
Computational Mechanics
https://doi.org/10.1007/s00466-018-1619-0

ORIG INAL PAPER

Computational modeling of the large deformation and flow
of viscoelastic polymers

Tong Shen1 · Rong Long1 · Franck Vernerey1

Received: 20 April 2018 / Accepted: 2 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Deformation of soft polymeric materials often involves complex nonlinear or transient mechanical behaviors. This is due
to the dynamic behaviors of polymer chains at the molecular level within the polymer network. In this paper, we present a
computational formulation to describe the transient behavior (e.g., viscoelasticity) of soft polymer networks with dynamic
bonds undergoing large to extreme deformation. This formulation is based on an Eulerian description of kinematics and a
theoretical framework that directly connects the molecular-level kinetics of dynamic bonds to the macroscopic mechanical
behavior of thematerial. An extended finite elementmethod is used to discretize the field variables and the governing equations
in an axisymmetric domain. In addition to validating the framework, this model is used to study how the chain dynamics
affect the macroscopic response of material as they undergo a combination of flow and elasticity. The problems of cavitation
rheology and polymer indentation under extreme deformation are investigated in this context.

1 Introduction

Many industrial applications and scientific research rely on
the development of polymeric materials whose mechanical
behaviors lie between that of a nonlinear elastic solid to that
of a purely viscous fluid. For instance, in the field of adhe-
sives, the polymer must have the ability to flow within the
small cavities of a materials surface to create strong bonding
after curing [26,28]. 3D printing (additive manufacturing)
technique has also caught more and more attention since
it provides a simple approach to fabricate different struc-
tures with good accuracy. The main challenge to increase
the resolution of this technique is the requirement to accu-
rately control the material deposition and subsequent curing
[29,31]. Additive manufacturing is another industrial appli-
cation where a fine control of polymer viscoelasticity is
needed. Indeed, the way by which a new material layer is
deposited during 3D printing is determined by the combined
flow and elasticity of the uncured polymer [10,43].

There is therefore a strong need to accurately model and
predict the combination of elastic stresses, viscous flow and
continuous changes in material properties occurring during
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these processes. Numerical modeling developed based on
viscoelastic material models has therefore become an attrac-
tive tool to understand and eventually control the process
but unfortunately has been hindered by two main obstacles:
first, fromanumerical stand-point, the existence of extremely
large deformations (>> 100%) that cannot be easily han-
dled with traditional Lagrangian finite element approaches.
Second, theoretical-wise, a lack of connection between the
molecular physics to macroscopic mechanical behavior.

The viscoelasticity of polymers has been theoretically
studied over the past decades.However,most existingmodels
are either phenomenological (e.g., linearMaxwell or Kelvin-
Voigtmodel [14]) or based on continuum level elasticmodels
(e.g., Neo-Hookean [60], Arruda-Boyce [8] or Holzapfel
model [35]). One common issue for these models is a lack of
connection between the change in the network structure of
the polymer, its physical properties and the resulting flow and
elastic stresses driving the rheology of materials. Besides,
these models rely on the definition of Lagrangian strain and
the concept of reference configuration to describe material
deformation. When it comes to modeling the rheology of
materials involving very large deformation (>> 100%), their
implementations may therefore be challenging. Miehe and
Goktepe [49,50] further developed a micro-sphere model to
link the stretch of molecular chains and polymer response.
In this model, the micro-mechanics of a chain is character-
ized by a micro-tube that captures its end-to-end distance.
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The macroscopic response of the polymer network is then
obtained by homogenizing the micro-state variables on an
unit sphere that describes the chain orientation in 3D. How-
ever, this theory can only be applied to describe the behavior
of static (i.e., covalent) networks, where the viscoelasticity
is caused by the reptation of entangled chains. More effort
is needed to generalize this theory to describe the behavior
of physical networks, where the viscoelasticity results from
the breakage and reformation of physical cross-links [2]. A
solution to these issues can potentially be provided by statis-
tical approaches, such as the transient network theory (TNT),
[66,70,74,78], that establishs a bridge betweenpolymer chain
configuration and the stress in the network. As discussed
recently in [74], it particularly has the following advan-
tages from a practical viewpoint. First, it is able to clearly
connect the molecular mechanisms at the level of polymer
chains (entanglement [15], reptation [16] and the breaking
and reforming of physical bonds (i.e. ionic bonds)) to the
macroscopic response of the network. This presents a depar-
ture from the more phenomenological viscoelastic models
such as the Maxwell and Kevin-Voigt models [39,47,57].
Second, the TNT relies on a statistical distribution of the
polymer chain and is therefore completely independent from
the definition of a Lagrangian strain and the reference config-
uration. Despite these advantages, it has not, to date, been the
object of a numerical implementation to predict the behavior
of visco-elastic polymers.

In this paper, we therefore proposed a computational
framework, based on the TNT, that can be used to predict the
deformation of soft polymers ranging from a purely elastic
solid to a viscoelastic fluid, irrespective of the level of defor-
mation. Traditionally, the computational solidmechanics has
followed a Lagrangian approach due to the existence of a ref-
erence configuration about which to define strain measures.
When large deformations occur, traditionalmethods however
suffer from the fact that Lagrangian elements can be signifi-
cantly distorted, deteriorating the approximation accuracy of
the numerical scheme. Although many strategies have been
elaborated to address this issue, such as remeshing via inter-
polation techniques between old and new meshes [46,56],
they are cumbersome and subjected to numerical errors due
to the need for intensive interpolations. An alternative to
handle large deformation is to use the Deforming-Spatial-
Domain/Space–Time formulation [67], which introduces a
remapping process after a deformation step on Lagrangian
mesh is completed. The remapping helps reduce the fre-
quency of remeshing during large deformation, and thus can
reduce the interpolation errors. Although this method was
shown to be robust in handling problems involving mov-
ing boundaries and finite deformations, it still relies on the
existence of a reference configuration. When it comes to
modeling the rheology of materials involving extreme defor-

mation, its implementationmay be challenging and the range
of deformation is limited.

In contrast, Eulerian descriptions are traditionally used for
fluids due to their lack of a reference configuration. Com-
pared to Lagrangian formulation, the advantage of Eulerian
formulation is its capacity to handle arbitrary deforma-
tion, regardless of magnitude [7,18]. Several studies have
adopted the Eulerian descriptions for modeling hyperelas-
tic materials, such as the work by Plohr and Sharp [54],
as well as Duddu el al. [20]. Besides, numerical models
have also been proposed to describe the rheology of vis-
coelastic materials, most of which are based on the Arbitrary
Lagrangian–Eulerian (ALE) scheme [18,65]. In this scheme,
the computational mesh can move in a pre-defined manner
in order to optimize the shape of the elements [18]. Using
this methodology, many studies have focused on modeling
the viscoelastic flow under different conditions [21,33,36].
When using an Eulerian formulation to model solids, one
main issue pertains to the handling of moving material
boundaries on the underlying mesh. This requires the devel-
opment of boundary conditions based on a moving surface
(for instance using the levelset method [24,62,64,75]). In
addition, field variables are usually discontinuous across the
boundary, requiring special numerical treatments. Notably,
Choi et al. employed the Extended Finite Element Method
(XFEM) in combination with ALE, and modeled the behav-
ior of viscoelastic particulate flows under various conditions
[11–13]. However, these numerical schemes still rely on a
deforming mesh to track the material deformation. When
modeling the large or extreme deformations, these methods
still need remeshing from time to time to alleviate mesh
distortions. To eliminate this problem, Foucard et al. [25]
developed a coupled Eulerian–Lagrangian (CEL) formula-
tion, which eliminates the deforming mesh by characterizing
the material deformation using Lagrangian particles on the
fixed Eulerian mesh. This formulation has shown to be pow-
erful for modeling the large or even extreme deformation of
hyperelastic materials.

In this paper, we build upon the work of Foucard et al. [25]
to construct a coupled Eulerian Lagrangian (CEL) imple-
mentation of the TNT to describe the extreme deformation
of viscoelastic soft polymers. In this formulation,momentum
equations and transport equations are solved in a staggered
manner in time in the Eulerian framework and the tracking of
the interface motion is achieved by employing the Particle-
based Moving Interface Method (PMIM) [27]. We show that
this scheme is accurate for extreme deformation and viable
for connecting the microscopic physics to the macroscopic
transient behaviors of materials. Themanuscript is organized
as follows. In Sect. 2, we review the main elements of the
TNT to model the response of dynamic polymer networks.
In Sect. 3, we present the numerical strategy to discretize the
weak form, the tracking of the interface and the Lagrangian
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transport of the variable fields, along with benchmark prob-
lems to verify the method. In Sect. 4, we investigate the
mechanics of dynamic polymer networks and how it evolves
through two numerical examples: cavitation rheology and
indentation of a spherical particle. Finally, Sect. 5 provides
a short discussion and concluding remarks.

2 Review of the transient network theory
(TNT) for viscoelastic polymers

In this section, we briefly review the TNT previously intro-
duced in [70]. We concentrate here on polymers with long
chains that are in a coil state and never straightened. The
chain end-to-end distances, defined by the distances between
two crosslinks, follow the Gaussian statistics and the associ-
ation and dissociation kinetics are independent of the force
sustained by the chain.

2.1 Mechanics of polymer network with dynamic
chains

Let us consider an incompressible polymer network consist-
ing of linear chains of density C , where C is the number
of chains per unit volume, that are connected to each other
to form a network. The network is assumed to be dynamic,
wherein the polymer chains associate and dissociate over
time at a rate of ka and kd , respectively (Fig. 1). The first step
in the TNT is to describe the chain population by a distribu-
tion function φ(r, t) that classifies chains according to their
end-to-end vector r and to determine how the population is
affected by the deformation history and the rates ka and kd .

2.1.1 Statistical description of polymer networks

The mechanical response of a polymer can be described by
the states of the chains and their contribution to the overall
response of the network. For an initially isotropic network,
the chains span all possible directions and we can use the
end-to-end vector to represent their directions (e.g., by the

Fig. 1 Schematic representation of dynamic bonds in a polymer net-
work, where dissociation and re-association happen with rates of kd and
ka , respectively

polar angle θ and azimuthal angle ω in the spherical coor-
dinates) and length r = |r|. The mechanics of the network
may then be understood through a statistical description of
the end-to-end configuration of all polymer chains within a
continuum point. Here, we use a chain distribution function
φ(r) = φ(r , θ, ω) to describe the chain population. This
distribution can be captured by two key quantities: density c
of attached chains (i.e., those that are connected to the net-
work) and the so-called chain distribution tensor defined as

c =
∫

Ω

φ(r)dΩ (1)

μ(t) = 1

c

∫
Ω

φ(r)r ⊗ rdΩ. (2)

The tensor μ represents, in an average sense, the stretch
experienced by chains in the network. At the stress-free state,
the end-to-end distance of the chains are assumed to follow
the Gaussian distribution. In this case, the distribution tensor
becomes the identity tensor μ0 = I [74].

2.1.2 Evolution equations

To determine how the chain distribution changes with time,
let us consider a small material volume experiencing defor-
mation over time. At a given time, this deformation can be
expressed by the velocity gradient L = ∇v where: v =
v(x, t) is the velocity of a point located at x at a given time t .
If we assume that the chains undergo affine deformation (i.e.
their deformation follow the macroscopic deformation L), it
is possible to construct an evolution equation for the chain
distribution φ if the rates of chain association and dissocia-
tion are known [74]. Using an appropriate average over the
chain population, we have shown that the evolution equation
for the chain distribution tensor takes the form

μ̊ = ka

(
C − c

c

)
μ0 − kdμ. (3)

Assuming the polymer network is initially in its stress-
free state, the initial condition for this differential equation
is μ(t = 0) = μ0 [74]. The left hand side of the above
equation is the objective Truesdell rate of the distribution
tensor μ̊ = μ̇−(Lμ+μLT ). We note here that this equation
already incorporates the assumption of incompressibility, i.e.
tr(L) = ∇ · v = 0. The term on the left-hand side of Eq. (3)
captures the change in the chains configuration due tomacro-
scopic deformation. The right-hand side shows the evolution
of μ due to the chain dynamics. The first term describes the
association of polymer chains to their natural state and the
second term describes the dissociation of chains in their cur-
rent (stressed) state. As discussed in [74], the values of ka and
kd may be sensitive to external factors such as temperature
or chemical environment. While this may be considered for
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specific problems, in this paper, we assume they are both con-
stants for simplicity. Under this consideration, the dynamics
of chains degenerates to the bond exchange reaction such that
ka(C − c) = kdc [74] and Eq. (3) takes a simpler form

μ̊ = kd(μ0 − μ). (4)

To further investigate the effect of chain dynamics, let us
consider the situation where the deformation is frozen (i.e.,
L = 0) at a given time t1. In this case, Eq. (4) becomes
μ̇ = kd(μ0 − μ), which lends a solution of the form
μ(t) = μ0 + [μ(t1) − μ0]e−kd (t−t1). We therefore see that
the distribution tensor relaxes towards its stress-free state μ0
with characteristic time τ = 1/kd .

We note that, in this paper, the proposed theory describes
the dynamics of the polymer with two constant ka =
kd . These two constants may further be connected to the
physics and interaction of the chains, which could be from
purely kinetic nature (physical cross-links, covalent adapt-
able networks), or physical nature such as in the presence of
entanglements. In the latter case, the constant ka and kd arise
from the disruption of entanglements and reptation of long
polymer chains during deformation. In otherwords, an entan-
gled chain may appear as mechanically active at short times,
since entanglements may themselves be viewed as physical
cross-links. However, as the chain is stretched, over time,
it will dissociate from the entanglement and evolve towards
a more relaxed configuration. This new configuration may
contain new entanglement points, whose appearance can be
interpreted as an attachment event. Such molecular mech-
anisms have been captured by the reptation theory of de
Gennes [15], in which the lifetime of a physical link was
found to scale with the square of chain length. The rate of
detachment may therefore be seen as the inverse of this life-
time, i.e., ka = kd = 1/τ .

2.1.3 Energy aspects and the stress tensor

Here, we provide the link between the statistical description
of chains and themacroscopic mechanical quantities, includ-
ing the stored elastic energy, the dissipation energy and the
stress tensor. This is accomplished through the difference in
elastic stored energyΔΨe between the current and the stress-
free state, whose form can be written in terms of the chain
distribution as

ΔΨe = ckBT

2
tr(μ − μ0) + p

(
C

C0
− 1

)
. (5)

In this equation, kBT is the thermal energy and p is a
Lagrange multiplier that enforces the material’s incompress-
ibility condition C/C0 − 1 = 0 with C0 the density of
chains at the initial time. Here, we evaluate the change in

energy when the polymer undergoes a macroscopic defor-
mation, characterized by the velocity gradient L. For the
sake of simplicity, we here consider an iso-thermal process
while a more general study was introduced in [74]. Under the
iso-thermal condition, according to the second principle of
thermodynamic, the dissipation energy can be obtained from
the difference between the work done by the internal force
and the change in the stored elastic energy as

D := σ : L − ΔΨ̇e ≥ 0 (6)

where σ is the Cauchy stress tensor. We note that the rate of
change in stored elastic energy can be further written as (see
detailed derivations in “Appendix 1”)

ΔΨ̇e = [
ckBT (μ − μ0) + pI

] : L − kd
ckBT

2
tr(μ − μ0).

(7)

Using this expression, Eq. (6) can be rewritten as

D := [
σ − ckBT (μ − μ0) − pI

] : L − kd
kBT

2
tr(μ − μ0)

≥ 0. (8)

Assuming that the first term on the right-hand side of Eq.
(8) vanishes and the second term verifies the inequality, the
expression for the Cauchy stress is then identified as

σ = ckBT (μ − μ0) + pI. (9)

When the network is static (ka = kd = 0) and incompress-
ible, it is shown in [74] that the distribution tensor coincides
with the left Cauchy–Green tensor μ = FFT , where F is
the deformation gradient tensor. In this case, Eq. (7) and (9)
degenerate to the expressions for the neo-Hookean model in
classical rubber elasticity [34]. In addition, the energy dissi-
pation takes the form

D = kd
kBT

2
tr(μ − μ0). (10)

This quantifies the strain energy release rate in the network
due to chain detachment in the stressed state.

2.1.4 Physical states of the network

Because this description enables a clear connection between
macroscopic and molecular scales, a few relevant measures
of the physical state of the network can be recovered by the
TNT. First, defining the stretch of the end-to-end vector a
chain as λ = r/

√
Nb, the root mean square of chain stretch
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λrms can be extracted from the distribution tensor as follows

λrms =
√
1

c

∫
Ω

φ(λ)λ · λdΩ =
√
tr(μ)

3
. (11)

Second, the average orientation of chains can be charac-
terized by the average chain angle γ as

γ = arccos

(√
n · (μn)

tr(μ)

)
(12)

where n is an arbitrary unit vector and the angle γ is the
average chain angle with respect to the direction specified by
n.

2.2 Field equations

Let us now discuss the governing equations associated with
the problem of a continuum polymer body deforming non-
uniformly under the action of external forces. For this,
we represent the body as a three-dimensional domain Ωs

bounded by a smooth boundary Γ . In this paper, we consider
overdamped systems, in which inertial effects are negligible
[58]. Therefore, the balance of momentum reads [34]

∇ · σ + b = 0 in Ωs (13)

where b is the body force per unit volume in the current
configuration. To relate the stress to macroscopic deforma-
tion through Eq. (9) and evolution equation (3), the problem
can be equivalently considered as an initial value problem,
where stress-free conditionwith zero body force and external
loading is considered at the initial state

σ (t = 0) = 0 in Ωs(0).

Since the evolution of the network is incremental by
nature, it is convenient to similarly recast the governing equa-
tion in their incremental form as

∇ · σ̇ + ḃ = 0 in Ωs

∇ · v = 0 in Ωs (14)

where the first term can be further written ∇ · σ̇ = ckBT∇ ·
μ̇ + ∇ ṗ according to Eq. (9). Besides, the above equations
are subjected to boundary conditions that read

v = v̄ on ΓD

n · σ̇ = ˙̄t on ΓN . (15)

The symbols ΓD and ΓN are the Dirichlet and Neumann
parts of Γ for the boundary conditions for velocity and trac-
tion, respectively. In the remainder of this paper, we consider

geometries that have an axis of symmetry and therefore for-
mulate the above equations in a cylindrical coordinate system
x = ρêρ + zêz where êρ and êz are the orthonormal basis
vectors. The components of Eq. (14) along the êρ and êz
directions are given in “Appendix 2”.

3 Numerical solution strategy

The objective of this section is to introduce a numerical strat-
egy to solve the above field equations. Because dynamic
polymers can experience levels of deformation ranging from
those of an elastic solid (limited) to those of a fluid (extreme),
we specifically choose a numerical scheme that couples the
Eulerian and updated Lagrangian formulations, combined
with an evolution scheme for the material interface Γ on a
fixed Eulerianmesh. The solution strategy at each time incre-
ment (denoted by time tn) can be summarized as follows: the
velocity field v and the change in pressure field ṗ are com-
puted from Eq. (14) in the current domain Ωs(tn) using the
extended Finite Element Method (XFEM). Using the veloc-
ity field, the material interface Γ (tn) is then updated to its
next configuration Γ (tn+1)) by the Particle-based Moving
Interface Method (PMIM) [25]. For each point in the new
material domain bounded by Γ (tn+1)), the field variables μ

and p are transported using an explicit updated Lagrangian
mapping scheme. A more detailed description of each step
will be presented in the following sections.

We note here that, for moving boundary problems, the
interface Γ usually does not coincide with the mesh and
the boundary conditions cannot be directly enforced on the
grid nodes. While the Neumann boundary condition can
still be straightforwardly applied along ΓN by interpola-
tions, directly imposing the Dirichlet boundary condition is
more difficult because one needs to specify all the degrees of
freedom in the elements that are cut by ΓD . This is usually
cumbersome and may cause problems such as poor conver-
gence rates [51]. In this paper, to circumvent this difficulty,
we choose to apply the Dirichlet constraints via the Lagrange
multiplier method for which a detailed discussion can be
found in [26,51].

3.1 Extended finite elementmethod

To construct the weak form of the finite element formulation,
we first introduce the arbitrary test functions ωv in V , ωp in
Ṗ and ωλ in L where V , Ṗ and L are the admissible spaces
for velocity, rate of change in pressure, and Lagrange multi-
plier that enforces the velocity v = v̄ on ΓD respectively. By
multiplying Eq. (14) with the test functions and integrating it
over the numerical domain Ωs , the problem consists of find-
ing the velocity field v, change in pressure field ṗ and the
Lagrange multiplier field λ in the domain such that for arbi-
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trary ωv , ωp and ωλ, the following equations (corresponding
to Eq. (14)) are satisfied in Ωs

− ckBT
∫

Ωs
∇ωv μ̇ dΩs −

∫
Ωs

∇ωv ṗ dΩs

+
∫

Ωs
ωv ḃ dΩs +

∫
ΓN

ωv
˙̄t dΓN

+
∫

ΓD

ωv λ dΓD = 0

∫
Ωs

ωp (∇ · v) dΩs = 0
∫

ΓD

ωλ (v − v̄) dΓD = 0. (16)

where we note that the fields v and ṗ are continuous in Ωs

while discontinuous across Γ , and the field λ is continuous
on ΓD .

Although the problem is three dimensional (3D), only 2D
discretization of Eq. (16) is required to solve an axisymmetric
problem. Here, to ensure the stability of the solution, we
adopt a mixed formulation [80], wherein the velocity field
v is interpolated with nine-node (biquadratic) element shape
function and the change in pressure ṗ is interpolated with
four-node (bilinear) element shape function. Since the mesh
is structured and does not conformwith thematerial interface
Γ , we here use the zero-level of a levelset function φ(x)
to describe the position of Γ , where φ(x) is defined as the
signed distance function from it [52]. In elements that do not
intersect with Γ , the variables v and ṗ are interpolated using
the standard finite element method (FEM). However, for an
element e that is cut by Γ , we employ the XFEM where
additional interpolation functions are introduced to account
for the discontinuities acrossΓ [64].With this formalism, the
interpolations of the velocity and pressure fields are written

vi (x, t) =
9∑

I=1

N I
9 (x)vIi (t)

+
9∑

I=1

N I
9 (x)

(
H(φ(x) − H(φ(xI ))

)
v̂ I
i (t)

ṗ(x, t) =
4∑

I=1

N I
4 (x) ṗ I (t)

+
4∑

I=1

N I
4

(
H(φ(x) − H(φ(xI ))

) ˆ̇pI (t) (17)

where N9 and N4 are the 2-D regular quadratic and linear
shape functions. The superscript index I is used for node
numbering and the subscript indices i is used for numbering
the cylindrical coordinate components; the terms v̂ I

i and ˆ̇pI
are the enriched unknowns of velocity and change in pressure

Fig. 2 a Schematic of the discretized domain. The interface splits some
elements and results in discontinuities in these elements. b The dis-
continuity of quantity f in the split elements, where f could be the
components of velocity v or change in pressure ṗ

that describe the discontinuities at node I , as interpolated
with the Heaviside function H(φ(x)). Besides, the Lagrange
multiplier λ is interpolated by a 1-D linear shape function N
along the interface section Γ that is inside e

λ(x, t) =
2∑

I=1

N
I
(x, t)λI (t).

To obtain a compact version of discretized equations, the
interpolated fields are written in a vector form as

v(x, t) = Nv · ve(t)
ṗ(x, t) = Np · ṗe(t)
λ(x, t) = N̄ · λe(t). (18)

In the equation, the nodal velocity is expressed by
ve = {v1ρ, v1z . . . v9ρ, v9z , v̂

1
ρ, v̂1z . . . , v̂9ρ, v̂9z }T36×1. Simi-

larly, the nodal values of pressure are expressed by ṗe =
{ ṗ1 . . . , ṗ4, ˆ̇p1, . . . , ˆ̇p4}T8×1, where the terms v̂I and ˆ̇pI
represent the enriched degrees of freedom that accounts for
the discontinuities across the interface (Fig. 2). Besides, the
nodal values of Lagrange multiplier read λe = {λ1, λ2}T2×1.
The detailed expressions for the shape functions Nv, Np and
N̄ are given in “Appendix 3”.

Substituting these interpolations into the weak form (16)
and after further derivations, the discretized governing equa-
tion takes the following matrix form

⎡
⎣Kvv Kvp Kv˘

Kpv 0 0
K˘v 0 0

⎤
⎦
⎡
⎣vṗ

λ

⎤
⎦ =

⎡
⎣fv0
fλ

⎤
⎦ . (19)

For clarity, we provide expressions for each of the above
submatrices in “Appendix 4”. We further note that the matrix
shown in Eq. (19) is symmetric and sparse, it can thus be
solvedusing theLU factorizationmethod embedded inUMF-
PACK library of Matlab.
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3.2 Stability test: the LBB (inf–sup) condition

The mixed finite element discretization introduced above
must satisfy the so-called LBB (or inf–sup) condition [3,4] to
ensure its stability and solvability. Here, we focus on evaluat-
ing the v/ ṗ formulation, since the condition for the Lagrange
multipliers λ has been evaluated in [51]. For our problem,
this condition imposes that there exists a positive constant γ
(independent of the element size h) called the inf–sup value
such that

inf
ωh
p∈Ṗh

sup
vh∈Vh

∫
Ω

ωh
p∇ · vhdΩ

||vh ||H1 ||ωh
p||L2

≥ γ > 0 (20)

where Ṗh and Vh are the finite element subspaces Ṗh ⊂ Ṗ
and V̇h ⊂ V̇ , corresponding to the discretized test function
ωh
p and velocity vh . The subscripts H1 and L2 indicates the

H1 sobolev norm and the L2 norm, respectively. According
to [4], the above equation can be equivalentlywritten in terms
of the submatrix Kpv in Eq. 19 as

inf
Ṗh

sup
Vh

WT
h KpvVh[

VT
h ShVh

]1/2 [
WT

h KpvWh
]1/2 ≥ γ > 0 (21)

whereWh andVh are vectors of the nodal values correspond-
ing to ωh

p and vh , and Sh is the matrix corresponding to the
norm operator || · ||H1 computed according to [3]. This prob-
lem can be further degenerated to determining the inf–sup
value γ = √

(λk), where λk is the smallest nonzero eigen-
value of the following equation

Kpvφ = λkSφ. (22)

In order to pass the inf–sup condition, γ must be bounded
away from zero when the mesh size h is decreased. In other
words, the LBB condition is passed if the inf–sup value does
not decrease towards zero as the mesh is refined. [9].

3.3 Tracking themotion of the interface

To track the evolution of the interface Γ , we use the particle-
based moving interface method (PMIM) [25,41,59], where
the interface is represented by particles whose spatial distri-
bution remains quasi-uniform over time. To avoid repetition,
we here summarize the main steps of the method; interested
readers can find additional details in “Appendix 5”.

1. InitializationAt the initial time t0, given the initial geom-
etry of the interface Γ 0, we gather the grid nodes whose
distances to Γ 0 are smaller than a cut-off value d0. The
particles with position vector yt0 are chosen as the normal
projection of these nodes on the interface.

2. UpdateAt any subsequent time t , given the velocity field
vt , the new interface Γ t+dt is obtained by evolving the
particles at yt to their new positions yt+dt using a second
order Runge-Kutta time integration scheme.

3. Approximation To approximate the geometry of Γ t+dt ,
for each particle yp, collect the positions of the closestm
particles within its neighborhood, and construct a poly-
nomial r(yp, t + dt) of degree n < m.

4. Update geometrical quantities Compute the geometrical
quantities of Γ t+dt using r(yp, t + dt), including the
normal vectors nt+dt and the levelset function φ(t +dt).

5. ResampleTo resampleΓ t+dt , we find the new grid nodes
that are near the updated interface Γ t+dt , and re-allocate
particles via the projection operation used in step 1.

3.4 Lagrangian transport of� and p

In this problem, two field variables, the chain distribution
tensor μ and pressure p, are used to characterize the states
(i.e., average chain stretch and energy dissipation) and the
stress in the network. Although these two variables are not
directly solved from the governing Eq. (14), their values
are updated at each time step using v and ṗ obtained from
Eq. (19). For regular elements that are not split by the inter-
face, the degrees of freedom can be directly transported using
an updated Lagrangian scheme. However, the transport of μ

and p in the split elements are more complicated because
the interface Γ (t) describing the material domain is moving
from time to time. Therefore, in addition to transporting the
regular degrees of freedom (DOF) ofμ and p, we also need to
update their enriched DOF to account for the discontinuities
across Γ (t). In order to handle this, we herein use a two-step
scheme described in [25] to transport these two variables.
In the first step, the regular DOF μreg , preg are updated as
followed:

1. At time t , given the velocity solution vt , use the PMIM
algorithm to update the material domain Ωs(t) and the
interface Γ (t) to their new positions Ωs(t + dt) and
Γ (t + dt).

2. For each node i in the updated domainΩs(t +dt), mate-
rial points with coordinates xt+dt

i are backtracked to their
position xti at time t , along with the variables vti and ṗti
interpolated by the XFEM approximation. From this, the
velocity gradient tensor at xti is computed by: Lt

i = ∇vti .
3. Similarly, the values μt

i , p
t
i at point x

t
i are obtained by

interpolating the fields μt , pt known at time t in the
domain Ωs(t) using the XFEM approximation.

4. The field variables are updated. Specifically, at point
xt+dt
i , the distribution tensor μt+dt

i is computed using
an explicit Euler time integration scheme according to
the evolution equation (3) as
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μt+dt
i = μt

i + μ̇t
i dt

= μt
i +

[
ka

(
C − c

c

)
I − kdμ

t
i + Lt

iμ
t
i + μt

iL
t
i

]
dt

(23)

and the pressure pt+dt
i is updated as:

pt+dt
i = pti + ṗti dt . (24)

These updated values are assigned as the updated regular
degrees of freedom μ

reg
i = μt+dt

i and pregi = pt+dt
i .

At this point, we have updated the regular DOF μ
reg
i and

pregi at each grid node in the domain Ωs(t + dt). However,
since the interface Γ has moved, the enriched DOF μenr

and penr also have to be updated to accurately compute the
quantities ofμ and p on the interface. This is done by solving
the following equation within the elements cut by Γ

μt+dt − μ̃ = 0 ∀x ∈ ΩΓ

pt+dt − p̃ = 0 ∀x ∈ ΩΓ (25)

where ΩΓ is the ensemble of the elements Ωe that are
intersected with Γ . The first terms μt+dt and pt+dt are the
interpolated values using the nodal DOF. The second terms
μ̃ and p̃ are the updated variables directly computed via
Eqs. (23) and (24). The idea here is to find out the enrich
DOF such that the interpolated quantities are conformedwith
the updated values inside the elements that are cut by Γ . The
weak form of the above equations read

(
ωm, (μt+dt − μ̃)

)
ΩΓ

= 0
(
ωp, (pt+dt − p̃)

)
ΩΓ

= 0 (26)

and the corresponding discretized forms are given as

Kenr
μ μenr

g = Renr
μ ,

Kenr
p penrg = Renr

p (27)

where μenr
g and penrg are the unknown global vectors of

enriched DOF. The detailed expressions of the global tan-
gent matrices,Kenr

μ andKp
enr , and the residue vectors,Renr

μ

andRp
enr , are given in the “Appendix 6”. In the next sections,

we illustrate this numerical approach by considering prob-
lems in which the deformation of the dynamic polymer is
extreme (i.e. 100% and more). We first start by verifying the
method against a closed form solution of uniform material
deformation and assess the method’s convergence.

3.5 Benchmark problem: uniaxial tension of a
cylinder

To verify and test the performance of the formulation, we first
consider a simple problem for which an analytical solution
is available. Let us thus consider the stress relaxation of a
cylindrical specimen in tension over the course of pseudo
time t = [0, 1]. The loading history (as shown in Fig. 5a) is
summarized as follows: the cylinder is subjected to a tensile
deformation along the z direction, as schematically shown in
Fig. 3a, until it reaches a final stretch ratio λ = 2. This stage
is followed by a stage in which the cylinder deformation
is kept fixed until t = 1. In this problem, three networks
with attached chain concentrations c = 1 are studied. The
kinetics of the networks are characterized by the dissociation
rates kd of 0, 1 and 2, respectively. We note here that kd = 0
corresponds to the case that chains do not dissociate and the
network is considered to be permanent (or purely elastic).
Analytical solutionThe first step to obtain the analytical solu-
tion is to determine the distribution tensor μ at time t during
the deformation. In this problem, the non-vanishing terms of
the velocity gradient tensor L are Lzz(t) = λ̇(t)/λ(t) and
Lρρ(t) = Lθθ (t) = −λ̇(t)/2λ(t), where Lθθ is the com-
ponent along the azimuthal direction. Further, since there is
no shear deformation, the chain distribution tensor only con-
tains diagonal components denoted by μzz(t), μρρ(t) and
μθθ (t), respectively. In the permanent network (kd = 0), it
can be found that the distribution tensor only depends on
deformation as [74]

μzz(t) = λ(t)2 and μρρ(t) = μθθ (t) = 1/λ(t). (28)

In the dynamic network, the distribution tensor not only
depends on the deformation, but also depends on time due to
chain kinetics. Its value at time t is determined by the evolu-
tion equation (3) along the longitudinal and lateral direction
as

μ̇zz(t) = ka
C − c

c
− (kd − 2Lzz(t)) μzz(t)

μ̇ρρ(t) = ka
C − c

c
− (

kd − 2Lρρ(t)
)
μρρ(t) (29)

with their initial values μzz(0) = μρρ(0) = 1. Besides, due
to the samemagnitude in the velocity gradient, the azimuthal
component of the chain distribution tensorμθθ (t) is found as
the same as the lateral component:μθθ (t) = μρρ(t). Finally,
using the knowledge of the distribution tensor, the longitu-
dinal component of the Cauchy stress tensor σ (t) can be
computed using the relationship in Eq. (9) as

σzz(t) = ckBT
(
μzz(t) − μρρ(t)

)
. (30)
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Fig. 3 a Schematic of the problem, where a cylinder is been stretched along the vertical direction. b Schematic and boundary conditions of the
computational domain. c The contour of vertical velocity vz in the computational domain

Numerical solutionHere, wemodel the mechanical response
of the cylinder specimen Ωs in a computational domain of
dimension Lρ = 1.5R and Lz = 2R as shown in Fig. 3b,
where R0 is the initial radius of the cylinder. Extension of
the cylinder is modeled by letting materials leave the domain
through the top andbottomedges ofΩs with a constant veloc-
ity v0. In other words, the boundary conditions are specified
in the material domain Ωs as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t̄ = 0 on ΓN

vρ = 0 ρ = 0

vz = ±v0 z = ±Lz/2, t < 1/16

vz = 0 z = ±Lz/2, t > 1/16.

(31)

In the simulations, the computational domain is dis-
cretized with an element size h = Lρ/15 and the time step
Δt O(h/Lρ)2 is used determined by the Courant-Friedrichs-
Lewy (CFL) condition [40]. Here, the time step is chosen as
Δt = 1/240.
ResultWefirst test the numerical scheme using the LBB con-
dition described in Sect. 3.2 for both elastic network (kd = 0)
and dynamic network (kd = 2). For this, we considered six
successive mesh refinements and compute the correspond-
ing inf–sup values as shown in Fig. 4. For both networks, the
inf–sup value does not drop to zero, indicating that the LBB
condition is passed.

Figure 5a shows the vertical stretch ratio λ(t) of the
cylinder as a function of time while Fig. 5b depicts the
numerical results for the normalized vertical stress σ ∗

zz(t) =
σzz(t)/ckBT corresponding to kd = 0, 1 and 2, respectively.
The effect of chain kinetics is quite apparent: the stress in the
permanent network remains constant after the deformation is
fixed, while the stress in dynamic networks relaxes towards

Fig. 4 Inf–sup parameter as a function of meshsize

σ ∗
zz = 0 with a higher rate when kd increases. In addition

to the numerical results, analytical solutions for σ ∗
zz are also

obtained for each network and were plotted with symbols in
Fig. 3b, where good agreements are obtained for all three
dissociation rates.

In order to assess the performance of the formulation, we
further investigated the convergence of error made in calcu-
lating the stress σ ∗

zz for the networks with kd = 0 and 2 as
functions of both relative meshsize h/Lρ and timestep Δt .
The L2-norm error e in stress is calculated as

e =
[(

σ ∗n
zz − σ ∗a

zz

)2] 1
2

(32)

where σ a
zz stands for the analytical solution obtained from

Eq. (30). The rates of convergence p are evaluated by per-
forming the power law fitting of the error with respect to
h/Lρ and Δt . The fitting function reads as

e f i t = k1(Δx)p
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Fig. 5 a The applied deformation of the cylinder during relaxation,
where it is fastly stretched until λ = 2. b The evolution of stress compo-
nentσzz for polymer networks of kd = 0, 1 and2,where stress relaxation
is observed for dynamic network. The numerical results (lines) have

good agreement with analytical solutions (symbols). c Convergence of
the errors to the relative meshsize h/L , the errors converge to zero as
O(h1.91). d Convergence of the errors to the timestep Δt , the errors
converge to zero as O(Δt1.98)

where k1 is a fitting constant and Δx is the discretization
parameter (corresponding to h/Lρ or Δt in this problem).
Results presented in Fig. 5 show rates of convergence at the
orders of O

(
(h/Lρ)1.9

)
and O(Δt2), which agree well with

results reported in [26] for the PMIM algorithm showing the
convergence rate around O(h2) and the convergence rate of
the explicit Euler time integration scheme [5]. To further esti-
mate the efficiency of this formulation. We measure the time
necessary to complete one time step. We find this time to
be about 2.7 s, which is acceptable and practical to study a
variety of 2D and axisymmetric problems. This cost can be
further broken down into the cost of the three main formula-
tion steps (discussed in Sects. 3.1, 3.3 and 3.4, respectively)
by their relative percentage: (1) XFEM solution: 48%; (2)
tracking the evolution of the interface: 6%and (3)Lagrangian
transport ofμ and p: 46%. In general, we expect that this cost
is roughly proportional to the number of element used to dis-
cretize the domain. Some variations are also expected from
problem to problem due to the differences in geometry and
loading condition.

4 Rheology of dynamic networks

In this section, we aim to investigate the behavior of dynamic
polymer networks undergoing large deformations. Three dif-
ferent examples are considered: the first is the growth of a
spherical cavity under pressure within the polymer network;
the second explores the indentation of a polymer sphere under
large deformation; the last problemfinally considers the sink-
ing of a heavy ball in a cylindrical polymer specimen. All
problems are solved within axisymmetric assumptions.

4.1 Cavitation rheology

In the first problem, we investigate the mechanics of Cavita-
tion Rheology (CR) of dynamic polymers. CR is a technique
that allows one to determine the local modulus of a point
within a soft material [81,82]. This method involves growing
a cavity inside the material using a syringe needle (Fig. 6a)
and measuring the critical applied pressure P at which mate-
rial instability is observed. For example, for elastomers,
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Fig. 6 a Schematic of CR of a cylindrical polymer. b The schematic of
the computational domain. In the numerical simulation, the growth of
the cavity is controlled by λ̇ = Ṙ/R0

one can relate the normalized applied pressure P∗ = P/E
(where E is the Young’s modulus of material) to the change
in the radius of the cavity λ = R/R0 as [30,79]

P∗ = 5

6
− 2

3λ
− 1

6λ4
. (33)

From the above equation,we can see that P∗ asymptotes to
a constant 5/6 as λ increases. Therefore, when P∗ is greater
than 5/6, the cavity would expand without bond.

In the numerical simulation, we consider a circular cavity
of initial radius R0, delimited by its interface Γ , located on
the rotational axis of the computational domainΩs , as shown

in Fig. 6b. To avoid boundary effects, the height and width
of the computational domain are set as Lz = 8R0 and Lρ =
16R0 and stress-free conditions are applied on the boundaries
except for the rotational axis. To avoid singularities in the
solution,we adopted velocity controlled boundary conditions
such that the growth of the cavity is driven by a constant rate
of increase in its radius λ̇ = Ṙ/R0. The pressure P∗ is then
found from the force balance of the material points on the
interface [79]: P∗ = − σ ∗

rr on Γ , where σ ∗
rr = σrr/E is

the normalized stress along the radial direction of the cavity.
Body forces are neglected in this problem to be consistent
with the analytical study [30].
Permanent network In Fig. 7a, we show four zoom-in snap-
shots of the cavity as it grows from λ = 1 to 4 and the stress
field σrr for the permanent network (kd = 0). In Fig. 7b, we
show the change in P∗ as a function of λ. Numerical pre-
dictions are plotted by the solid lines and analytical results
from Eq. (33) are depicted by black squares, where good
agreement is achieved even for large deformation (λ = 4).
Dynamic networkWhen the network is dynamic, the kinetics
of chain dissociation and associations can play a significant
role in the cavity expansion. In this case, the pressure in a
steadily expanding cavity (i.e., constant λ̇) results from two
competing mechanisms: the stretch of chains, leading to an
increase in pressure and the dissociation and re-association of
the chains that tend to reduce pressure. We note that the rate
of radial deformation Lrr is computed as Lrr = Ṙ/R = λ̇/λ.
Since the chain stretch follows themacroscopic deformation,
the strain rate of the chains is large when λ is small while
it decreases monotonically as λ increases. Therefore, chain
kinetics plays an increasingly important role in determining
the pressure P∗ as λ increases.

In Fig. 8a, we show the change in pressure for networks
with different chain kinetics, characterized by the normalized

Fig. 7 a Four snapshots of the growth of cavity and the evolution of stress σrr along the radial direction. b The change in pressure to expand the
cavity as a function of λ and the comparison between numerical and analytical solutions
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Fig. 8 a P/E − λ relation predicted by numerical model for different chain dynamics. For dynamic chains, their maximum pressure Pc during
cavity growth is pointed by the symbol. b Summary of the maximum pressure Pc and the decreasing rate of the dynamic networks

Fig. 9 a Root mean square of chain stretch λrms for the permanent network when deformation λ = 4. b The magnitude of λrms as a function of
the distance from the cavity center

rates kd/λ̇. As expected, the pressure P∗ first increases with
λ since the strain rate of the chains is high. However, after a
maximal pressure P∗

c (marked by symbols) is reached, chain
dissociation and re-association becomes the dominating fac-
tor and P∗ decreases monotonically as the cavity expands.
This result indicates that, for CR experiments that are usually
controlled by pressure, the kinetics of the chains can actually
change the critical pressure when material instability occurs.
To further relate this change in pressure to the chain kinetics,
we use the following equation to fit the decreasing segment
of each curve

P

E
= Pc

E
e−α(λ−λc). (34)

Fig. 8b plots the critical pressure Pc and the decreasing rate
α as functions of kd/λ̇. It is shown that P∗

c decreases signif-

icantly as kd/λ̇ increases. Simulations finally show that, as
expected, networks with faster kinetics kd/λ̇ display a higher
decreasing rate.
Stretch of chains In addition to measuring the pressure, the
effect of chain kinetics can also be understood through the
physical states of the network. For example, in Fig. 9a, we
show the root mean square of chain stretch λrms (computed
by Eq. (11)) in the area around the interface for kd/λ̇ = 0. In
Fig. 9b, we also show λrms as a function of the normalized
distance R∗ = d/R, where d is the distance of a material
point from the center of the cavity. We observe here that
chains are stretched in the neighborhood of the interface (i.e.,
R∗ < 1.3), while those in the far field (i.e., R∗ = 1.9) remain
unstretched. By comparing the plots of different chain kinet-
ics kd/λ̇, one sees that chain stretch decreases significantly
as kd/λ̇ increases, since the ability of chains to detach and
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Fig. 10 a Schematic of indentation, the indenter moves at a constant
velocity δ̇. b Numerical domain and the indenting depth δ as a function
of time

reattach relaxes results in an overall drop in their average
strain.

4.2 Indentation of specimensmade of dynamic
polymers

Indentation is a widely used technique to measure the
mechanical properties of the material, such as the Young’s
modulus [69]. For soft materials such as polymers or bio-
tissues that exhibit transient behaviors, visco-elastic proper-
ties can be characterized by different types of indentation
tests, including the cyclic indentation [44], creep [55] or
relaxation [37]. Since the shapes of materials may be signif-
icantly changed during these tests, modeling these problems
with Lagrangian formulation is challenging and the amount
of deformation is limited. In this section, we consider two
indentation tests of dynamic polymer networks: we will first
consider the cyclic indentation of a spherical polymer body,
and then the indentation creep of a cylindrical polymer is
investigated.

4.2.1 Cyclic indentation of a polymer sphere

Let us consider a polymer sphere of radius R0 that is placed
on a flat substrate and indented by a rigid indenter on the
top surface, as shown in Fig. 10a, where the bottom part of
the indenter is spherical with its radius RI = 0.6R0. The
deformation is applied in a symmetric manner, where the
indenter is first moved downwards with a constant rate δ̇

until a maximum depth δ = 1.5R0 is reached. Immediately
after, the indenter is moved upwards with the same rate until
it goes back to the initial position ( see the δ − t curve in the
subfigure of Fig. 10b).

The contact between the polymer and the rigid solids
(indenter and substrate) ismodeled here by an artificial repul-
sive traction t̄ applied on the portion of the interface Γ . This
repulsion force is defined to prevent penetration between the

polymer and the solids. For a point x on the interface Γ , the
repulsive traction is computed as

t̄(x) =
{
krep(d0 − d)/d0n̄ if d < d0
0 if d > d0

(35)

where krep = exp(d0 − d) is the repulsion coefficient; d
is the closest distance between x and the rigid solids and
d0 is a cut-off distance, below which the repulsive force is
activated. In order to mimic the contact, d0 is taken as a
very small value (R0/40). The deformation of the polymer is
characterized by the relative depth of indentation δ/R0, while
the mechanical response is quantified by the total repulsion
force F = ∫

Ωa
t̄ · êz dΩa between the substrate and the

polymer, where êz is the normal vector along the vertical
direction and Ωa is the area of the polymer body that is
considered to be in contact with the substrate.
Analytical solutionWhen the deformation is small, the force
between the indenter and the sphere can be analytically
obtained by the Hertz theory. In this theory, the contact force
F on a linear elastic sphere, characterized by the Young’s
modulus E , and a rigid sphere can be computed as a function
of indentation depth δ as

F = 4E

3(1 − ν2)
R1/2δ3/2 (36)

where ν is the Poisson’s ratio of the material and R is the
effective radius computed by 1/R = 1/R1 + 1/R2, with R1

and R2 are the respective radii of the contacted spheres. In our
problem, theYoung’smodulus is related to the attached chain
density by E = 3ckBT , ν is taken as 0.5 for incompressibility
and the effective radius R has the value R = 3R0/8 according
to RI and R0. Using these variables, the force between the
indenter and the polymer sphere can be found from Eq. (36)
as

F = 8ckBT

3

(
3

2
R0

) 1
2

δ
3
2 . (37)

For the permanent network kd = 0, we compared the
numerical prediction of the loading curve to the one that is
predicted by Eq. (37) in the regime δ < RI . At small δ/R,
good agreements are obtained between the numerical and
the analytical solution, as shown in the subplot. However,
since the Hertz theory assumes linear elasticity, its prediction
deviates from the numerics when δ becomes larger.

Additionally, in Fig. 11a, we also show the force-
displacement curve predicted by the model for two dynamic
polymer networks, characterized by the normalized rate
kd/δ̇ = 0, 1 and 2. Our results show that due to the effect
of chain kinetics, the force required to indent the dynamic
polymer is smaller compared to the permanent network
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Fig. 11 a Force-displacement relationship for different networks over the course of one loading-unloading cycle. b Evolution of the shapes and
the stress σzz of the polymer

Fig. 12 a Evolution of root mean square of chain stretch λrms of (a) permanent network and b dynamic network during the loading stage
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Fig. 13 a The comparison of force-displacement curve for between experiment and modeling results. b Four Snapshots of indentation for the
networ. We use black lines to depict the chain elongations λrms − 1 (scale bar equals λrms − 1 = 1) and the contour plot to show the maximum
principle stress

(kd/δ̇ = 0). Besides, the loading and unloading curve for
the permanent network overlap while significant hysteresis
is observed for dynamic networks. Recalling that the area of
the hysteresis loop represents the dissipation of energy in one
cycle, we can see the energy dissipation increases monoton-
ically with kd/δ̇ due to the higher rates of chain dissociation
and re-association. In Fig. 11b, we show the normalized ver-
tical stress σ ∗

zz = σzz/ckBT and the shape of the polymer at 5
different time steps during the deformation cycle. As a result
of energy dissipation, the stress in the network is smaller for
larger kd/δ̇, and permanent deformations are observed at the
end of the cycle.

To further investigate the effect of chain kinetics on the
network, Fig. 12a depicts the evolution of average chain
stretch λrms in contour plots during the loading stage for the
permanent network and the dynamic network with kd/δ̇ = 2.
In addition to the contour plots, the stretch of the chains is also
visualized using black lines, which are aligned with the max-
imum stretch direction (principle direction of the distribution
tensor μ) and whose lengths represent the chain elongations
λrms−1. It is shown that the chains are stretched laterally dur-
ing the indentation due to the incompressibility. Compared
to the permanent network, λrms is significantly smaller for
kd/δ̇ = 2, which, in a physical sense, explains the decrease
in stress and the dissipation of energy as shown in Fig. 11.

4.2.2 Deep Indentation of a cylinder

In the previous two examples, although the polymer under-
goes large deformation, its shape remains uniform.Herein, to
illustrate the advantages of the CEL formulation, we inves-
tigate the deep indentation of a cylindrical polymer which

exhibits extreme deformation.We consider two cases: (a) the
indentation of a purely elastic gel for which our results are
compared with experimental data and (b) the indentation of
a dynamic polymer by a heavy sphere. The deep indentation
of a purely elastic cylindrical hydrogel by a spherical glass
bead is first considered for comparison purposes with the
experimental study of Fakhouri et al. [22]. To simulate this
test and compare the predicted loading-displacement curve
with the data reported, we consider a cylindrical domain with
radius R0 = 10 mm whose lateral expansion is constrained
(Fig. 13). A rigid sphere with radius Rs = 0.65 mm is then
placed on the top surface of the cylinder and moved down-
ward at constant velocity v = 0.1 mm/s. As in previous
examples, the contact between the sphere and the hydrogel
is modeled by an an artificial repulsive force and themechan-
ical response is quantified by the total repulsion F . To model
the purely elastic network, the rate of dissociation and reas-
sociation, kd and ka , are set to be zero. Since there is no
reported elastic modulus of the hydrogel used for this exper-
iment, we consider the Young’s Modulus E = 3ckBT as a
fitting parameter for the numerical model. Figure 13a shows
the experimental data extracted from ESI Fig. S3 in [22], as
well as the result of the numerical simulations. The Young’s
modulus used in the numerical simulation is E = 2.3 kPa,
which is within the range of modulus reported in [22] for the
hydrogel. It is shown that the modeling result matches well
with experimental measurements up to the indentation depth
of δ = 5Rs . When δ > 5Rs , the force reported in experiment
becomes higher, suggesting that the material exhibits strain
hardening. It is known that the strain-hardening of polymers
at large strain arises from the nonlinear mechanical response
of the chains | f | as their end-to-end distance approaches the
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Fig. 14 a The indentation depth of the rigid ball in time for different networks. b Snapshots of indentation for the network kd/λ̇ = 3. The scale
bar equals λrms − 1 = 0.5

contour length [17], a phenomenon that is beyond the scope
of this study. The strain-hardening effect can however be con-
sideredwithin the proposedmodel by using a Langevin chain
model [68,70]. Figure 13b shows four zoom-in snapshots of
the deformation of the hydrogel in the neighborhood of the
sphere. Again, we use black lines to depict themagnitude and
the elongation of chains λrms −1. It is shown that the magni-
tude of elongation increases as the sphere moves down in the
cylinder, and the maximal elongation is observed in the area
under the indentation region. In the contour plot, we show
the maximum principle stress in the material, where we can
see that the stress is the highest in the area that the chains are
mostly elongated.

In the second example, we consider a dynamic network
(kd = ka > 0) that deforms under the action of a (sinking)
heavy spherical indenter placed on its surface. For this, the
density of the sphere ρs is taken as 1.5 times the density ρ0
of the polymer and the radius of the sphere is Rs is 0.25 time
of the radius R0 of the cylindrical specimen. Considering the
effect of gravitational force, the rigid ball sinks in time and
indents the cylinder. In this problem, the deformation of net-
works with four different kinetics are considered, including
a permanent network (kd = 0 s−1) and three dynamic net-
works characterized by the rates kd = 1, 2, and 3 s−1. The
body force in these networks is accounted as b = ρ0g, where
g is the gravitational acceleration.

In this problem, the cylinder undergoes a constant load
given by the gravitational force of the rigid ball F = ρsV g,
where V = 4πR3

s /3 is the volume of the rigid ball. In
Fig. 14a, we show the depths of indentation normalized by
the radius of the ball δ/R. The rigid ball in the permanent
network remains static after reaching an equilibrium depth.
In contrast, we clearly see the typical primary stages and

the secondary stage, a.k.a. the steady state, of creep behav-
ior for the dynamic networks [19]. It can further be seen
that, as expected, the indentation rate δ̇ increase with kd . In
Fig. 14b, snapshots about the evolution of the network with
kd = 3 during the creep, where the contour plots show the
energy dissipations D and black lines are used to visualize
the average chain elongations. We observe that the maxi-
mal dissipation is found within the same area where the
chains are most stretched (right underneath the rigid ball),
since chains dissociate in a highly stretched states. Besides,
although the polymer undergoes extreme deformation from
1© to 4©, the average chain elongation observed in the net-
work does not significantly change due to the dissociation
and re-association of chains.

From the numerical perspective, the cylinder is extremely
distorted during the creep and the interface possess a high
curvature in the configuration shown in Fig. 14b 4©. The con-
ventional Lagrangian formulation would suffer from large
mesh distortion even with extensive remeshing, while the
CEL formulation remains stable through the deformation
history. We note here that when high curvatures appear, the
method may benefit from local mesh refinement, which is
straightforward for the type regular mesh required for this
methodology [73].

5 Conclusion

In summary, we introduced a coupled Eulerian–Lagrangian
(CEL) formulation to model the large deformation of
dynamic polymer networks. The equilibrium equations are
solved in an Eulerian framework and the transport equations
for chain distribution tensor μ and pressure p are solved in
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an updated Lagrangian framework. The numerical results of
different examples indicate the validity of the framework,
as well as the microscopic chain dissociation and associa-
tion kinetics in the dynamic networks in different problems.
This framework is especially advantageous when deforma-
tion is large or even extreme, which is widely observed in
soft materials, including soft polymers [63] and biological
tissues [45] or soft colloids squeezing through pores [6,27].
We note here that our methodology requires smooth solid
boundaries; the extension to sharp corners has however been
consideredwithXFEM [28] andmay be considered as a solu-
tion in the future. Future work can also consider the binding
and self-healing of polymer interface [27,53], aswell asmore
complicated behavior ofmaterials, arising from the entangle-
ment of chains [15,16] and the plastic yielding of materials
[76]. Overall, this framework provides an attractive avenue
to study the mechanics of the new class of polymers that pos-
sess reversible bonds [38,77] and potentially contribute to the
computational design of material for self-healing [32], active
materials [42,48], tissue engineering scaffolds [1,61] but will
also contribute to a better understanding of biological cells
[23,71,72].
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Appendix 1: rate of change in stored elastic
energy

To derive the rate of change in elastic energy, we first rewrite
Eq. (7) as

ΔΨ = Ψ − Ψ0 + p

(
C

C0
− 1

)

where Ψ = ckBT
2 tr(μ) and Ψ0 = ckBT

2 tr(μ0) are the stored
elastic energy at the current and the stress-free state, respec-
tively. Note that for bond exchange reaction, the change of
chain concentration is only caused by the change in volume.
Therefore, the third term on the right hand side can be equiv-
alently written in terms of volume as p( V

V0
− 1). The rate of

change in the stored elastic energy is then written as

ΔΨ̇ = Ψ̇ − Ψ̇0 + p tr(L) (38)

where tr(L) = I : L is the rate of change in volume. We first
evaluate the term corresponding to the current state

Ψ̇ = ckBT

2
μ̇ : I. (39)

We then employ the evolution equation (Eq. (4)) and the
above equation becomes

Ψ̇ = ckBT

2
(2μ : L) − kd

ckBT

2
(μ − μ0). (40)

Similarly, the term corresponding to the stress-free con-
figuration in Eq. (38) can be obtained as

Ψ̇0 = ckBT

2
(2μ0 : L) − kd

ckBT

2
(μ0 − μ0). (41)

Combining Eqs. (38), (40) and (41), the rate of change in
stored elastic energy reads

ΔΨ̇e = [
ckBT (μ − μ0) + pI

] : L − kd
ckBT

2
tr(μ − μ0).

(42)

Appendix 2: field equations in cylindrical
coordinates

In cylindrical coordinates, the balance of momentum equa-
tion can be written along the radial and the longitudinal
direction as

∂σ̇ρρ

∂ρ
+ 1

r
(σ̇ρρ − σθθ ) + ∂ Ṗ

∂ρ
= 0

∂σ̇ρz

∂ρ
+ ∂σ̇zz

∂z
+ 1

ρ
σ̇ρz + ∂ Ṗ

∂z
= 0.

The condition of incompressibility reads

1

ρ

∂

∂ρ
(ρvρ) + ∂vz

∂z
= 0.

Appendix3:discretizationofelementdegrees
of freedoms

In the numerical study, XFEM is implemented in the element
shape functions to account for the discontinuities. For split
elements, the shape function matrices Nv, Nμ, Np and the
vectors of element nodal values ve , μe, pe contain both
standard and enriched DOFs and are defined as
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nodal DOFs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ve = [
ṽreg; ṽenr ]36×1 ,

ṽreg = [
v1ρ, v1z . . . v9ρ, v9z

]T
18×r

,

ṽenr = [
v̂1ρ, v̂1z . . . v̂9ρ, v̂9z

]T
18×1

;
μe = [

μ̃reg; μ̃enr ]
40×1 ,

ṗe =
[ ˜̇preg; ˜̇penr

]
8×1

,

˜̇preg = [
ṗ1, . . . , ṗ4

]T
4×r ,

˜̇penr =
[ ˆ̇p1, . . . , ˆ̇p4

]T
4×1

;

shape functions

⎧⎨
⎩
Nv = [

Nreg
v ;Nenr

v
]
2×36 ,

Np =
[
Nreg
p ;Nenr

p

]
1×8

,

where

Nreg
v =

[
N1
v, . . . ,N

9
v

]
2×18

,

Nenr
v =

[
S1N1

v, . . . ,S9N9
v

]
2×18

(43)

Nreg
p =

[
N 1
4 , . . . , N 4

4

]
1×4

,

Nenr
p =

[
S1N 1

4 , . . . ,S4N 4
4

]
1×4

(44)

and Nv
I =

[
N I
9 0
0 N I

9

]
.

Here,we note thatS I = H(φ(x)−H(φ(xI )). To compute
the deformation rate of the material, velocity gradient tensor
and the divergence of velocity are written as

D = (∇v)s = Bv · ve and ∇ · v = B̂v · ve.

The rate Bv and B̂v matrices that are related to the nodal
velocities to deformation rates are written in the cylindrical
coordinates as

Bv =
[
Bv

1, . . . ,Bv
9,S1Bv

1, . . . ,S9Bv
9
]
4×36

with Bv
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N I
9

∂ρ
0

0
∂N I

9
∂z

∂N I
9

∂z 0

0
∂N I

9
∂ρ

N I
9

ρ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B̂v =
[
B̂1
v, . . . , B̂

9
v,S1B̂1

v, . . . ,S9B̂9
v

]
4×36

(45)

with B̂I
v =

[
∂N I

9
∂ρ

+ N I
9

ρ

∂N I
9

∂z

]
. (46)

Appendix 4: element tangent matrix for gov-
erning equations

Using the equations of the evolution of the distribution tensor
μ (3), the components of the tangent matrix corresponding
to the linear system (19) can be obtained as

Kvv = ckBT
∫

Ωe
BT
v · μ̃ · Bv dΩe

Kvp =
∫

Ωe
BT
v · Np dΩe

Kvp =
∫

Ωe
NT
p · B̂v dΩe

Kv˘ =
∫

Γ e
NT

v · Nλ dΓ e

K˘v =
∫

Γ e
NT

λ · Nv dΓ e (47)

and the element residual tensors

fv =
∫

Ωe
BT
v ·
[
ka

C − c̃

c̃
I + kdμ

]
dΩe +

∫
Γ e

NT
v · ṫ dΓ e

+
∫

Ωe
NT
v · ḃ dΩe

fλ =
∫

Ωe
N̄T · v̄ dΓ e. (48)

Here, we write the distribution tensor μ = [μρρ, μzz,

μρz, μzρ, μθθ ] in Voigt notation. Accordingly, μ̃ is the
distribution tensor μ written in the Mandel form and the
components in μ̃ read

μ̃ =

⎡
⎢⎢⎢⎢⎣

2μ̃ρρ 0 2μ̃zρ 0 0
0 2μ̃zz 0 2μ̃ρz 0

μ̃ρz μ̃zρ μ̃zz μ̃ρρ 0
μ̃ρz μ̃zρ μ̃zz μ̃ρρ 0
0 0 0 0 μ̃θθ

⎤
⎥⎥⎥⎥⎦ . (49)

In the above equations, the variables with tilde superscript
˜(.) indicate that they are interpolated using the fields from
the previous timestep. We note that in many problems, the
values of boundary traction t and body force b are usually
given instead of their time derivatives ṫ and ḃ. In this case,
a forward difference scheme is used for the time derivatives.
For example, at time step n

ṫn(x) = tn+1(x) − t̄n(x)
Δt

ḃn(x) = bn+1(x) − bn(x)
Δt

. (50)
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Appendix 5: evolution of the interface

As discussed in the text, the interface is characterized and
tracked using the PMIM algorithm with the following steps:
(a) Interface initialization At the initial time t0, the interface
is discretized by the particles, whose position vector y are
chosen as the closest points fromeach neighboring grid nodes
to the interface. The position vector y can be obtained using
our knowledge of initial levelset function φ(x, t0) as

y = x − φ(x, t0)n̄(x, t0) (51)

where the normal vector is obtained by n̄ = ∇φ(x, t0) [27]
and x is the position vector of the corresponding grid node.
(b) Update the interface At an arbitrary time t , given the
velocity solution of the interface velocity v̄t , update the posi-
tion of each particle by a second order Runge-Kutta scheme
as

yt+
dt
2 = yt + v̄(yt , t)

dt

2
+ Ω · v̄(yt , t)

dt2

4

yt+dt = yt + v̄(yt+
dt
2 , t)

dt

2
+ Ω · v̄(yt+ dt

2 , t)
dt2

2
(52)

where Ω is the skew-symmetric spin tensor that reads

Ω =
[
0 −ωz

ωz 0]
]

with ωz = (v̄
‖
,ξ2

− v̄
‖
,ξ1

). (53)

The function is then updated to account for the new geometry
of the interface

φ(y, t + dt) = g(yt+dt , x)|yt+dt − x| (54)

where g(yt+dt , x) is a sign function that determines whether
a point x locates inside or outside of the interface

g(yt+dt , x) = −sgn

(
yt+dt − x
|yt+dt − x| · n̄t

)
. (55)

It is clear that the function g takes the value− 1 inside the
vesicle, and 1 outside the vesicle.
(c) Interface approximation After obtaining the updated lev-
elset function, the interface geometry is approximated using
the local polynomials for each particle P . More specifically,
for each particle P with position vector yp, one can introduce
a local orthonormal basis that consists of tangent and normal
vectors {āt+dt

p , n̄t+dt
p } to the interface. These two quantities

can be obtained from the levelset function as follows

n̄t+dt
p = ∇φ(yp, t + dt)

āt+dt
p = n̄t+dt

p × m/|n̄t+dt
p × m| (56)

where m = [0 0 1]T is the unit vector normal to the com-
putational domain. To approximate the local geometry of the
interface, we collect the closest m particles in the neighbor-
hood of P , given by their positions ỹ1 . . . ỹm in the local
coordinates

ỹi =
{

ξ1i

ξ2i

}
= Rt+dt · (yi − yp) with Rt+dt =

[
āt+dt
p

n̄t+dt
p

]

(57)

and construct a polynomial using the least square fitting
method

ξ2(ξ1) =
n∑

i=0

ci (ξ
1)i (58)

where the coefficients ci are determined by minimizing the
L2 difference between the approximation ξ2(ξ1i ) and the
nodal values ξ2i . In thisway, a local parameterization rl(ρ, t)
of the interface around the particle yp is achieved, whose
global parameterization r(ρ, t) can then be obtained as

r(ρ, t) = (Rt+dt )−1rl(ξ1, t) + yp. (59)

Finally, the tangential and normal vectors for a point on
the interface Γ can be obtained in the global coordinates as

āt+dt = r(ρ, t + d),ρ = Rt+dt ∂r
l(ξ1, t)

∂ξ1

n̄t+dt = āt+dt × m/|āt+dt × m|. (60)

Appendix 6: element matrices for enriched
degrees of freedom

The global tangent matrices to compute the enriched degrees
of freedom μenr

g and penrg are written as

Kenr
μ =

∑
e

∫
Ωe

(Nenr
μ )TNenr

μ dΩe (61)

Kenr
p =

∑
e

∫
Ωe

(Nenr
p )TNenr

p dΩe (62)

and the residue vector is given by

Renr
μ =

∑
e

∫
Ωe

(Nenr
μ )T

(
μ̃ − Nreg

μ μreg) dΩe

Renr
p =

∑
e

∫
Ωe

(Nenr
p )T

(
p̃ − Nreg

p preg
)
dΩe. (63)

In the above equations
∑

e indicates the matrix assembly
of the global system from the element matrices.
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