can dynamically detach and re-form over time. This endows
the material with a viscous component that can drastically
enhance dissipative processes in the process zone of a crack. In
this case, the toughness was found to be rate dependent and
can increase by as much as 2 orders of magnitude,40 depending
on the nature of the reversible bond. More recently, a number
of groups have proposed the idea of combining multiple
networks within the same polymer.13,14 A tight and brittle
network can enhance the stiffness while acting as a sacrificial
component during fracture. A second network, more loose and
flexible, may then be used to bridge fractured regions and
enhance energy dissipation yielded by the first network. This
concept has proven extremely successful, most notably for the
toughening of hydrogels which displayed a very large
improvement in their fracture strain. More work is currently
underway to explore the possibility of incorporating more than
two networks.
With our increasing capacity to control molecular structures,

the need of a better comprehension of the structure/toughness
relationship is becoming more apparent. In this context, the
development of mathematical models that can serve to guide
the experimental design to optimize fracture resistance is
highly desirable. A number of polymer damage models have
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therefore been developed, mostly focusing at the continuum
level and using thermodynamical arguments. Domain-tran-
sition theories have been applied to describe the softening and
Mullins effect of elastomers,16,34,36 where the chains are
assumed to transit from a hard phase to a soft phase when
experiencing large strain. A network alteration theory was
proposed Marckmann et al.,28 where the density of chains is
considered to decrease as they transit to the softer domain.
This approach was later extended by Zhao57 to inter-
penetrating networks to describe their stiffening and necking
behaviors. Diani and Merkel9,29 further employed the idea of
network alternation to describe the Mullins effect and the
anisotropy of the network induced by damage. At a more local
level, the rupture of chains was related to their stored elastic
energy by Lake and Thomas21 and recently Mao et al.27

Following similar ideas, Volokh49,50 proposed the concept of
energy limiter, indicating the maximum energy a polymer chain
can store before failure. Several models are proposed to
describe the time-dependent damage of polymers. Wine-
man54,55 studied various time-dependent response of elas-
tomers when they are deformed with high temperatures, at
which chain scission and re-formation can be observed in time.
Lavoie et al.22 adopted the concept of mechanochemistry and
described the damage in elastomers under deformation due to
rate-dependent scissions. Mao et al.26 considered the damage
caused by the rupture of ionic bonds and described the
viscoelastic damage of the hydrogel under large deformation.
Among these models, several failure mechanisms were
investigated, including for instance the progressive rupture of
the highly stretched chains in multinetwork elastomers,2,52 the
concurrent roles of covalent and ionic cross-links40 in gels, the
mechanisms of chain scission,27,41 and void growth and
coalescence.23 These models have been able to explain well-
known macroscopic phenomena including the damage-induced
stress-softening phenomena (or Mullins effect)15 or the partial
self-healing observed in certain polymers due to the reattach-
ment of previously inactive bonds.3,7

A key to understand these materials relies on our ability to
connect the molecular phenomenon of chain stretching and
rupture to the macroscopic mechanics. In this context, we have
recently introduced a statistical framework that we refer to as
the transient network theory or TNT in which the physical
state of a polymer network is represented by the distribution
ϕ(r) of the length and direction of chain end-to-end vector
r.45,48 An evolution equation was then presented for this
distribution, providing a mean to understand the changes in
chain configuration within the polymer as a result of

deformation and chain detachment and re-formation events.
We further showed that the Cauchy stress and energy
dissipation could be derived from the second moment of the
distribution. We propose here to undertake a similar approach
to explore the physics of chain stretch and rupture during
polymer failure. As polymer damage often takes place as they
undergo large deformation, the model is based on two simple
ideas: (a) The force−stretch relation of a single chain strain
stiffens at large strains, and this effect becomes more
pronounced for smaller chain length. (b) Chain rupture
becomes more and more likely as they reach a critical length
that is close to their contour length. Combining these two
ideas with the theoretical framework provided by the TNT
allows us to explore the damage evolution and resulting stress/
strain curves for polymers containing various chain lengths and
network characteristics. We particularly explore the case of a
multinetwork elastomer and demonstrate that our model is
capable of quantitatively predicting the stress/strain relations
and hysteresis under large strains, based on which the
mechanisms underlying the enhanced energy dissipation are
discussed. The effects of key molecular parameters on the
macroscopic mechanical behavior are also investigated and
discussed.

2. A STATISTICAL VIEW OF NETWORK DAMAGE

The collective (or macroscopic) response of a polymer
network depends on the individual response and interactions
of a large number of constituent chains. For this reason, we
start our description by considering a statistically representa-
tive volume element (or RVE) whose average properties give a
good indication of the entire material. Assuming that the chain
forms a percolating network, we then give special attention to
chains whose points of attachment (or cross-links) are both
linked to the network and are as a consequence mechanically
active. For the sake of clarity, we further assume that these
active chains have a relatively uniform length, characterized by
the number N of Kuhn segments. This assumption can later be
relaxed when multiple networks are considered. To further
attempt to quantify the elasticity of this network, one can
count the elastic energy stored in each of the active chain. We
will see that this energy depends on the chains end-to-end
vector r, which indicates the distance and direction between its
attachment point (Figure 1a). In other words, an accurate
knowledge of the networks mechanical state at any time t can
be gained by knowing the distribution ϕ(r,t) of this end-to-end
vector for the entire chain population within the RVE. An
example of such a distribution when the network is at rest is

Figure 1. (a) Cross-linked polymer network and illustration of the end-to-end vector r of a single chain. The chain is assumed to consist of N Kuhn
segments with length b. (b) Statistically, the chain population can be described by the distribution ϕ(r,t), for which we show an example in one
dimension.
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shown in Figure 1b. This distribution gives two important
pieces of information regarding the chain population: first, the
integral c(t) = ∫ ϕ(r,t) dΩr (where the integral is taken over all
chain configurations) is found to be the density of active chain
in the RVE. Second, when normalized by the density c, the
distribution is interpreted as the probability density function
f(r,t) that expresses the likelihood of finding a particular chain
at a given configuration r. As a result, the distribution may be
rewritten as the product:

ϕ =t c t f tr r( , ) ( ) ( , ) (1)

Note that we explicitly included the argument t to emphasize
that in the context of damage both the concentration and the
probability function depend on time.
2.1. Distribution Mapping and Damage. In the

subsequent damage theory, an important concept is the
distribution mapping between the chain population in its
undeformed configuration and current deformation. To define
this mapping, let us consider a single polymer chain whose
end-to-end vector is defined by the vector R when the network
is in its undeformed or stress-free state. Let us now imagine
that the RVE is subjected to a macroscopic deformation
characterized by the deformation gradient tensor F. Consid-
ering that the network follows affine deformation, the end-to-
end vector of the chain becomes r(t) = F(t)R. As a
consequence, the end-to-end vector distribution can be
expressed in two different ways. On one hand, the current
(or stretched) distribution ϕ(r,t) = ϕ(FR,t) portrays the active
chain population in its deformed state. On the other hand, the
reference distribution Φ(R,t) corresponds to the chain
population in the absence of deformation (i.e., F = I where I
is the identity tensor). This distribution is therefore
mathematically obtained by stretching the distribution Φ
according to the tensor F−1 such that Φ(R,t) = ϕ(F−1r,t). In
the remainder of the paper, we will use the reference
configuration for its theoretical convenience, but relations
with the current configuration will be discussed when
appropriate.
When damage is induced to a network, the chain

distribution Φ is affected by the loss of active chains, which
may be found in various configurations. To characterize this
process, it is first useful to define the chain distribution in its
undamaged state, immediately after the network has been
formed through polymerization. According to statistical
mechanics, such a distribution can be expressed in terms of a
Maxwell distribution f 0 with a zero mean and a standard
deviation N b/3 in each of the three spatial directions in the
form44
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c

Nb Nb
R

R R
( )

3
2

exp
3
20 0 2

3/2

2 (2)

We note that the classical Maxwell distribution was multiplied
by the initial concentration c0 to reflect the chain density of the
network (i.e., number of chains per unit volume). After
loading, the damage induced to the network is represented by a
dimensionless damage distribution Δ(R,t) describing the
fraction of ruptured chains, with undeformed end-to-end
vector R, in time. In other words, this function satisfies Δ(R,t)
∈ [0, 1], and the reference chain distribution, at any time, can
be expressed in terms of the initial distribution Φ0(R) as

Φ = Φ − Δt tR R R( , ) ( )(1 ( , ))0 (3)

This can also be written in the current state as ϕ(r,t) =
ϕ0(r,t)(1 − δ(r,t)) where the stretched damage and chain
distributions are defined as δ(r,t) = Δ(F−1r,t) and ϕ0(r,t) =
Φ0(F

−1r). From this definition, it is further possible to define a
global damage measure D by integrating the damage
distribution over all chain configurations:

∫= Φ Δ Ω = −D
c

c
c

1
d 1R

0
0

0 (4)

where the last term can easily be obtained from (3). It is clear
that this scalar ranges from 0 in the absence of chain damage
(i.e., c = c0) to unity when the network is fully damaged (i.e., c
= 0). For clarity, the mapping of the damaged chain
distribution is illustrated in Figure 2 for a simple one-
dimensional case. From a physical point of view, we note that
chain rupture can occur in the middle of a chain (chain
scission) or at their extremities (cross-link failure), depending
on the strength of the bonds. In this paper, we do not specify
which mechanism is predominant, but we postulate that from a
mechanical point of view their consequence is a similar
reduction in the concentration of connected chains, dissipation
of the elastic energy, and softening of the network.

2.2. Stored Elastic Energy and Stress. Based on the
above statistical description, let us now assess the elastic energy
stored in the network. In this context, Kuhn and Grun20

estimated the entropy of a chain by idealizing them as a series
of jointed segments undergoing a random walk (freely jointed
chain model). If we recall that the mean end-to-end distance of
a chain at zero force is Nb where N and b are the number and
length of Kuhn segments in a chain, respectively, the stretch
ratio can be defined as λ = r N b/( ) where r = |r| is the end-
to-end distance. The cost of chain stretching can be expressed
in terms of the potential:44

Figure 2. Illustration of the evolution equation for the chain distribution. Deformation has the effect of stretching the distribution without affecting
its overall area; chain rupture at higher stretch tends to decrease the number of chain with a large end-to-end distance.
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where kB is Boltzmann’s constant, T is the absolute
temperature, and −1 is the inverse Langevin function, such
that β β β= −( ) coth( ) 1/ . If the chain distribution is
known, it is possible to estimate the elastic energy density
stored in the network by integrating ψ(r) over all
configurations. Doing so, and introducing the difference ΔΨ
between the network in its current and stress-free state, we
obtain

∫ ϕ ψ ν
ν

ΔΨ = [ − Φ] Ω + Δ
pd r (6)

where ν is the specific volume of the polymer network and the
integral is taken over the chain’s configuration space

Ω = { | ∈ }r rr
3 . Note that the Lagrange multiplier p enforces

the incompressibility conditions that the specific volume ν of
the network remains equal to its initial value ν0 at all times
(i.e., Δν = ν − ν0 = 0). Using energy conservation, we can
further show (see next section) that the Cauchy stress σ in the
polymer network can be found by integration as follows:

∫σ ϕ= [ − Φ] ⊗ Ω +t pr I( ) d r (7)

where t = dψ/dr is the chain force vector in a single chain. This
expression provides a bridge between the molecular scale
(force, stretch, and orientation of single chains) and its
macroscopic response. Finally, using the separation of the
distribution function (see eq 1) into the active chain
concentration and normalized probability functions F (refer-
ence state) and f (stretched state), the stress can equivalently
be written as σ = c∫ r[f − F](t⊗r)dΩr + pI where f and F are
the probability density function in the current and reference
state, respectively. Interestingly, if one rewrites the current
chain concentration as c = c0(1 − D), the stress can be written
as

σ σ= − +D pI(1 ) 0 (8)

where σ0 = c0∫ [f − F](t⊗r) dΩr is the damage-free stress. In
other words, the damage parameter induces a drop in stress
from its original undamaged level. This expression is
reminiscent of empirically damage mechanics model described
in refs 22 and 57. Finally, we note that eq 7 can be calculated
numerically. For a 3D problem, we first discretize the chain
space Ωr with a uniform grid of (n × n × n) points. The
integration is then approximated on the grid by a trapezoidal
or Simpson’s integration scheme based on the value of
integrands on the grid points. Readers are referred to Chapra4

for detailed introduction on different types of integration
schemes.

3. DAMAGE EVOLUTION IN POLYMER NETWORKS
An advantage of the statistical approach in modeling damage is
that it is directly formulated in terms of a failure criterion at the
chain level. Indeed, the quantity Δ(R, t) appearing in (3) is
interpreted as the probability of failure of a chain that is
originally characterized by an end-to-end vector R. Since one
usually knows the macroscopic deformation history through
the deformation gradient F(t), it is possible to track the chain’s
stretch history r = F(t)R and thus its chances of failure via a

molecular-motivated criterion. In this section, we therefore
construct a simple and thermodynamically consistent model
for chain failure that directly affect the damage response of the
polymer through its stress response.

3.1. Form and Conditions on the Damage Evolution
Law. The phenomenon of material damage is a history-
dependent process, which mostly depends on deformation
path of a volume element over time. For this reason, our
formulation should follow an incremental form, which involves
the rate Δ̇ of the chain damage probability. For each
continuum point, the state of the network is described by
the distribution function ϕ(r,t) that is defined in the chain
space spanned by the end-to-end vector r. Its evolution results
from the interplay between two mechanisms: (i) the loss of
chains due to rupture and (ii) the stretch of chains due to
network deformation. With this consideration, the evolution of
chain distribution is associated with the rate of damage δ̇ (or Δ̇
in the reference configuration) by eq 3 as

ϕ δ= −Φ ̇D t
Dt

r( , )
0 (9)

where the material time derivative ϕ∇= + ·̇ϕ ϕ∂
∂ rrD t

Dt t r
( , ) , with

∇rϕ = ∂ϕ/∂r, accounts for the distortion of ϕ in time due to
the stretch of chains (see the Appendix A.1 for a more detailed
explanation). Assuming affine deformation, the rate of chain’s
stretch can be associated with macroscopic deformation as r ̇ =
Lr, where L = ḞF−1 is the velocity gradient.45 After further
calculations, the material time derivative can be rewritten as

ϕ ϕ ϕ∇= ∂
∂

+ ⊗D
Dt t

L r:( )r (10)

We make two observations regarding eq 10. First, for a purely
elastic network, i.e., there is no chain rupture, the change in
chain distribution only arises from distortion, and the right-
hand side of eq 9 vanishes. Second, this equation is consistent
with earlier version of the transient network theory (TNT)
used to describe polymer viscoelasticity.45,48 In this context, we
identify the term ϕ0δ̇ is the rate of chain failure, while no chain
reattachment events occur in a pure damage formulation (i.e.,
without self-healing). We finally note that the evolution of the
distribution Φ(R,t) at the reference configuration follows eqs 9
and 10 in the particular case when F = I (or equivalently r =
R).
To be thermodynamically consistent, let us now seek an

expression of the second principle for an isothermal process.
For this, we evaluate the change in the elastic energy Δψ as the
polymer network undergoes an incremental macroscopic
deformation represented by the velocity gradient L. The
general case, including changes in temperature, was described
in a previous study45 and is therefore not shown for brevity. In
this case (isothermal process), the second principle states that
the energy dissipation is equal to the difference between the
work done by internal forces and the change in deformation
energy as

σ= − ΔΨ̇ ≥L: 0 (11)

where σ is the Cauchy stress. As seen in eq 11, the second
principle is enforced by the fact that must remain positive at
all times. To proceed further, we use (6) to estimate the rate of
change in elastic energy ΔΨ̇ (details shown in Appendix A.2)
and obtain
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ÑÑÑÑÑÑÑ∫ ∫ϕ ϕ δ ψΔΨ̇ = − Φ ⊗ Ω + − ̇ − Φ Δ̇ Ωpt r I L( )( ) d : ( ) dr r0 0

(12)

Now using the definition of stress in (7) and identifying the
terms with (11) leads us to the energy dissipation:

∫ ϕ δ ψ= ̇ − Φ Δ̇ Ω → Δ̇ ≥tR( ) d ( , ) 0r0 0 (13)

Using the fact that the strain energy function Ψ remains
positive for all values of r, the positiveness of the dissipation is
true in the condition that the local detachment rate remains
positive at all time (as expressed in the right-hand side of eq
13). From a physical viewpoint, eq 13 expresses the idea that
energy dissipation in the network arises from the loss of elastic
energy resulting from the rupture of stretched polymer chains.
3.2. Chain Failure Evolution Law. To derive a damage

evolution law, we turn to a probabilistic description of chain
failure. Typically, the rupture of a chain occurs when the
internal energy due to bond stretching exceeds a critical
value.21 A direct consideration of this mechanism, however,
requires a detailed modeling of the bond deformation at the
molecular level, which may complicate the proposed approach
and introduce expensive computational cost. In this paper, we
focus on establishing a connection between chain mechanics
and the global response; we therefore consider a simpler
phenomenological criterion for chain (or bond) rupture. For
this, as noted by Thomas42 and later by Mao,27 there exists a
characteristic length that is associated with the critical internal
energy for rupture. For elastomers, this characteristic length is
postulated as ≃ N b.27 On the basis of this consideration,
we assume that the rupture of a single chain occurs when it
exceeds a limited end-to-end distance rc above which failure
occurs. When considering a large population of chains, a
variability exists in this limit stretch due to small differences in
chain orientation, length, and configurations within the
network. In this study, this variability is expressed in terms
of a cumulative probability function P(r) that expressed the
likelihood of failure of a chain that experiences an end-to-end
distance r. Assuming Gaussian statistics, we write

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
∫π σ σ

ξ ξ= − −P r r( )
1

2
exp

1
2

( ) d
r

d 0 d
2 c

2

(14)

where the standard deviation σd expresses the variability in
chain failure. As shown by Figure 3, the failure probability is
extremely low at low stretch while it dramatically increases as
the end-to-end distance r approaches rc. As expected, the
failure probability asymptotes to P = 1 for large stretches
(above rc). We finally note that the function (14) can be
rewritten in terms of the reference end-to-end distance R via
the mapping r = FR.
A damage evolution law can then be constructed from the

fact that chains begin to rupture as they are stretched beyond
their failure point. To understand how this statement is
translated into a mathematical formulation, consider a
population of chains with an original end-to-end vector R,
original concentration Φ0(R), and damage fraction Δ(R,t). Let
us now assume that the network is stretched according to a
macroscopic deformation gradient F, such that the chains are
all stretched to an end-to-end vector r = FR. To estimate
whether those chains will experience additional damage, we
consider the following cases:

• The probability of chain failure P(r) is smaller than or
equal to the current damage δ(r) in this population. In this
case, all weaker chains have already ruptured and no additional
damage occurs. In other words, if P(FR) ≤ Δ(R,t), the damage
evolution equation becomes

Δ̇ =tR( , ) 0 (15)

• The probability of chain failure P(r) is larger than the
current damage δ(r,t) in this population. In this case, a portion
of the chains break such that the current damage δ(r,t)
becomes equal to the failure probability P(r). In this case, the
increase in damage can be determined as

Δ̇ = |̇ = ∇ · ̇ ≥t P PR r r( , ) ( ) 0R (16)

with r ̇ = ḞR and Ṗ|R is used to represent the change in failure
probability for a constant reference end-to-end vector R. From
eq 13, damage can only evolve if the right-hand side is positive.
In other words, if P(FR) > Δ(R,t), the damage evolution
equation becomes

Δ̇ = ∇ · ̇ ∇ · ̇ ≥t P PR r r r r( , ) ( ) if ( ) 0 (17)

Δ̇ = ∇ · ̇ <t PR r r( , ) 0 if ( ) 0 (18)

The first condition corresponds to the case of loading; i.e.,
most chains stretch above their critical value and induce
damage in the network. The second condition corresponds to
the case of unloading; i.e., the chain stretch decreases and
therefore cannot accumulate additional damage.

Initial Conditions. In its initial state (i.e., t = 0), the polymer
may often be considered stress-free. This means that the
deformation gradient is F(0) = I where I is the identity tensor.
In this condition, we therefore have r = R, and the condition
for no damage evolution in the stress-free configuration is
according to (15):

Δ = PR r( , 0) ( ) (19)

This completes the statistical description of chain damage in
the network. In addition, the chain distribution at the reference
configuration follows a Gaussian distribution, indicating that a
small number of chains possess very large end-to-end distance.
An initial damage is applied on these chains since their end-to-
end distances is much greater than the critical value for rupture

Figure 3. (a) Probability of chain damage P as a function of the end-
to-end distance r. (b−d) Elongation of a chain from its natural state to
the critical end-to-end distance for failure rc.
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(r ≫ rc). With this consideration, the chain distribution in the
initial state reads

ϕ ϕ= − Pr r r( , 0) ( )(1 ( ))0 (20)

3.3. A Simple Illustration. To help illustrate the statistical
damage model, we consider the cyclic uniaxial tension of a
cylindrical sample that is composed by a single elastic network,
as shown in Figure 5. This sample is subjected to two
consecutive cycles (as shown in Figure 5a) with maximum
elongation λ = 2.5 and 3.4. In Figure 5b, we show the
isocontours of the chain distribution ϕ in the x−y section at

different time point during deformation. As expected, this
surface initially takes a spherical shape, indicating that the
polymer network is isotropic. After the sample is stretched
along the x-axis, the distribution becomes elliptic as the chains
stretch along the x-direction and become more compressed
along the y-direction as a result of incompressibility. As the
distribution intersects the damage region (represented by
dashed circle), damage is induced to the highly stretched
chains. As a result, the distribution becomes truncated along
the x-direction, and becomes nonspherical as the deformation
is removed. The same scenario occurs during the second

Figure 4. (a) Loading history of the material. (b) The subfigures about the cross section of the distribution at the x − z and (c) their corresponding
1-D projection along the x-direction. (d) Evolution of chain damage D in time and the evolution of Φ(R,t) during the deformation history.

Figure 5. (a) Stress−strain relationship and (b) the damage−strain relationship over the course of deformation.
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loading, but we note that damage is only initiated once the
deformation reaches the same level as that in the end of the
first cycle (point D). Beyond this point, however, the
distribution is further stretched and damaged, resulting in a
more highly truncated sphere after the deformation is removed
(point F). To better understand the damage mechanism, a
one-dimensional (x-projection) representation of the distribu-
tion and its evolution are finally given in Figure 5c. For
comparison, we show here its representation in the original
(ϕ0(r)) and damaged state (ϕ(r,t)), together with the failure
probability function P(r).
To further appreciate how damage accumulates during

deformation, Figure 5d depicts the variable D, computed by eq
4, as a function of time. We see that in the first cycle damage
accumulates during the loading stage and stalls during the
unloading. In the second cycle, during the time C − D, the
deformation of the sample is smaller than the maximal
deformation in the first cycle; therefore, all brittle chains are
already ruptured during the first cycle, and no additional
damage is observed until point D, where the sample regains the
maximum stretch of the previous cycle. For clarity, Figure 5a
also shows the evolution of the damage Δ(R,t) (insets) with
green dashed lines and compares it to the initial function
Δ(R,0) depicted by a black dotted line. Initially, at point A,
these two curves overlap, consistently with eq 19. As damage
accumulates, however, Δ(R,t) evolves toward R = 0. This
narrowing of Δ(R,t) may be interpreted by the fact that as the
polymer network is stretched over its load-carrying capacity,
chains with an initially large end-to-end distance reach their
critical stretch λc and rupture first. In contrast, chains that are
originally shorter survive damage, i.e., Δ(R,t) ≈ 0.
Finally, we determine the stress and overall damage in the

specimen using eqs 7 and 4, respectively. For many
experimental measurements, the results are shown in terms
of nominal stress σN = JF−1σ where J = det(F) = 1 for an
incompressible polymer. Figure 5d thus depicts the predicted
normal nominal stress along the x-direction as a function of
stretch λ. We observe that in the first cycle the stress−strain
curve takes different paths between the loading and the
unloading stage. We clearly observe a decrease in the network’s
stiffness due to the loss of active chains resulting from damage
depicted in Figure 5d. During the second cycle, the loading

path first closely follows the unloading of the cycle 1 and
appears to continue the loading curve of cycle 1 after point D,
where new damage starts to accumulate (Figure 5e). This
behavior is reminiscent of the Mullins effect observed in a
number of filled rubbers10 and multiple-network polymers.52

We further see that as damage increases, the polymer’s stiffness
decreases until the curve reaches a maximum. This point marks
the onset of strain localization that usually takes the form of
the necking of a cylindrical specimen in tension.
We finally note that the mechanical response of the material

depends on our choice of rc and σd. To identify their roles, we
performed a parameter study and whose outcomes are shown
in Appendix A.3. We find that an increase in rc leads to a rise in
toughness and stiffness of as well as less cumulative damage.
This is because chains with larger rc rupture in a higher
stretched state and dissipate more energy during deformation.
Regarding the role of σd, we find that increasing σd also
improves both the stiffness and the toughness of the network.
However, its effect on the cumulative damage is insignificant.

4. APPLICATION TO THE DAMAGE MECHANICS OF
MULTINETWORK ELASTOMERS

Multinetwork elastomers present interesting systems that can
be adequately designed to significantly increase the fracture
resistance of soft materials.13,52 Generally, these polymers
consist of a brittle network made of small and stiff chains,
reinforced by other “tough networks” made of longer and
softer chains. As a result, when the polymer is deformed, the
brittle network breaks first, creating multiple cracks that are
bridged by the tough network, leading to a significant
improvement in toughness.11,31,52 To achieve a controllable
reinforcement protocol, efforts have been devoted to
quantifying the effect of the chain rupture and network
charateristics on polymer toughening.11,30 Here we demon-
strate that the presented theory provides a useful tool to
connect the macroscopic behavior of these materials to their
molecular design, with a potential to assist and guide
experimental efforts.
Synthesis of the multinetwork elastomer is achieved by a

sequential polymerization technique, as shown in Figure 6a. In
the experiment,11 a single network (SN) elastomer is first
synthesized via UV polymerization using the monomer ethyl

Figure 6. (a) Schematic of experimental synthesis of DN and TN elastomers. (b) 1-D distribution of SN, DN, and TN elastomers at the initial
state.

Macromolecules Article

DOI: 10.1021/acs.macromol.8b01052
Macromolecules 2018, 51, 6609−6622

6615

http://dx.doi.org/10.1021/acs.macromol.8b01052


acrylate (EA). To introduce an additional network, the
elastomer is then preswelled in the EA monomer solution
which effectively stretches the existing chains in an isotropic
manner. By adding a certain amount of cross-linkers and UV
initiators, an additional loosely cross-linked network is then
formed. Following this strategy, double-network (DN) and
triple-network (TN) elastomers can be fabricated. In Figure
6b, we show the chain distribution ϕ corresponding to each
network (referred to by the superscripts 1, 2, and 3) after three
consecutive steps of polymerization. We see here that when an
additional network is added, the chains in the existing networks
are subjected to an increase in the degrees of prestretching. As
a result, their chain distributions become wider and closer to
the failure probability function P(r), as shown by the evolution
of ϕ1 from the SN to TN elastomer.
Two examples are presented. We first calibrate the model

parameters by comparing with the experimental work of
Ducrot et al.11 and explain the physical mechanism of the

mechanical reinforcement by analyzing the behavior of each
individual network. Second, we study the physical mechanism
behind the necking instability of these elastomers when they
are highly stretched (λ > 5). We also discuss how the necking
phenomena can be controlled by tuning the network properties
during the polymerization.

4.1. Mechanical Reinforcement of Multiple Network
Elastomers. Cyclic uniaxial tensile loadings were then
performed on both DN and TN elastomers. To obtain a fairly
close fit to experimental measurements for these two
elastomers, we identify that the number of Kuhn segments in
the chains of each network are N1 = 45 and N2 = N3 = 200.
Besides, since the monomer used in each network is the same,
the damage criteria of the chains are identified as rc = 0.87Nb
and σd = 0.01rc. In Figure 7a, we show the true tensile stress σ
as a function of stretch λ (experimental data converted from ref
11) for the DN elastomer. We see that the stress−stretch
relationship of the elastomer is linear at small stretch (λ < 2)

Figure 7. (a) Matching between model prediction and the experimental measurement of the force−deformation relationship for the DN elastomer.
The subfigures show the evolution of chain distribution of each network. (b) Damage−deformation relationship of each network.

Figure 8. (a) Matching between model prediction and the experimental measurement of the force−deformation relationship for the TN elastomer.
(b) Stress−deformation relationship of each individual network. (c) Five snapshots that show the evolution of distribution ϕ(r) during the loading.
(d) Damage−deformation relationship of each network.
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and stiffens upon further elongation. Besides, a very small
hysteresis is observed during the loading cycles, indicating that
the energy dissipated by chain rupture in the DN elastomer is
insignificant. This is also revealed by the evolution of the chain
distribution shown by the snapshots in the subfigures. We see
that the majority of chains remain within the boundary
delimited by the chain failure function P(r) during
deformation. As a result, most chains survive from being
damaged, and no visible truncation is observed in the chain
distribution of both networks. This is also observed in the
evolution of the damage parameter D for each network (Figure
7b) as a function of λ, where the damage accumulated in the
first network is only D ≈ 0.8% at the maximum stretch.
The TN elastomer shows a different behavior during the

cyclic tensile test, as shown in Figure 8a. First, the elastomer
stiffens at a much smaller stretch (λ ≈ 1.5) and softens when λ
> 2.5. Second, during the loading history, the hysteresis starts
to become visible at λ ≈ 1.5 and becomes more significant as
the deformation increases. In Figure 8b, we further decompose
the stress σ into contributions from each network, denoted by
σ1, σ2, and σ3. Although the weight fraction of the first network
is small (6%), it is the main contributor to the macroscopic
response while the stress in the second and the third network is
almost negligible. To further reveal the molecular physics
behind this phenomenon, we track the evolution of the chain
distribution of each network in Figure 8c. Because of the
higher level of prestretching, the chains in the first network are
more tightly connected with a distribution ϕ1 that is wide
compared to that in the DN at the initial time (point A).
Therefore, the chains approach their rupture length rc at a
smaller stretch ratio, as shown by the snapshots A−C, and
stiffen. After being further stretched, these chains break, as

shown by the snapshots C−E, resulting in the softening of the
polymer. Besides, ϕ2 and ϕ3 remain narrow during the history
of deformation, indicating that the chains in these two
networks remain loosely connected and therefore have
insignificant contribution to the mechanical response and
chain damage (see Figure 8b,d). As a summary, in comparison
with the DN elastomer, the TN elastomer exhibits an increased
initial stiffness at small strain and hysteresis at large
deformations. We note that in experiment identifying the
roles of each network is not trivial and usually requires the
construction of a master curve from the stress−strain curves of
different samples.30 However, by use of the TNT theory, the
individual response of each network can be straightforwardly
obtained, where one clearly sees that the prestretching of the
first network plays the key role in this mechanical reinforce-
ment.

4.2. Necking Phenomena of Multiple Network
Hydrogels. When subjected to a higher degree of stretching
(e.g., λ > 5), the multinetwork hydrogels32,33,51 have been
found to exhibit necking. Similar necking behavior has also
been observed in a multinework elastomer system recently.30

Necking occurs when the tensile deformation localizes in an
initially narrow zone, which may widen upon further
deformation. When this phenomenon occurs, the nominal
stress remains almost constant as the necked region grows until
it occupies the entire sample. Once the neck has taken over the
entire sample, the polymer deformation returns to a
homogeneous state, and the stress can increase again.
Importantly, after necking, the elastomer becomes very
stretchable and is able to sustain an elastic elongation of
about several times its original length. Multinetwork elastomers
have been shown to exhibit superior ductility during necking,

Figure 9.Matching between model prediction and the experimental measurement of the stress−stretch relationship for the QN elastomer. For (a),
we used the parameters calibrated in section 4.1, and in (b), we slightly modified the Kuhn segment number of the second network as N2 = 170. (c)
Stress−deformation relationship of each individual network. (d) Damage−deformation relationship of each network.
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making them more fit for applications that required high
extensibility.5,35 To better understand the physics behind this
phenomena, we employ the proposed statistical framwork and
explore the necking of a quadruple-network (QN) elastomer,
which was previously studied experimentally by Millereau.30

This QN elastomer is synthesized using the same monomer,
EA, as the DN and TN discussed in section 4.1 and the same
sequential polymerization technique introduced in Figure 6a.
After being fabricated, the first network is tightly cross-linked
and highly stretched. According to ref 30, the weight fraction
and the prestretch ratio of each network are cwt %

1 = 2.88%, cwt %
2

= 10.94%, cwt %
3 = 33.40%, cwt %

4 = 52.47% and λpre
1 = 3.42, λpre

2 =
2.04, λpre

3 = 1.34, λpre
4 = 1.

Figure 9a shows the experimental measurement and model
prediction of the stress−stretch (σN−λ) relationship of the QN
hydrogel where we used the same molecular parameters as
those for the DN and TN elastomers without any additional
fitting parameters. To better interpret these results, we divide
the stress−strain curve into three regions: (i) the first stiffening
region (λ < λU), (ii) the necking region (λU < λ < λN), and (iii)
the second stiffening region (λ > λN). In the first stiffening
region, the elastomer deforms homogeneously, and the chains
in the first network are stretched near their maximum end-to-
end distance, leading to macroscopic stiffening. Upon
additional deformation, the rupture of these chains triggers a
decrease in the polymer’s stiffness and subsequent softening
after the peak stress is reached. In the necking regime,
assuming that the sample deformation remains homogeneous,
the model predicts that the σN−λ relationship is no longer
monotonic, where σN first decreases due to the rupture of the
first network and increases again when the chains in the second
network stiffen. However, due to the nonmonotonic change in
σN with respect to λ, the sample becomes unstable and exhibits
strain localization.46,51Thus, instead of deforming uniformly,
the sample spontaneously separates into two phases: the
necked phase with stretch ratio λN and the un-necked phase
with stretch ratio λU. In this regime, the nominal stress σN

N can
be determined by equating the two shaded areas shown in
Figure 9a,b according to Maxwell’s rule of phase transition.17

As a result of this instability, in experiment, one would observe
that the sample first elongates homogeneously with monoto-
nous increase in stress until we reach the onset of necking at λ
= λN. Two coexisting stretch ratios (λU and λN) are then seen
along the sample until the second stiffening starts.
Overall, the presented model quantitatively captures the

experimental data, specifically the stable loading branch, the

necking stress, and the unloading branch. However, we also
observe two discrepancies that are worth further discussion.
First, the experimental data show that the necking starts before
the peak stress predicted by our model is reached. This can be
attributed to pre-existing defects (e.g., voids) in the sample
around which the concentrated stress may trigger necking.
Second, our model overestimates λN and underestimates the
stress for the second stiffening branch. A possible reason is that
we used the same chain lengths as the DN and TN hydrogels.
However, the effective chain length for the second network in
the QN hydrogel may be smaller than N2 = 200 due to
interactions between the second network and the third or
fourth networks. This motivates us to remove the constraint N2
= 200 and treat it as a fitting parameter. Excellent agreement
with experimental data can thus be found if N2 = 170 (see
Figure 9b). To further investigate the role of each network in
the polymer behavior, Figure 9c shows the σN−λ curve for each
network independently. This results clearly shows that the first
network is responsible for the first stiffening and the
subsequent softening of the sample, while the second network
plays the main role in the second stiffening. We also see that
chain damage accumulates as the necked zone propagates, as
revealed by the hysteresis in the necking regime. To quantify
the chain loss, Figure 9d then plots the chain damage D of each
network as a function of stretch ratio λ. We see that the
damage during the deformation is mainly due to the rupture of
the first network while failure in other network is negligible (as
shown in the subfigure of Figure 9d). The integrity of the
longer chains indeed ensures that the hydrogel possesses a
significant elastic extensibility after necking.
With this calibrated model, we finally predict how the

polymer response varies as a function of the molecular design
of each networks. For this, it is first important to note (from
Figure 9b) that the first and second networks are the main two
players in the range of stretch under investigation. We
therefore restrict our study to a double-network (DN) sample
and investigate the role of the first network on its mechanical
response. Experimentally, the chain property can be controlled
in three aspects: the chain concentration (weight fraction c1),
the prestretch ratio λpre applied on the first network, and the
chain length (segment number N1). Here, we consider an
elastomer of properties cwt %

1 = 0.05, λpre = 1.8, and N1 = 45 as
reference sample and study the effect of varying these three
parameters independently, keeping the chain length of the
second network constant (N2 = 170). Figure 10a shows the
effect of chain concentration on the uniaxial stress−strain

Figure 10. Effect of (a) cwt %
1 , (b) λpre, and (c) N1 on necking phenomena of hydrogels during stretching. The parameters used are cwt %

1 = 0.05, λpre =
1.8, N1 = 45, and N2 = 170 if not specified otherwise.
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response of the polymer, in which it is clear that the first stress
stiffening becomes more significant as the molar fraction of the
first network cwt %

1 increases. As a result, the necking instability
becomes more apparent, with a sharper drop in stress after
after the peak stress is reached. In addition, although the peak
stress increases as cwt %

1 becomes larger, its horizontal position
remains unchanged, as indicated by the arrow showing its
translation. This means that varying cwt %

1 does not affect the
stretch at which the necking instability sets in. In contrast,
Figure 10b shows that by varying the prestretch ratio λpre, one
can control whether necking occurs. For small values of λpre
(λpre = 1.1), the first and second stiffening overlap, and no
necking is observed. However, as λpre increases, the necking is
observed and the peak shifts to the left, implying that the
stiffening of the first network occurs at a smaller λ. Lastly,
Figure 10c shows that shorter chains (small N1) in the first
network can promote the necking instability, since shorter
chains stiffen earlier. As N1 increases, the peak stress is shifted
to the right and necking vanishes when N1 = 90, which is about
0.53 of the chain length of the second network.

5. CONCLUSION

As a summary, we proposed a statistical framework to describe
the damage of polymeric materials based on their internal
molecular structure. We have shown that this approach
provides a clear connection between molecular details, such
as chain length, density, and force to failure, and the
combination of hyperelasticity and damage at the macroscopic
scale. More specifically, based on a simple chain failure
criterion (chain ruptures at a critical length), the model
revealed fairly complex macroscopic behaviors that includes

hysteresis, the Mullins effect, stress stiffening/softening, and
necking. Despite its simplicity, the proposed approach could
further reproduce a number of experimental results regarding
the failure of multinetwork elastomers and confirm the
micromechanisms responsible for energy dissipation and
toughnening. In this context, we found that the necking
phenomenon occurring during unaxial testing could be
controlled via a fine-tuning of the chain properties during
polymerization. These theoretical predictions are therefore
useful for both improving our fundamental knowledge of
polymer failure and for practical applications that aim for
durable and fracture resistant polymer. Such tough and
functional materials are indeed very desirable for tissue
engineering,1,8,39 soft robotics,37,47 soft armors,53 and soft
elastomers.25 We note that the criterion for chain rupture
introduced in this paper is phenomenological. To gain more
physical insights, this criterion can however be improved with a
more detailed modeling at the level of a bond. This can be
included, for instance, relaxing the rigidity assumption of the
Kuhn segments and evaluating the rupture based on the stored
elastic energy in a bond due to stretching.26,27 One finally
notes that while this paper focuses on the damage of covalently
cross-linked polymers, the statistical framework provides an
attractive avenue to explore damage in networks formed by
physical cross-links45,48 (e.g., ionic/hydrogen bonds). Because
of the dynamic nature of these bonds, chains have the ability to
dissociate and re-form in time, resulting in the viscoelasticity in
the bulk response and that phenomenon of self-healing. Future
efforts can therefore include the study of the mechanical
behaviors of these types of materials, such as a tough ionic
hydrogel,40,56 showing a combination of viscoelasticity,
damage,18,38 and fracture.19

Figure 11. Effect of critical end-to-end distance rc on the (a) the cumulative chain damage and (b) the mechanical response of a single elastic
network during the course of a uniaxial tension test.

Figure 12. Effect of standard deviation of chain damage σd on the (a) the cumulative chain damage and (b) the mechanical response of a single
elastic network during the course of a uniaxial tension test.
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■ APPENDIX

A.1. Material Time Derivatives of the Chain Distribution
Function
The material time derivative of the chain distribution ϕ(r,t)
can be defined as its rate of change as one follows a particular
chain with initial end-to-end vector R. Mathematically, this
idea is expressed as

ϕ ϕ= ∂
∂ =

D t
Dt t

r( , )

R const

Using the fact that r = r(R,t), or ϕ = ϕ(r(R,t),t), and invoking
the chain rule, we obtain

ϕ ϕ ϕ= ∂
∂

∂
∂

+ ∂
∂

rD
Dt

t
t tr

R( , )

If we further assume that chain deformation obeys the affine
assumption (i.e., r ̇ = Lr), we finally write

ϕ ϕ ϕ∇= ⊗ + ∂
∂

r
D
Dt t

L( ):r

A.2. Derivation of Variation of Energy
According to eq 6, ΔΨ̇(r) can be computed as

∫ ϕ ψΔΨ̇ = ̇ − Φ̇ Ω + p L( ) d tr( )r (21)

We first evaluate the term corresponding to the current
configuration:

∫ ϕψΨ̇ = ̇ Ωd r (22)

According to eqs 9 and 10, the change in chain distribution
takes the form ϕ̇ = −L:(∇ϕ⊗r) − ϕ0δ̇. Using this relationship,
one can write eq 22 as

∫ ∫ϕ ψ ϕ δ∇Ψ̇ = − ⊗ Ω − ̇ ΩL r:( ) d dr r0 (23)

To proceed further, we use the integration by part and the
divergence theorem for the first integral and obtain

∫ ∫
∫ ∫

ϕ ψ ϕψ

ϕψ ψ ϕ

∇

∇

− ⊗ Ω = − ·

+ Ω + ⊗ Ω

SL r L n r

L L r

:( ) d : ( ) d

tr( ) d :( ) d

r r

r r (24)

where Sr is the spherical surface of radius r → ∞ that delimits
the chain space. According to the damage criterion, the
distribution ϕ vanishes when r ≫ rc, and thus the first term on
the right-hand side becomes zero. In addition, the second term
also vanishes due to the incompressibility assumption.
Equation 23 can then be rewritten as

∫ ∫ψ ϕ ϕ δ∇Ψ̇ = ⊗ Ω − ̇ ΩL r:( ) d dr r0 (25)

By further applying the chain rule

ψ ψ ψ ψ∇ = = =
r

r
r rr r

r
d
d

d
d

d
d

1 d
d (26)

and move the velocity gradient L out of the integral, we finally
obtain

∫ ∫ϕ ϕ δψΨ̇ = ⊗ Ω − ̇ Ωt r L( ) d : dr r0 (27)

where t = (1/r)(dψ/dr)r is the chain force. Similarly, the term
corresponding to the stress-free configuration in eq 21 can be
obtained as

∫ ∫ ψΨ̇ = Φ ⊗ Ω − Φ Δ̇ Ωt r L( ) d : dr r0 0 (28)

Plugging 27&(28) in 21, the difference ΔΨ̇ becomes
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ∫

∫
ϕ

ϕ δ ψ

ΔΨ̇ = − Φ ⊗ Ω +

− ̇ − Φ Δ̇ Ω

pt r I L( )( ) d :

( ) d

r

r0 0 (29)

A.3. Parametric Study on the Damage Function
Here we investigate how the material response depends on the
critical end-to-end distance rc and the standard deviation σd.
To illustrate this, we consider the uniaxial tension of a
cylindrical sample composed of a single network that
experiences a maximum stretch of λ = 4.8. Figure 11 shows
the effect of critical end-to-end distance rc for rupture on the
mechanical response of the polymer, where we clearly see that
the decrease in rc results in a more significant damage in the
material. Interestingly, although a network with rc = 0.9Nb
experiences the least cumulative damage, as shown in Figure
11a, its stretch-stress relationship exhibits the largest hysteresis
loop, indicating that the energy dissipation is highest. This is
because the chains break at a higher level of stretching for large
rc. Because of the stiffening of the chains, the energy dissipated
by chain breakage is higher and thus leads to a larger hysteresis
loop. Therefore, the network with larger λc is superior in both
stiffness and toughness.
Figure 12 shows the effect of the standard deviation σd. In

this study, the critical end-to-end distance is set to rc = 0.7Nb
and we explore 3 distint values of σd (0.05rc, 0.15rc and 0.3rc).
We observe a slight difference in the evolution of D between
the three networks, indicating that σd plays an insignificant role
in the cumulative damage. In terms of the mechanical
response, we see that when the deformation is relatively
small (λ < 2), all three materials exhibit the same stiffness. At
large deformation (λ > 2), stress stiffening can be observed for
the material with large σd. We note that for small σd, chain
rupture occurs within a narrow range around rc. However, this
range becomes wider as σd increases, allowing some chains to
be highly stretched and stiffen before breaking. As a result, the
network exhibits a higher stress and energy dissipation.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail franck.vernerey@colorado.edu (F.J.V.).
ORCID
Franck J. Vernerey: 0000-0001-6138-1431
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The author acknowledges the support of the National Science
Foundation under the NSF CAREER Award 1350090.
Research reported in this publication was also partially
supported by the National Institute of Arthritis and
Musculoskeletal and Skin Diseases of the National Institutes
of Health under Award 1R01AR065441. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Macromolecules Article

DOI: 10.1021/acs.macromol.8b01052
Macromolecules 2018, 51, 6609−6622

6620

mailto:franck.vernerey@colorado.edu
http://orcid.org/0000-0001-6138-1431
http://dx.doi.org/10.1021/acs.macromol.8b01052


■ REFERENCES
(1) Akalp, U.; Bryant, S. J; Vernerey, F. J Tuning tissue growth with
scaffold degradation in enzyme-sensitive hydrogels: a mathematical
model. Soft Matter 2016, 12 (36), 7505−7520.
(2) Bacca, M.; Creton, C.; McMeeking, R. M A model for the
mullins effect in multinetwork elastomers. J. Appl. Mech. 2017, 84
(12), 121009.
(3) Canadell, J.; Goossens, H.; Klumperman, B. Self-healing
materials based on disulfide links. Macromolecules 2011, 44 (8),
2536−2541.
(4) Chapra, S. C.; Canale, R. P. Numerical Methods for Engineers;.
McGraw-Hill: New York, 1998; Vol. 2.
(5) Chen, B.-K.; Wu, T.-Y.; Chang, Y.-M.; Chen, A. F. Ductile
polylactic acid prepared with ionic liquids. Chem. Eng. J. 2013, 215-
216, 886−893.
(6) de Gennes, P. G.; Leger, L. Dynamics of Entangled Polymer
Chains. Annu. Rev. Phys. Chem. 1982, 33 (1), 49−61.
(7) De Tommasi, D.; Marzano, S.; Puglisi, G.; Zurlo, G. Damage and
healing effects in rubber-like balloons. Int. J. Solids Struct. 2009, 46
(22−23), 3999−4005.
(8) Dhote, V.; Vernerey, F. J. Mathematical model of the role of
degradation on matrix development in hydrogel scaffold. Biomech.
Model. Mechanobiol. 2014, 13 (1), 167−183.
(9) Diani, J.; Brieu, M.; Vacherand, J. M. A damage directional
constitutive model for mullins effect with permanent set and induced
anisotropy. European Journal of Mechanics-A/Solids 2006, 25 (3),
483−496.
(10) Diani, J.; Fayolle, B.; Gilormini, P. A review on the mullins
effect. Eur. Polym. J. 2009, 45 (3), 601−612.
(11) Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R. P; Creton, C.
Toughening elastomers with sacrificial bonds and watching them
break. Science 2014, 344 (6180), 186−189.
(12) Flory, P. J.; Rehner, J. Statistical Mechanics of CrossLinked
Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11
(11), 512−520.
(13) Gong, J. P. Why are double network hydrogels so tough? Soft
Matter 2010, 6 (12), 2583−2590.
(14) Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-
network hydrogels with extremely high mechanical strength. Adv.
Mater. 2003, 15 (14), 1155−1158.
(15) Guo, Z.; Sluys, L. J. Computational modelling of the stress-
softening phenomenon of rubber-like materials under cyclic loading.
European Journal of Mechanics-A/Solids 2006, 25 (6), 877−896.
(16) Harwood, J. A. C.; Mullins, L.; Payne, A. R. Stress softening in
natural rubber vulcanizates. part ii. stress softening effects in pure gum
and filler loaded rubbers. J. Appl. Polym. Sci. 1965, 9 (9), 3011−3021.
(17) Hutchinson, J. W.; Neale, K. W. Neck propagation. J. Mech.
Phys. Solids 1983, 31 (5), 405−426.
(18) Kaliske, M.; Nasdala, L.; Rothert, H. On damage modelling for
elastic and viscoelastic materials at large strain. Comput. Struct. 2001,
79 (22−25), 2133−2141.
(19) Knauss, W. G A review of fracture in viscoelastic materials. Int.
J. Fract. 2015, 196 (1−2), 99−146.
(20) Kuhn, W.; Grun, F. Statistical behavior of the single chain
molecule and its relation to the statistical behavior of assemblies
consisting of many chain molecules. J. Polym. Sci. 1946, 1 (3), 183−
199.
(21) Lake, G. J.; Thomas, A. G. The strength of highly elastic
materials. Proc. R. Soc. London, Ser. A 1967, 300 (1460), 108−119.
(22) Lavoie, S. R; Long, R.; Tang, T. A rate-dependent damage
model for elastomers at large strain. Extreme Mechanics Letters 2016,
8, 114−124.
(23) Li, J.; Mayau, D.; Lagarrigue, V. A constitutive model dealing
with damage due to cavity growth and the mullins effect in rubber-like
materials under triaxial loading. J. Mech. Phys. Solids 2008, 56 (3),
953−973.
(24) Lin, W.-C.; Fan, W.; Marcellan, A.; Hourdet, D.; Creton, C.
Large strain and fracture properties of poly (dimethylacrylamide)/
silica hybrid hydrogels. Macromolecules 2010, 43 (5), 2554−2563.

(25) Long, R.; Hui, C.-Y. Crack tip fields in soft elastic solids
subjected to large quasi-static deformationa review. Extreme Mechanics
Letters 2015, 4, 131−155.
(26) Mao, Y.; Lin, S.; Zhao, X.; Anand, L. A large deformation
viscoelastic model for double-network hydrogels. J. Mech. Phys. Solids
2017, 100, 103−130.
(27) Mao, Y.; Talamini, B.; Anand, L. Rupture of polymers by chain
scission. Extreme Mechanics Letters 2017, 13, 17−24.
(28) Marckmann, G.; Verron, E.; Gornet, L.; Chagnon, G.; Charrier,
P.; Fort, P. A theory of network alteration for the Mullins effect. J.
Mech. Phys. Solids 2002, 50 (9), 2011−2028.
(29) Merckel, Y.; Brieu, M.; Diani, J.; Caillard, J. A mullins softening
criterion for general loading conditions. J. Mech. Phys. Solids 2012, 60
(7), 1257−1264.
(30) Millereau, P. M. Large Strain and Fracture of Multiple Network
Elastomers. PhD Thesis, Paris 6, 2017.
(31) Na, Y.-H.; Kurokawa, T.; Katsuyama, Y.; Tsukeshiba, H.; Gong,
J. P.; Osada, Y.; Okabe, S.; Karino, T.; Shibayama, M. Structural
characteristics of double network gels with extremely high mechanical
strength. Macromolecules 2004, 37 (14), 5370−5374.
(32) Na, Y.-H.; Tanaka, Y.; Kawauchi, Y.; Furukawa, H.; Sumiyoshi,
T.; Gong, J. P.; Osada, Y. Necking phenomenon of double-network
gels. Macromolecules 2006, 39 (14), 4641−4645.
(33) Nakajima, T.; Furukawa, H.; Gong, J. P.; Lin, E. K.; Wu, W.-l. A
deformation mechanism for double-network hydrogels with enhanced
toughness. Macromol. Symp. 2010, 291-292, 122−126.
(34) Ogden, R. W.; Roxburgh, D. G. A pseudo−elastic model for the
mullins effect in filled rubber. In Proceedings of the Royal Society of
London A: Mathematical. Proc. R. Soc. London, Ser. A 1999, 455,
2861−2877.
(35) Podsiadlo, P.; Qin, M.; Cuddihy, M.; Zhu, J.; Critchley, K.;
Kheng, E.; Kaushik, A. K; Qi, Y.; Kim, H.-Sug; Noh, Si-Tae; et al.
Highly ductile multilayered films by layer-by-layer assembly of
oppositely charged polyurethanes for biomedical applications.
Langmuir 2009, 25 (24), 14093−14099.
(36) Qi, H. J.; Boyce, M. C. Constitutive model for stretch-induced
softening of the stress−stretch behavior of elastomeric materials. J.
Mech. Phys. Solids 2004, 52 (10), 2187−2205.
(37) Shen, T.; Garriga Font, M.; Jung, S.; Gabriel, M. L; Stoykovich,
M. P; Vernerey, F. J Remotely triggered locomotion of hydrogel mag-
bots in confined spaces. Sci. Rep. 2017, 7 (1), 16178.
(38) Simo, J. C. On a fully three-dimensional finite-strain viscoelastic
damage model: formulation and computational aspects. Computer
methods in applied mechanics and engineering 1987, 60 (2), 153−173.
(39) Sridhar, S. L.; Schneider, M. C; Chu, S.; de Roucy, G.; Bryant,
S. J; Vernerey, F. J Heterogeneity is key to hydrogel-based cartilage
tissue regeneration. Soft Matter 2017, 13 (28), 4841−4855.
(40) Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh,
K. H.; Mooney, D. J; Vlassak, J. J; Suo, Z. Highly stretchable and
tough hydrogels. Nature 2012, 489 (7414), 133.
(41) Talamini, B.; Mao, Y.; Anand, L. Progressive damage and
rupture in polymers. J. Mech. Phys. Solids 2018, 111, 434−457.
(42) Thomas, A. G. Rupture of rubber. ii. the strain concentration at
an incision. J. Polym. Sci. 1955, 18 (88), 177−188.
(43) Treloar, L. R. G. The elasticity of a network of long-chain
molecules. I. Trans. Faraday Soc. 1943, 39 (0), 36−41.
(44) Treloar, L. R. G. The Physics of Rubber Elasticity; Oxford
University Press: 1975.
(45) Vernerey, F. J.; Long, R.; Brighenti, R. A statistically-based
continuum theory for polymers with transient networks. J. Mech. Phys.
Solids 2017, 107, 1−20.
(46) Vernerey, F.; Liu, W. K.; Moran, B. Multi-scale micromorphic
theory for hierarchical materials. J. Mech. Phys. Solids 2007, 55 (12),
2603−2651.
(47) Vernerey, F.; Shen, T. The mechanics of hydrogel crawlers in
confined environment. J. R. Soc., Interface 2017, 14 (132), 20170242.
(48) Vernerey, F. J Transient response of nonlinear polymer
networks: A kinetic theory. J. Mech. Phys. Solids 2018, 115, 230−247.

Macromolecules Article

DOI: 10.1021/acs.macromol.8b01052
Macromolecules 2018, 51, 6609−6622

6621

http://dx.doi.org/10.1021/acs.macromol.8b01052


(49) Volokh, K. Y. On modeling failure of rubber-like materials.
Mech. Res. Commun. 2010, 37 (8), 684−689.
(50) Volokh, K. Y. Review of the energy limiters approach to
modeling failure of rubber. Rubber Chem. Technol. 2013, 86 (3), 470−
487.
(51) Wang, X.; Hong, W. Pseudo-elasticity of a double network gel.
Soft Matter 2011, 7 (18), 8576−8581.
(52) Webber, R. E; Creton, C.; Brown, H. R; Gong, J. P. Large strain
hysteresis and mullins effect of tough double-network hydrogels.
Macromolecules 2007, 40 (8), 2919−2927.
(53) White, Z. W.; Vernerey, F. J. Armours for soft bodies: How far
can bioinspiration take us? Bioinspir. Biomim. 2018, 13, 041004.
(54) Wineman, A. Nonlinear Viscoelastic Solids:A Review.
Mathematics and Mechanics of Solids 2009, 14 (3), 300−366.
(55) Wineman, A. Time dependent void growth in elastomers
undergoing chemo-mechanical evolution. Journal of Elasticity 2015,
121 (2), 255−274.
(56) Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.;
Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M; et al.
Instant tough bonding of hydrogels for soft machines and electronics.
Sci. Adv. 2017, 3 (6), e1700053.
(57) Zhao, X. A theory for large deformation and damage of
interpenetrating polymer networks. J. Mech. Phys. Solids 2012, 60 (2),
319−332.

Macromolecules Article

DOI: 10.1021/acs.macromol.8b01052
Macromolecules 2018, 51, 6609−6622

6622

http://dx.doi.org/10.1021/acs.macromol.8b01052

