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Abstract: Transient polymer networks are ubiquitous in natural and engineered materials and
contain cross-links that can reversibly break and re-form. The dynamic nature of these bonds
allows for interesting mechanical behavior, some of which include nonlinear rheological phenomena
such as shear thickening and shear thinning. Specifically, physically cross-linked networks with
reversible bonds are typically observed to have viscosities that depend nonlinearly on shear rate
and can be characterized by three flow regimes. In slow shear, they behave like Newtonian fluids
with a constant viscosity. With further increase in shear rate, the viscosity increases nonlinearly
to subsequently reach a maximum value at the critical shear rate. At this point, network fracture
occurs followed by a reduction in viscosity (shear-thinning) with a further increase in shear rate.
The underlying mechanism of shear thickening in this process is still unclear with debates between a
conversion of intra-chain to inter-chain cross-linking and nonlinear chain stretch under high tension.
In this paper, we provide a new framework to describe the nonlinear rheology of transient polymer
networks with the so-called chain distribution tensor using recent advances from the transient
network theory. This tensor contains quantitatively and statistical information of the chain alignment
and possible anisotropy that affect network behavior and mechanics. We investigate shear thickening
as a primary result of non-Gaussian chain behavior and derive a relationship for the nonlinear
viscosity in terms of the non-dimensional Weissenberg number. We further address the criterion for
network fracture at the critical shear rate by introducing a critical chain force when bond dissociation
is suddenly accelerated. Finally, we discuss the role of cross-linker density on viscosity using a
“sticky” reptation mechanism in the context of previous studies on metallo-supramolecular networks
with reversible cross-linkers.

Keywords: shear thickening; nonlinear rheology; polymer mechanics; supramolecular polymers;
associative polymers; transient network theory; dynamic bond

1. Introduction

Transient polymer networks are characterized by dynamic bonding or cross-linking between
polymer chains that reversibly break and reform [1–3]. Most natural materials that aid in performing
some of the key functions of life such as growth and self-repair are indeed dynamic and are often
composed of transient biopolymer networks. As a result of their dynamic bonds, these networks often
exhibit complex mechanical behaviors wherein they can transition between a solid state (that provides
mechanical strength) and a fluid state (that flows by structural reorganization) [4]. Plant and fungal
cell walls are prime examples of such behavior as they are composed of a transient polymer network
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of polysaccharides and proteins [5]. This enables an otherwise sturdy wall structure to morph in
response to stimuli such as light or gravity and more importantly during growth and self-repair.
Transient polymer networks also form the chemical engine of life to generate motion such as muscle
cells made up actin–myosin assemblies that walk powered by ATP to cause muscle contraction [6].
Mechanosensitivity is prevalent in many types of cells that rely on adaptable active bio-polymer
networks [7]. Today, synthetic polymers are being widely studied to engineer reversible intermolecular
interactions that lead to multi-functional abilities such as self-healing, stimuli-responsiveness and
shape memory [8–10] that have found many engineering applications including in biomedicine through
tissue engineering [11–13]. These polymers are typically synthesized by using non-covalent bonds
such as hydrogen bonds, ionic or dipolar bonds, or metal-ligand bonds, between polymer chains and
have been categorized as supramolecular polymers [14–16]. They are found to have rich viscoelastic
properties that are arguably enhanced (longer relaxation time, higher modulus plateau, etc.) compared
to their covalent counterparts that achieve flow by polymer chain diffusion (unentangled) or reptation
(entangled) [17–21]. Furthermore, supramolecular polymers exhibit interesting nonlinear rheological
behaviors such as shear thickening and strain hardening whose key mechanisms are not that well
understood. These interesting nonlinear properties can potentially be exploited for energy dissipation
in military applications such as body armors where the shear thickening property may prove highly
useful [22].

Newtonian fluids are characterized by a viscosity that remains constant for any applied shear rate.
In contrast, shear thickening fluids are characterized by a non-Newtonian behavior where the
viscosity increases nonlinearly with shear rate. In other words, the tendency of the fluid to flow
degenerates under stress, which is quite contrary to commonly seen non-Newtonian behavior where
the tendency to flow improves under stress (shear-thinning) [23]. Interestingly transient polymer
networks such as metallo-supramolecular and telechelic associative polymers [24–28] are commonly
observed to have three different flow regimes. At low shear rates, the behavior is similar to that of
a Newtonian fluid. At a critical rate, shear thickening is initiated which continues until reaching a
maximum viscosity at which point the final regime of shear thinning is initiated. The molecular origin
of the shear thickening response in transient polymer networks has been the topic of much debate
among both experimental and theoretical researchers. The governing mechanism can be categorized
broadly by two schools of thought namely, (a) an increased number of stretched polymer chains with
applied shear [29–33], and (b) a nonlinear high tension in chains beyond the Gaussian range at large
stretch [34–36]. The first mechanism (a) attributes shear thickening to the structural re-organization of
the polymer network that increases the number of chains that are under tension. This is argued to be a
result of shear induced conversion of free chains and linking within the same chain to cross-linking
between different chains [29,33,37]. This conversion is caused by extended chain configurations
at large flow rates that make intra-chain connections less favorable than inter-chain cross-linking.
However, Wang et al [32] argued against this mechanism claiming that intra-chain connections cannot
be broken before inter-chain cross-links, when bond lifetime is longer than the relaxation time of free
chains with intra-chain connections. Subsequently, a model was proposed where shear-thickening
was predicted as a result of coagulation of free chains in an existing polymer network. The second
mechanism (b) is based on the idea that shear thickening occurs because of polymer chains that
harden from overstretching, also called non-Gaussian chain stretching. Marucci [34] showed that
shear thickening can be predicted from just nonlinear chain stretching by keeping the number of
stretched chains constant during shear by proposing the so-called free path model. While this model
has received some support from experimental measurements of critical shear rate and stress (the point
of onset shear thickening), it is argued that it is not a direct proof of cause as the first mechanism
also has similar dynamic signatures (chain orientation under shear) [29]. A general quantitative
treatment of nonlinear rheology, including shear thickening and thinning, has been given by previous
researchers using the transient network theory with a statistical chain description [34,38,39] albeit
mathematically involved. An elegant approach to describing these nonlinear rheological phenomena
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with information on the statistical properties and resulting anisotropy of the chain orientations during
flow is still lacking.

The objective of this paper is to contribute towards the understanding of nonlinear rheology,
specifically shear thickening, using the transient network theory [2,40,41] to provide statistical and
quantitative information on the chain length, orientation and stretch during shear. For this purpose,
we define the chain distribution tensor, interpreted as the covariance matrix of chain end-to-end
vectors, from our recent work in transient network theory, that will be a key element to a better
understanding and visualization of the chain population behavior [41,42]. The novelty of this work
is in the simple relationships for nonlinear rheology based on chain properties and bond lifetimes of
cross-linkers that have remained difficult so far. While approaches such as coarse-grained molecular
dynamics provide a methodolgy to investigate molecular mechanisms in these networks, it is often
computationally expensive and difficult to obtain clear theoertical relationships to macroscopic
properties. The article is organized as follows. We first provide the governing stochastic equations
from the transient network theory (TNT) with its most recent advances that correspond to the chain
distribution tensor. This is followed by the application of TNT to address three main phenomena,
(a) nonlinear viscosity at different types of steady flows, (b) network fracture at a critical shear rate,
and (c) the role of cross-link concentration in the viscosity of the polymer network in the context of
studies on metallo-supramolecular networks with reversible cross-linking from the literature.

2. Transient Network Theory for Polymer Networks with Reversible Bonds

We first review some of the key aspects and equations of the Transient Network Theory (TNT) for
dynamic polymers by introducing concepts from recent advances in this field of study [41,42].

2.1. Statistical Description of Polymer Chains.

For simplicity , the chains of the polymer network are assumed to be long enough such that
they are never fully straightened. This allows us to follow Gaussian statistics for chain end-to-end
distances and force-independent bond kinetics for the reversible cross-links. The states of the polymer
chains and their contribution in the network describe the overall mechanical response of the material.
For instance, in an isotropic network, the chain population spans all the directions and can be suitably
described by their end-to-end vector, r that contains information of both length, r = |r|, and direction
(polar angle θ and azimuthal angle ω in spherical coordinates). The statistical description of the chain
population is then given by the chain distribution function, φ(r) = φ(r, θ, ω), that can be used to
describe the mechanics of the network of chains within a continuum point (Figure 1a). Let the chain
stretch ratio be defined as λ = r/r0, where r0 =

√
Nb2/3 is the average length of a polymer chain with

N Kuhn segments of length b at stress-free state. The distribution function provides two important
quantities: the density of chains attached to the network, c, and the so-called chain distribution tensor
(µ) given by

c =
∫

Ω
φ(r)dΩ, (1a)

µ =
1
c

∫
Ω

φ(r) 3 (λ⊗ λ) dΩ, (1b)

where ⊗ denotes tensor product and Ω represents the space of all possible chain configurations.
The tensor µ is symmetric and represents, in an average sense, the stretch (direction and magnitude)
experienced by chains in the polymer network [41]. In fact, due to its definition, it may also
be interpreted as the covariance matrix of the directional components of the chain end-to-end
stretch ratio, λ. The principal values of this tensor, µ1, µ2 and µ3 can then be physically interpreted
as the standard deviations of the end-to-end stretch ratio, λ of chains in the corresponding principal
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directions. Therefore, relevant measures of the physical state of the network such as the root mean
square of chain stretch, λrms, can be obtained from the distribution tensor as follows:

λrms =

√
tr(µ)

3
=

√
µ1 + µ2 + µ3

3
. (2)

It is easy to show from Equations (1b) and (2) that when the polymer network is stress-free,
the chain stretch is given by λ = 1/

√
3 (1, 1, 1), which results in µ = I and λrms = 1. Furthermore, µ is

also directly related to the stored elastic energy in the polymer network as we will show below.

2.2. Evolution equations.

The change in the state of the chain population in time can be characterized by determining the
evolution of the chain distribution function in time. For this purpose, consider a small material volume
of the polymer network undergoing deformation over time. The distribution of attached chains is
affected by three physical processes (Figure 1b):

(a) The rate of change of chain stretch, λ̇, due to network deformation that is governed by the
macroscopic velocity gradient L = ∇v, where: v is the velocity field in the material and ∇ is the
differential operator. If we assume that the chains undergo affine deformation (i.e., they follow
the macroscopic deformation L), the stretch rate is given by λ̇ = Lλ.

(b) The association of new chains into the network with rate, ka, at a near stretch-free configuration
that follows the well-known Gaussian probability density function for polymer chains, p0(r).

(c) The dissociation of attached chains that may be in a stretched state at the rate kd.

Figure 1. Statistical description of a transient polymer network with (a) the end-to-end vector, r and
the chain distribution function, φ(r) illustrated with 3D mapping, and (b) evolution of the chain
distribution function, φ(r) and tensor µ shown w.r.t the chain stretch λ.
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Therefore, the evolution of the chain population in terms of the distribution function, φ(r, t) and
the distribution tensor, µ(t) are given by [42]:

φ̇ = −L : (∇φ⊗ λ) + ka(C− c)p0 − kdφ, (3a)
◦
µ = ka

(
C− c

c

)
I− kdµ− ċ

c
µ, (3b)

where ∇φ = ∂φ/∂λ, and
◦
µ = µ̇− (Lµ + µLT) is the Truesdell rate, an objective tensor rate defined

typically for the Kirchoff stress tensor. C is the total number of linear polymer chains which is
unchanging in time due to incompressibility of the polymer network. We note here that the general
evolution equation of the tensor µ is simplified to Equation (3b) under the assumption that the
dissociation rate kd is independent of chain tension [41]. We further note that mechanisms of chain
conformation dynamics in non-entangled polymer solutions such as that described by the elastic
dumbbell and Rouse models, which involve the elastic energy of chains, can be used to augment the
evolution of µ [23]. This is out of the scope of the current paper and is left as the object of future studies.
The density of attached chains, c, is unaffected by the deformation history and depends only the
association and dissociation terms of Equation (3b) as

ċ = ka(C− c)− kdc. (4)

When the rate of chain association and dissociation are constants, the concentration of attached
chains is decoupled from deformation and remains in the steady state (i.e., ċ = 0). This means that the
density of attached chains becomes, c = Cka/(ka + kd). In this work, for simplicity, we neglect entropic
chain relaxations described by the Zimmm and Rouse models. The framework may still be used to
include these effects by defining another term in the evolution equation of the chain population in
Equation (3a) that affects the end-to-end distances of the chain due to such relaxation mechanisms.

2.3. Macroscopic energy and stress

The statistical description of chains can be used to derive macroscopic mechanical entities of
the network such as stored elastic energy, dissipation energy and the stress tensor. The stored elastic
energy can be obtained from the difference between the deformed state and the stress-free state in
terms of the distribution tensor as

∆Ψe = ckBT
[

1
2
(tr(µ)− 3) +

1
20N

(tr(µ)2 − 9) +
11

1150N2 (tr(µ)
3 − 27) + ...

]
+ p

(
C
C0
− 1
)

, (5)

where kBT is the thermal energy, N is the number of Kuhn segments in the polymer chain and I is
the identity tensor. The above energy functional is obtained from the polynomial form of the series
expansion of the inverse Langevin function for non-Gaussian chains [42,43]. The quantity p is a
Lagrange multiplier that enforces the material’s incompressibility condition C/C0 − 1 = 0 with C0

being the density of chains at the stress-free configuration. Since the mass of the chain population
does not change with deformation, this condition essentially enforces a volumetric constraint on the
polymer network. Using the second law of thermodynamics and the assumption of an isothermal
process, the dissipation energy, D = kd∆Ψe, and the Cauchy stress tensor, σ, is given by

σ = ckBT
[
(µ− I) +

6
10N

(
λ2

rmsµ− I
)
+

594
1050N2

(
λ4

rmsµ− I
)]

. (6)

The dissipation energy expresses the fact that chain dissociations in a stressed state result in
overall loss of energy of the network, which cannot be recovered. The term D is equal to the rate of
release of elastic energy due to chain dissociation. In other words, the polymer network undergoes
relaxation by chain dissociation.
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3. Flow Regimes under Steady Deformation Rates

3.1. Extensional Viscosity

Let us first consider a steady uniaxial elongational flow, where the strain in one direction
increases at a constant rate in time. We now investigate the behavior of transient polymer networks
subjected to such a macroscopic shear strain rate, γ̇. This type of loading is typical of the rheological
experiments used to measure “Trouton” viscosity [44] of polymer melts. Since the polymer network is
incompressible, the sum of the diagonal components of the velocity gradient, tr(L) = 0. Therefore,
we can write the velocity gradient tensor as

L =

γ̇ 0 0
0 −γ̇/2 0
0 0 −γ̇/2

. (7)

Physically, the above equation describes the deformation rate of a continuum point of the polymer
network such that there is uniaxial tension in one direction and compression in the other two directions.
The above deformation rate is applied on the polymer network that is initially at a stress-free state
(σ = 0). The stress reaches a steady value after some time, which is then used for calculating the
viscosity of the network. Borrowing concepts from nonlinear viscoelasticity of non-Newtonian fluids,
it is useful to introduce the non-dimensional Weissenberg number (W) which is a measure of the
relative elastic to viscous forces. It is commonly written as the product of strain rate, γ̇, and stress
relaxation time tr = 1/kd [41]. For a steady extension rate, the stretch of the polymer chains in the
network will eventually reach a state of dynamic equilibrium with the three physical processes (a),
(b) and (c) described earlier. Therefore, the chain distribution function and tensor can be described by
their steady state values, i.e., by substituting µ̇ = 0 in Equation (3b). We then get the chain distribution
tensor (see Appendix A) as

µ =

1/(1− 2W) 0 0
0 1/(1 + W) 0
0 0 1/(1 + W)

, where W =
γ̇

kd
. (8)

From the distribution tensor, we can extract the root mean square chain stretch ratio using
Equation (2). To obtain a quantitative estimate of the chain orientation order, we consider the
diagonal terms, µ1 and µ2 = µ3, of the chain distribution tensor in Equation (8). Since they represent
the standard deviation of the stretch ratio, λ, in each principal direction, the quantity Θ = |µ1 − µ2|
describes the magnitude of abundance in chain stretch in one direction compared to the other. When the
polymer network is stress free, we have µ1 − µ2 = 0, implying that the density of stretched chains is
equally abundant in both directions, i.e., they are isotropic. Thus, the magnitude of stretch and the
orientation of the attached chain population can be described by the quantities

λ2
rms =

1−W
(1− 2W)(1 + W)

and Θ =

∣∣∣∣ 3W
(1− 2W)(1 + W)

∣∣∣∣. (9)

We see that the above quantities diverge as W → 0.5 as shown in the plots of Figure 2, indicating
that the chains are highly stretched and oriented in the direction of tension. In other words, when the
applied extensional rate, γ̇ approaches the rate of bond dissociation, kd, the chains do not have time
to dissipate energy by dissociation and therefore end up storing elastic energy in their deformation.
Also shown in Figure 2a are the contours of the distribution function φ(λ) obtained by numerically
solving Equation (3a) with φ̇ = 0. The contours reflect the behavior of the entire chain population that
transitions from an isotropic network (sphere) at no deformation to a highly oriented network (ellipsoid)
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at high extension rates. The statistical properties of this distribution, i.e., the standard deviation, is well
captured by the chain distribution tensor as seen from Equation (8).

Figure 2. Steady extensional flow of a transient polymer network shown leading to chain
anisotropy at steady state as seen from chain distribution function, φ(r) for different values of the
Weissenberg number, W. The average chain stretch, λrmd, and orientation, Θ, are obtained from
the chain distribution tensor, µ as a function of W. The nonlinear rheology is then captured by the
plot of non-dimensional viscosity η̄/η̄0, where η̄0 = 3ckBT/kd is the viscosity of the network at zero
extension rate.

Using the steady state chain distribution tensor from Equation (8) and the Cauchy stress from
Equation (6), the extensional (Trouton) viscosity η̄ is obtained as

η̄ =
σ11

γ̇
=

3ckBT
kd

(
1

(1− 2W)(1 + W)

)(
1 +

6λ2
rms

10N
+

594λ4
rms

1050N2

)
where c = C

ka

ka + kd
. (10)

We see that the viscosity is also an increasing nonlinear function of the applied shear rate, γ̇,
and diverges when W → 0.5 as plotted in Figure 2. This result is also consistent with that from
standard polymer theory based on a coil-stretch transition [23] as kd here is the relaxation time of
the network. Furthermore, we see that the effect of nonlinear chain elasticity does not play a significant
role in the extensional viscosity as illustrated with small and long Langevin chains (different values for
number of Kuhn segments N) and Gaussian chains. This is in part because of the geometric nature
of this type of flow where parallel material planes separate exponentially with time as shown in the
early work of Lodge for non-Newtonian behavior of “elastic” liquids. [45]. We have now shown this
standard rheological result with the contribution of the value of the chain distribution tensor that
contains information of anisotropy in the chain population for this type of flow.

3.2. Steady Shear Viscosity

We now investigate the behavior of transient polymer networks subjected to a macroscopic simple
shear strain at a steady rate, γ̇. This type of loading is more common in the rheological characterization
of polymers and is used to measure the shear viscosity. Let us consider the shear loading in the
1–2 plane such that the velocity gradient tensor is given by

L =

0 γ̇ 0
0 0 0
0 0 0

. (11)
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Following the same approach from the previous subsection, we get the steady state chain
distribution tensor (see Appendix A) as

µ =

1 + 2W2 W 0
W 1 0
0 0 1

. (12)

Interpreting the above tensor as the covariance matrix for statistical chain end-to-end vectors λ,
we note that the chains align themselves in the direction of shear (1–2) as shown in Figure 3 with
plots of the numerically computed distribution function φ(λ). The steady state value of the shear
component µ12 is directly proportional to the Weissenberg number W implying that the chain stretch
is maximum for large values of W. The flow of network may be described by the deformation of a
continuum point of the polymer network with tension and compression given by the principle values
in the corresponding principal directions. These principal directions of deformation rotate in time
for a steady simple shear flow as is known from the classical concepts in continuum mechanics [45].
Accordingly, the principal directions of the chain distribution tensor also change during shear flow as
can be shown from the eigendirections of Equation (12). However, the principal values (µ1, µ2 and
µ3) of µ can be determined to be constant in time for a given γ̇, whose sum provides the mean square
chain stretch ratio by Equation (2). Following the same definition for chain orientation order as the
previous section, Θ = |µ1 − µ2|, the average chain properties during steady shear flow are

λ2
rms = 1 +

2
3

W2 and Θ = 2W
√

1 + W2. (13)

While the chain stretch increases linearly for large values of W, the orientation has a quadratic
dependence on W as shown in the plot of Figure 3. This indicates that the chains become anisotropically
oriented in the direction of shear, faster than the rate at which they are stretched. Due to dissipation by
dissociation, the chain stretch and orientation are low for slow shear rates relative to the dissociation
rate kd. The chain distribution function φ becomes distorted more at large values of W and reflect the
anisotropy in the chain population in terms of their direction of stretch (see Figure 3).

Figure 3. Steady shear flow of a transient polymer network shown leading to chain anisotropy at steady
state as seen from chain distribution function, φ(r) for different values of the Weissenberg number, W.
The average chain stretch, λrmd, and orientation, Θ, are obtained from the chain distribution tensor, µ as
a function of W. The nonlinear rheology is then captured by the plot of non-dimensional viscosity η/η0,
where η0 = ckBT/kd is the viscosity of the network at zero shear.



Polymers 2018, 10, 848 9 of 17

The macroscopic viscosity of the polymer network in steady shear is obtained from the shear
stress σ12 using Equations (6) and (12) as

η =
σ12

γ̇
=

ckBT
kd

(
1 +

6λ2
rms

10N
+

594λ4
rms

1050N2

)
where c = C

ka

ka + kd
. (14)

We see that the viscosity is also an increasing nonlinear function of the applied shear rate,
γ̇, for non-Gaussian chains while it remains a constant for Gaussian chains as plotted in Figure 3.
Thus, the shear thickening behavior in transient polymer networks in this approach is attributed
to the non-Gaussian nature of the chains, i.e., the chain tension increases drastically as the chain
length approaches its maximum value (Nb). Furthermore, we see the effect of the maximum chain
length on the onset of shear thickening as illustrated with small and long chains (different values for
number of Kuhn segments N) with the latter requiring a larger shear rate for thickening. Based on
Equation (14), the viscosity is a polynomial in terms of the shear rate γ̇ whose coefficients are functions
of the number of chain segments N and kinetic rates, ka and kd. At the limit of small W, the fluid
behavior is Newtonian as the viscosity is approximately a constant. Comparing Equations (10) and
(14), we note that η̄ → 3η, where factor 3 is the well-known Trouton ratio for Newtonian fluids [38,44].

The relationships obtained in Equations (13) and (14) show that the Weissenberg number,
W determines the state of the chain population and emerging viscosity of the network at different
shear rates. Though both mechanisms of non-Gaussian chain stretching and conversion of intra-chain
to inter-chain cross-linking have been used to explain the shear thickening phenomenon [29,46,47],
we propose that the above approach using the chain distribution tensor, is simpler and more
informative in terms of the statistical measures such as chain stretch and orientation (anisotropy). It is
our belief, therefore, that future studies should take into consideration the above approach to better
understand and interpret nonlinear rheology and mechanics of transient polymers.

3.3. Network Fracture at Critical Strain Rates

In most transient polymer networks, it is observed that, with increasing shear rates, the shear
thickening phenomenon eventually leads to a maximum viscosity after which catastrophic network
fracture and subsequent reduction in viscosity (shear-thinning) occur [31,48]. This phenomenon has
been attributed to a critical chain force, fc, in the order of pN, when bonds start dissociating at an
accelerated rate leading to increased dissipation of energy, faster relaxation and reduced viscosity [49].
In this section, we provide a relationship between the critical chain force, fc and the critical point
of transition, γ̇c, when shear thickening switches to shear thinning. For this, let us first consider the
chain stretch ratio, λc, corresponding to the critical force, fc, given by the Langevin chain model as [50]

λc =
√

N
(

coth
(

fcb
kBT

)
− kBT

fcb

)
. (15)

Network fracture occurs when the number of cross-links in the polymer network are suddenly
reduced to below the gel point. Because high chain stretches lead to accelerated dissociation of
cross-links, just before the point of network fracture, a majority of chains have a stretch above the
critical value λc. In other words, the critical point for network fracture may be defined based on the
root mean square stretch as λrms = λc. By considering the state of polymer chains in the steady state for
different shear rates, a critical shear rate γ̇c can be found where the average chain stretch ratio reaches
the critical value (see Figure 4a). At this point, the viscosity of the network reaches its maximum value,
ηmax, which provides information on the extent of shear thickening in a given polymer network.
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Figure 4. (a) the point of network fracture shown in a plot of viscosity η vs. Weissenberg number W
when the average chain stretch equals the critical value, λc, for N = 50. The distribution function is
shown at steady state indicating most chains within the critical stretch at low shear rates (left) and
leading to fracture at high shear rates (right); (b) the relationship between macroscopic entities such as
maximum viscosity, ηmax/η0 and the critical Weissenberg number, Wc, and the critical chain stretch
for fracture, λc are plotted where the maximum value for the critical stretch ratio, λmax

c corresponds to
that of a fully extended chain (r = Nb).

Based on the transient network theory applied to the steady shear rate loading from the
previous section, we can obtain a relationship between the critical shear rate and critical chain force.
This relationship can potentially help characterize the rheological behavior of different polymers on the
molecular level in terms of chain properties. Substituting for λc from Equation (15) in Equations (13)
and (14) allows us to obtain the critical shear rate, γ̇c, and maximum viscosity, ηmax, as

γ̇c = kd

√
3
2
(λ2

c − 1) ηmax =
ckBT

kd

(
1 +

6λ2
c

10N
+

594λ4
c

1050N2

)
. (16)

Firstly, based on the model assumptions, in simple shear flow, the polymer chains are stretched
affinely at the applied shear rate and so the critical shear rate for fracture γ̇c has a linear dependence
on λc. Secondly, since shear thickening occurs in the present model due to non-Gaussian chain
property whose tension, f increases rapidly with stretch λ, the maximum value of the viscosity ηmax

also increases rapidly with large values of λc for a given chain length N. Based on Equations (15) and
(16), relative maximum viscosity of ηmax is only a function of the critical chain force fc. Therefore,
the value of ηmax for long chains is much lower for long chains (high N) than short chains (low N) for the
same critical chain stretch, λc (see Figure 4). Now, given that the maximum chain length is its contour
length Nb, the maximum values of chain stretch cannot exceed λmax

c =
√

3N. In reality, it is highly
likely that a chain will dissociate with a very high probability when fully stretched as the elastic energy
will overcome the energy barrier of the bonds [29]. Thus, we find from Equation (16) that the maximum
value of viscosity during shear thickening cannot exceed roughly 7.9 times the zero shear viscosity
η0 = ckBT/kd (see Figure 4). Furthermore, when λmax

c is substituted in Equation (16), the maximum
shear rate approximatey scales as γ̇c ≈ kdN1/2 consistent with the finding by Marrucci et al [34] with
the “free path” model.

Therefore, we conclude that, while the main role of the critical chain stretch λc is in determining the
maximum possible shear rate γ̇c before network fracture, the extent of shear thickening is determined
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by the critical chain force fc. The above relationship may be useful in estimating the critical chain
stretch from measured macroscopic properties of the network such as maximum viscosity and critical
shear rate or vice versa.

3.4. Viscosity at High Cross-Linker Densities

In addition to its dependence on applied shear rate, the rheology of polymer networks with
reversible bonds can be significantly affected by the density of cross-linkers present. For example,
with metallo-supramolecular networks of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO),
the concentration of reversible bis-Pd(II) cross-linkers altered the measured viscosity [29] as shown
in Figure 5a. The cross-linkers contain a metallic(Pd) complex that can form a reversible ligand
interaction with the PVP polymer chain that contains pyridine nitrogens. Therefore, the concentration
of cross-linkers reported in terms of molar ratios between palladium and pyridine nitrogen is directly
correlated to the cross-linking density of this transient polymer network. The viscosity measurements
indicate an increasing trend with higher cross-link densities as shown in Figure 5a, which have been
fitted with our model using Equation (10) with chain concentration, C, number of Kuhn segments
in the chain N and different values of kd for the varying cross-linker concentration. We have
here assumed that the rate of bond association, ka is the same as the rate of bond dissociation,
i.e., bond dissociations and associations occur at the same time scale. An inverse correlation of the
concentration of cross-linkers, cl , with the number of Kuhn segments Nc in the effective chain, and the
rate of dissociation, kd, affect the base viscosity η0 and the onset of shear thickening according to
the model. This is because the Weissenberg number dictates shear thickening as seen in Equation (14),
which for a lower kd requires a lower shear rate, γ̇ for the same value of W. The onset of shear thickening
for different concentrations of cross-linkers, qualitatively follows the same trend as experiments that
is consistent with the argument based on the Weissenberg number. The average rate kd is also the
stress relaxation rate in transient polymer networks that have relatively low variation in their bond
lifetimes across the material. The extent of shear thickening described by the maximum viscosity, ηmax,
is determined from experiments and using Equation (16), the non-dimensional critical chain force is
determined from Equations (15) and (16) to have an average value of fcb/kBT = 4.1. The disagreement
in the onset of shear thickening between the model and experiment could be possibly due to a spectrum
of relaxation rates such that of Rouse modes from chain entropy or force-sensitive chain dissociation
that have not been addressed with the current model. The mismatch is especially apparent for high
cross-linker concentrations where the effective number of chain segments Nc is lower which thereby
increases the Rouse relaxation rate due to its inverse relationship with N2 [50]. Similarly, since the
chain tension increases rapidly for small chains a force-dependent chain dissoication rate would be
highly significant for high cross-linker concentrations. Both these phenomena tend to increase the net
relaxation rate and faster energy dissipation of the polymer network thereby requiring a larger shear
rate γ̇ to reach the same Weissenberg number W. These phenomena and the mechanism of conversion
of intra-chain to inter-chain cross-linkers discussed and identified as the dominant cause of shear
thickening in these supramolecular networks [29] may be better addressed in detail in future studies.
The approach introduced in this paper through the chain distribution tensor will be highly useful in
addressing such concerns.

To explain the inverse correlation between the dissociation or relaxation rate, kd, and the
cross-linker concentration, cl , we propose a mechanism that is closely related to the so-called “sticky”
reptation mechanism introduced by Leibler et al. [18] for entangled polymer networks with reversible
cross-links. When long polymer chains are introduced with cross-linkers, a polymer network is
formed at a critical concentration and is called the gel point [50]. In this structure, polymer chains
are connected or cross-linked to other chains mostly at their two ends. When the concentration of
cross-linkers is increased, more connections are likely at interior points of the chains causing the
chain to be more restricted in terms of its dynamics and motion (see Figure 5b). Let us consider a
monodisperse chain of N monomers that has an average end-to-end distance of b

√
N, where b is
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the Kuhn length of a monomer segment. Due to high concentration of cross-linkers, let the average
number of monomers along the chain between two cross-linkers be denoted by Nc that is less than N.
The number of cross-linkers per chain is then given by N/Nc and is directly proportional to the
cross-linker concentration, cl . As the chain is restricted to move in a tube due to constraints from the
presence of additional cross-linkers, the average contour length, < L >, of the chain is the sum of the
average end-to-end distance between cross-linkers each of which is b

√
Nc. This is given by

< L >=
N
Nc

b
√

Nc =
N√
Nc

b. (17)

To obtain the relaxation time in networks with chains of the above type, let us consider the
dynamics of chain motion in a constrained tube created by intermittent cross-linking. Similar to
the reptation model for entangled chains, the chain motion consists of diffusion through small
loops along the contour length. The reptation time, τr, of the chain depends directly on the square
of the chain length, < L >2, in Equation (17), and inversely on the Rouse diffusion coefficient,
Dc = kBT/ζ, where ζ is the dynamic friction coefficient. The quantity ζ can be obtained from a
force–velocity relationship for the chain based on the concepts of the transient network theory in 1D
(see Appendix B) as

ζ =
kBT
Ncb2

(
N
Nc

)
1
kd

. (18)

Figure 5. (a) experiment and model prediction of poly(4-vinylpyridine) (PVP) cross-linked with
bis-Pd(II) complex for different cocncentration of cross-linkers [29]. The dotted lines for the model
prediction indicate viscosity beyond the failure point with maximum viscosity ηmax; (b) illustration of
the “sticky” reptation mechanism at large concentrations with constrained chain movement in a tube
with intermittent cross-linkers. Shown below is the plot of effective dissociation rates, ke f f

d obtained
from fitting the experimentally measured viscosities of (a) and prediction of the reptation model

The relaxation rate of the polymer network at high cross-link density is given by the time
required by the chain to reptate, τr =< L >2 /Dc, through the tube since it is slower than
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the bond dissociation rate, kd. Therefore, the effective relaxation rate is given by ke f f
d = 1/τr.

Using Equations (17) and (18) and after simplification, we obtain

ke f f
d =

(
Nc

N

)3
kd (19)

that predicts an effective dissociation rate that is slower when the number of chain segments
between cross-links, Nc is less than that for the entire chain, N. In other words, when the
cross-linker concentration, cl , is increased, there are more intermittent cross-linking causing an increase
in apparent “chain friction” and a slower relaxation rate. A low effective dissociation rate, ke f f

d , for high
cross-linker concentration when applied to Equation (10), predicts a higher viscosity that explains
the experimental measurements shown in Figure 5a. The fit from the model in (a) is compared with
prediction from the reptation model from Equation (19) with good agreement in Figure 5b.

4. Conclusions

In summary, we have provided a quantitative interpretation of nonlinear rheology in transient
polymer networks in terms of chain stretch distributions rooted in a statistical description of
polymer chains, bond association and dissociation. We particularly addressed three main phenomena
commonly observed, namely (a) the nonlinear increase in viscosity for two different regimes namely
steady extensional and shear flows (shear thickening) with increase in deformation rate, (b) network
fracture at extremely large shear rates preceding reduced viscosity or shear-thinning, and (c) increased
viscosity due to high cross-linker density due to slow chain diffusion. The phenomenon of shear
thickening is found to be closely related to the Weissenberg number consistent with previous
interpretations regarding polymer networks [23]. Furthermore, the effect of non-Gaussian chain
behavior is shown to have an significant role in the onset of shear thickening assuming that it
is the driving mechanism. We have provided a simple relationship between the critical shear
rate for network fracture and the critical chain force for breakage that is made possible through
the transient network theory. An important contribution of this work is the relationship of chain
properties such as stretch and orientation and macroscopic properties such as viscosity through
the chain distribution tensor. This tensor provides a statistical measure of the chain population
and helps provide a clearer picture of the mechanisms involved. Finally, the increase in viscosity
at high cross-link concentration is explained by a slow down of chain diffusion occurring from
constrained chain dynamics akin to a “sticky” reptation model with good agreement with experimental
measurements. The effect of reduced viscosity or shear thinning beyond the critical shear rate,
though not addressed here, could be investigated further in future work with the current framework
using a dissociation rate that is accelerated by force.
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Appendix A. Derivation of Solution for Shear Thickening Equations

Consider the evolution equation of the distribution tensor, Equation (3b). For a steady elongational
flow rate given by the velocity gradient in Equation (7), the network reaches a steady state at which
the evolution equations reduce to

ka(C− c)− kdcµ1 + 2cγ̇µ1 = 0,

ka(C− c)− kdcµ2 − cγ̇µ2 = 0, (A1)

ka(C− c)− kdcµ3 − cγ̇µ3 = 0,

where c = Cka/(ka + kd) and µ1, µ2 and µ3 are the diagonal terms of the chain distribution tensor
while the non-diagonal terms are zero. Solving the above equations, these components are obtained as

µ1 =
1

1− 2W
, µ2 =

1
1 + W

and µ3 =
1

1 + W
, (A2)

where W = γ̇/kd.
For a steady shear flow rate given by the velocity gradient in Equation (11), the network reaches a

steady state at which the evolution equations reduce to

W

2µ12 µ22 µ23

µ22 0 0
µ23 0 0

+

1− µ11 −µ12 −µ13

−µ12 1− µ22 −µ23

−µ13 −µ23 1− µ33

 = 0. (A3)

Solving the above the equation for each component, we obtain

µ11 = 1 + 2W2,
µ22 = µ33 = 1,
µ12 = W,
µ13 = µ23 = 0.

(A4)

Using Equation (6), the Cauchy stress σ may then be obtained from the chain distribution tensors
derived above for both types of flows.

Appendix B. Derivation of Friction for “Sticky” Reptation Model

The friction acting on a polymer chain that is reptating through a tube with intermittent
cross-linking is determined by reducing the chain population to one dimension (along the tube).
The polymer chain may thus be treated as an assembly of smaller chains which have their own
corresponding stretches. The total number of such segments is given approximately by nx = N/Nc.
We note that the quantity c(t), the density of attached tethers in 3D, becomes na, the number of
detached tethers in 1D. We also observe that the velocity gradient tensor L reduces to δ̇/δ in 1D, with δ

being the chain end-to-end distance and δ̇ = v, the velocity of the chain. We can then arrive at the
evolution equation using Equation (3a) as

∂φ(δ, t)
∂t

= kaN[1− n(t)]p0(δ)− kdφ(δ, t)− v
∂φ(δ, t)

∂δ
. (A5)

If p0(δ) is assumed to be a Dirac delta function centered at δ = 0, i.e., all tethers re-attach in the
stress-free configuration with zero displacement, we find that an equivalent expression to

∂φ(r, t)
∂t

= ka[C− c(t)]p0(r) (A6)



Polymers 2018, 10, 848 15 of 17

is, in 1D,
vφ(0, t) = ka[nx − na(t)]. (A7)

Using the above result, an equivalent formulation for Equation (A5) is the reaction–
advection equation

∂φ(δ, t)
∂t

= −kdφ(δ, t)− v
∂φ(δ, t)

∂δ
(A8)

with boundary condition at δ = 0:

φ(0, t) =
ka

v
[nx − na(t)]. (A9)

The total force on the long chain is given by the summation of forces on each individual segment
and can be written as

F = K
∫ ∞

0
φ(δ, t)δdδ, (A10)

where K = kBT/Ncb2 is the stiffness of the chain segment with Nc monomers in 1D. Now, we transform
the integral equation for total force to a differential equation. We have:

Ḟ =
d
dt

K
∫ ∞

0
φ(δ, t)δdδ

= K
∫ ∞

0

∂φ

∂t
(δ, t)δdδ

= K
∫ ∞

0

[
−kdφ− v

∂φ

∂δ

]
δdδ

= −kdK
∫ ∞

0
φδdδ− Kv

(
φδ

∣∣∣∣∞
0
−
∫ ∞

0
φdδ

)
= −Kv (0− na)− kdK

(∫ ∞

0
φδdδ

)
= Kvna − kdF. (A11)

To obtain the dynamic friction coefficient, we assume a constant force F such that Ḟ = 0 to give

F =
Kna

kd
v = ζv. (A12)

Substituting for K in the above expression and na = N/Nc for the number of intermittent
cross-links, we get the friction coefficient as

ζ =
kBT
Ncb2

(
N
Nc

)
1
kd

. (A13)
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