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Perg:olation and related
topics

D.J. A. Welsh

1. Introduction

As its name suggests, percolation theory is concerned with flow in random media.
Its origin, in 1957 in the work of Broadbent & Hammersley,? was as a model for
molecules penetrating a porous solid, electrons migrating over an atomic lattice, a
solute diffusing through a solvent or disease infecting a community. In this paper
we shall attempt to survey the main results in classical percolation theory and also
to relate it with other areas of applied mathematics in which the underlying
Structure is a random medium and which can be perhaps regarded as ‘percolation in
8 wider sense’, These include such topics as the Ising model of ferromagnetism, the
shortest route problem in random networks, models of growth processes and
fandom clumping, For excellent surveys of this area we refer to the review papers
of Essam®ang Shante & Kirkpatrick.?® This article is obviously dependent on Essam
and Shante & Kirkpatrick but will aim at covering a different area of the subject
and from a different viewpoint.

2. Random graphs

As an example of percolation in the wider sense consider the following problem in
Communication theory,
Let N be the network shown in Fig. 1. Suppose each directed edge has probabil-
P of being reliable, that is allowing a message to pass. Suppose further that the
ability of each edge is independent of the reliability of any other edge. What is
'© Probability that there is a path from A to B consisting only of reliable edges?
Simple calculation shows that it is just the probability that not all the routes from
indto B are unreliable. Since the routes have no edge in common we are dealing with
°Pendent random variables and we have : '
P[A ~> B] = 1—P[ACB closed, ADB closed, AEB closed] -
= 1—P[ACB closed] P[ADB closed] P[AEB closed] .
=1—(1-p?»?

Dr Welsh is a Fellow of Merton College, Oxford.
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Percolation and related topics

d makes computation very difficult, Indeed,

modern computing machines it is still difficult to determine

the reliability of networks—see for example the paper of Wing & Demetriou® or the
book of Frank & Frisch, 1!

C
N: A B
E
- Fig. 1
C
N A Y B
D
Fig. 2
Throughout thjs paper uniéss othe

of edges joining cery &raph consists of a set V
8 Certain pajrs of th : Eis
asubsetof VX v, A graph is finite if v €se vertices. Formally

are finite sets, otherwige it is infinite.
&7aph or network i 4 graph in whicp, is assi
: ‘which e ned a
on. The networks of Figs, ach cdge is o

are examples. A rgndom
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Thus the number of edges in a random graph on n vertices is a random variable
X with a distribution given by

PIX=k]= (z) p* )+ o< k<(’2’) .

This is a slightly different model from that studied by Erdos & Renyi® as they
considered graphs on n vertices having M(n) edges where N(n) is a prescribed
function and each N-subset of the (3) possible edges occurs with equal probability.
However in the broad sense the two theories are very similar. -
Suppose we let Ca(p) be the probability that the random graph on n vertices is
Connected, that is that there exists a path between any pair of vertices. Clearly

C.(0)=0, Co(1)=1

and C,(p) is an increasing function of p. Gilbert'? used this model for routing calls
through centra] telephone offices. Imagine the n vertices to be telephone offfces
and suppose that each pair of offices has the same probability p that there is an idle
direct line between them. Suppose further that a new call between two offices can
b routed via other offices if necessary. Then C,(p) is the probability that eacll:
office can ca]] every other office. Exact expressions for C,(p) are given by Gilbert

but for large n they are unwieldy. Bounds on C,(p) show that as n —oo

Cn(@) ~ 1—n(1-—p)* !

To illustrate the dependence of this on n and p consider the following table taken
from Gilbeyt. 12

p 0.9 0.5 0.1
C2(p) 0.90000 0.50000 0.10000
Ci(p) 0.99581 0.59375 0.01293
Cs(p) 0.99994 0.81569 0.00624
Atfist sighy the result that for any fixed p >0
lim C,(p)=1
H—>o0

" sightly Surprisin

i = f the sequence do not indi-
Cate such | g since for p = 0.1 the early terms o q

verage imiting behaviour. However, on an intuitive lezvel we flote }tlhat ;Illlti

est cfn umber of edges in a random graph is essentially pn*/2 and since t.t e;_s:g -

eXpecter(lleCted graphs on n-vertices (spanning trees) have only n—1 edgesdl 1; e
N be g .that fo-r large n a random graph is almost surely connected., Ilfl_ ez .mthe

obvioyg 4d, for if 8,,(p) denotes the diameter of the random graph, d‘e n;e 1:1ices

itcan 3y as the maximum of the shortest distances between.a'ny pair of vertices,

© shown that for any fixed p > 0, as n ~ oo, with probability one
lim §,(p)=2

N0
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(@) Square Lattice (b) Triangutar Lattice

{c) Hexagong| or
Honeycomp

(d) Bethe Lattice
Fig. 3
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Bond percolation N
Suppose that there is a supply of fluid at the origin and that each edge of L

dlows fluid to pass along it with probability p, independently for efich edge. Let
Pr(p) be the probability that at least n vertices of L get wet by the fluid. Thus

Pi(p)=1
Py (p) = 1—(1-p)*

and in theory Py(p) can be calculated for any integer V. However, the reader will

. o :
tapidly fing it prohibitively time consuming (N=7 is a fair piece of work!).
Obviously

Prn(p) > Py, ()
and hence we know that P(p) (= P.(p)) exists where

P(p) = lim Py (p)

Now

*nd it represents the probability that fluid spreads an infinite distance from the
origin, |
ally, little has been proved about P(p). Even thqugh each PN(p) 1; a
11 p and hence we would expect P(p) to be a continuous function o 2

2.
this hag pot yet been proved. The main result of Broadbent & Hammersley? is that
¥IC €Xists a crificgy probability py such that

P<pu=Pp)=0
P>pu=Pp)>0

rlo simulations suggest that for all the well-known lattices the

Chavioyy of P(p) is roughly the same in the qualitative sense. A typical picture of
the form of P(p) is shown in Fig. 4.

Theoretic
Polynomia]

nd Monte (,

. P(p)
T :%5‘
0 P, 1
" Fig.4 -
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The existence of this critical probability was

proved by Broadbent & Hammersley®
for a wide class of lattices; we discuss its evalu

ation in Section §.

Atom or site percolation

The reader may have noticed

colation’, no mention of “hong’ occurred subsequently. Historically, the subject

hanics Overtones, and in this area ‘bond’ is usually

In atom percolation on Linstead of each eg
probability 1—p or open with probability p th
ability p or open with probability g = |
probability of fluig spreading

Exactly analogous results
though of course the numerical values of the
tion probabilities P(p) differ,

ge of L being fandomly blocked with
e vertices of L are blocked with prob-

~P. Again we are interested in the
locally Or an infinite distance,

(a)

Fig. 5 (b)

atom percolation problem on a related lattice This lattice T

theory as the /ine &raph of L and is got by 1

-and joining two vertices of . if and only jf

dent. For example, Fig. 5(b) shows the line
It has been shown that for any

the correspondin
graph of the g
regular Jattice,

olation probabij;

g edges of I are inci-
quare lattice L,

if PA(p)’ PB(p) represeﬂt

ties on the lattice then in

POI<Pp) 0<pey

for de(ails see Fisher® ang Hammersley 17
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Asymmetric percolation

The idea of a critical probability below which fluid (or infection) will only
*pread locally can be extended to the situation where the vertical edges of the
Square lattice L have probability p, of being open, and the horizontal edges have a
Probability p, of being open. This time we find that instead of a critical probability
thete is a critical curve passing through the points (0, 1) and (1, 0) such that if the
point (py, p,) lies on the same side of the curve as the origin then with probability
L only a finite number of vertices will be wet whereas if (py, p») lies outside the
curve there is a non-zero probability that an infinity of vertices will be wet. The
“itical curve obviously passes through the point (py, py) and Mauldon®* gives
“Stimates for the values of r where the line py =r cos 0, p; =r sin § meets the
Curve for a range of values of @ between 0 and n/2.

4. The cluster problem

Intlmately related with percolation theory is the study of the distribution of white
nd black clusters when the edges (or vertices) of a graph are painted white with
Probability p and black with probability ¢ = 1—p. |

Agalfl Wwe shall concentrate on the edge problem for the square lattice. A whi?e
(I;I,u”e’ I8 2 maximal connected subset of black edges of the lattice. For example, in
c]lfs.tG where t‘he heavy lines indicate the edge is painted white there are ten. b‘lack
tOtalersfcontaming at least one edge and four isolated vertices at A, B, C, D, glwngz _
verti of fourteen clusters. We note that some writers d_o not count these isolate

ftices as clusters. The two main quantities of physical interest are: (a) the average
"mber of white clusters; (b) the average number of vertices in a white cluster.
© D¢ more precise lot L., denote a square section of the square lattice contain-
'mz vertices and hence 2(m—1)? edges. If w denotes a particular black/white
Péinting of L, then let ¢,,(w) denote the number of white clusters and let its

average value over al] paintings « be denoted by K, ().

d Sim“aﬂy if we let the distinct clusters under w be labelled 4y, .. . ., Ac(w), we
efine ' .

ing

V(A .. .. +.|V(Ac(wa)
cm(@).

Smp)= &

Where IV(4,)| denotes the number of vertices in A;, and & denotes the expectation
or averaging operator over all black-and-white p_aintings. _JThUS S,"‘ (p) is the average

rtices in a white cluster.. - - P - o
Note that if isolated points are not counted as clusters then the expected

i F-3 o . .
Number of clusters in this sense is given by Km(p)—m’q” where g = 1-p. This is.
because the probability that a particular vertex.forms an ;solated cluster is just the

7
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Fig. 6

ack clusters
cluster js S
- Methods o

is Obviously Km(1-p) and the average

(1-p). Very little s known theoretically

about either of these functiong f Grimmet¢13 show that

Cn(p)
o \P)
- with Probability one_ , :
. Temperley & Ljep3 have related the

problem of €humerating clusters (of at [east

one white edge) with classic ouring problems, and have shown that

al graph ¢g]

~Roughly speaking the quantities Ko (p) and S, (p) are reciprocal,. thdugh’theO-
retically all that can be proved is that - : = '

72

T T T T e s
2%

i e

———— o e

—

i e e I



D.J. A, Welsh

For p greater than the critical probability p;; we have positive probability of an
infinite white cluster in L... Hence a fortiori as p = py the average size of a cluster
tends to e, Numerical evidence of Sykes, Gaunt & Glen®® suggests
that as p approaches Py from below there exists constants C and vy such as m = oo

Sm(P) > S(p) where

S@) ~ Cpu—p)™"
where moreover Y is an invariant depending only on the dimensionality of the
lattice. A conjectured form of S(p) is therefore shown in Fig. 7.

. Probably one of the most interesting results on the cluster problem has been
fBorously proved by Harris 15 I says:

Theorem

Consider the edge clyster problem on the infinite square lattice. If p is strictly
§reater than the criticql probability pyy then with probability one the set of white
edges containg only one infinite component.

A

S(p)

" Fig. 7

5. The critical probability or probabilities |

As stateq earlier, py, the critical probability, proved to exist by Broadbent &

“Mmersley,? i defined to be the critical value below which there is zero prob-
ability that fluid from a source at the origin spreads to infinitely many points. At
Cast two other ‘critical probabilities’ occur in the literature and there is some con-
Sderable confusion about the relationship between them. The first, pr, is defined
10 be the critical value of p above which the average number of points wet by f‘ll.lld
from the origin becomes infinite. Now it is easy to see that if there is a positive
Probability tpy¢ infintely many points are wet then a fortiori the average number of

Points we 45 infinite. Thus for any lattice. T

'pT\<~PH'f\V\-;4-: e R (1
| | 73
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3 in a ver
in (1) seems to pe very difficult. Sykes & }?ssam ;gc; thez
obtained some very elegant resuits about a quantity PE W ies of
which is defined in terms of singulari e
€ mean number of clusters on the lattice. For bond perco

€Xagonal lattice H they show that

Pe(T) = 2 sin (z/ 18) = 1—py(m).
It seems to be extremely difficult tg relate

Probabilitjes’ Py and p, . and physical]
least) to be ag hatura] ap

Pg with either of the other two "c.ntlcatl
Yy it does not appear (from its definition a
Object as py or Pr- Exact rigorous bounds for py and 512
. For €xample, for the bond percolation problem on "

eoretical results are thoge of Harris'® and Hammersely
which show that

is a “folk lore mytl}’
Percolation on the square, trllt
Sykes—Es'sam result for pg.

PS even physically if the three
ifferent,

Critical Probabilities for bond
lattices has been settled by the
ting mathematically'and perha
H»PE, Py turneg Out to be a1 g

angular ang hexagona]
would be mogt intereg

6. First Passage percolatiop
Consider 5 Populatiop PP, Py
of the rea] line, Suppose that ap individug) p
(t, e+ 81) it has Probabilit

Y M8t + o(5¢) of infecting p, ¢ Py is infected at time
{=0, the Number N, of individyajg infected by
Process, whose distribyti o -

time ¢ js the well.known Poisson
ribution is giyer, by o |

PETPUVEE

e (Ank .
.P[N¢=k]= k(! | (k=0,1,.,,)-
A more generg] ‘sit'uation is where individualg such ag ireés are sit'uated at the
vertices of g graph G jn which neighbouyrs are joineq by an edge ang each tree, once
f

probability \6; + o(6f) o infecting any of its neighbouyr, independent-
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ly for each neighbour. The problem is completely equivalent to the following prob-
lem. Assign to each edge e; of the graph G a random variable #; drawn from the
¢Xponential distribution with density function

_ e_hx x=0 .1
&=, x<0 M

We call #; the time coordinate associated with the edge ¢; joining u to v and regard
.f;- & the time taken for 4 to infect v. The problem is to see how far disease spreads
Ina given time,

_ First passage percolation is the more general problem when to each edge of the
ditected graph G we associate a random variable drawn from a fixed distribution
an'd then try to determine the probability distribution of the fastest time between
Pairs of points of the graph. For example, let G be the graph shown in Fig. 8.

Fig. 8

The firss passage time Iap between A and B is given by

u; tus .
tAB=min u; +U2 + u,
us +u,

E"en- When G is such a small and relatively simple graph, finding the distribution of
:i?: 15 non-trivia] Thjs is because if two paths P;, P, have a comon edge the _

8 10 travel along them are dependent random variables and there is no easy way
%! calculating their distribution. A o »

Very crude technique, but one which is used quite extensively, is to rec!uce the
‘andom problem to a deterministic problem by replacing each random variable b.y
lts eXpected value and then to solve the associated deterministic problem. Thus lf.

®U; above have expected value iz, we would have :

o - fuy tus
Etap < Emin| wy +u; +us
Tt Ug + g

75
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U, +u5
Smin & u, +u, +u,
u3-+u4

tained so far,

Consider the infinite square lattice with vertices at all integer points (1) of the
plane. Suppose that to each ed

ge e; of this lattice we independently assign a nor-
negative random ‘length’ or fime coordinate u; drawn from a given distribution
F(x).
Let ¢, be the random first Passage (shortest) time from the origin to (n,0) in this
lattice and let 7(n) be its expected value over a]] possible distribution of time co-
ordinates u;. -

The basic result of Hammersley & Welsh20

- anch th is that there exists a fime constant i
Such that as n — oo

O
n Kt

The constant p depends only on the distribution £, 1¢ is clearly not greater than
f1 the mean of the distribution f since it is obvious that for any n

7(n) < niz
If we denote by Sy

that s, <y, . However,
the expected value of Sy

origin to the line x = n, it is clear

for u seem to be weak. For example when the u;

- Oand I the best theoretical bounds to date are

0<u<043s
76
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whereas Monte Carlo simulation carried out by Welsh> suggests

u=0323

. Ef\;tllrlgllar If)ri?blem has been studied by Morgan & Welsh? and Hammersley.'® this
lattice orsi(e I?t dlr.st passage. Qercolation on the non-negative quadrant of'the squar'e
nates. Loos f n the. pOSlt‘f’e x and y directions and with exponential time coordi-
0rcha.rd o t; Yy speaking this is a model for the spread of infection t}-uo.ugh an
ordinat © presence. Of? very strong south-west wind! For example if time co-

es are as shown in Fig. 9, the set of trees infected by time 17 is marked with

A
A A
>— > >
A A
A A
L . —
7A A
8 3 >
9A A
8 E —
Fig. 9 _
4 Crog | | .
the f:;t‘}iellknown probability theory shows that if X; denotes the coordinate of

St point on the x-axis infected by time ¢ then X, ~ Az where A isa

Const
. ant of the exponential distribution (1). More generally if /; denotes the set of

Ointg
pro‘:‘tsthlzfec.te_d by time ¢, we let N, be a point of [, of maximum distance away
2 Nonnf Origin al.ld let the frontier R, be the subset of infected points which have
organ ;cted ngéghbour. If M(r) denotes the expected value of V; it s proved by
. Welsh?® and Hammersley'® that there exists a constant C, the velocity of
Process such that o :
lim M;(_.") = Cy\

t—>oo ¢

an . ir |
d that M(?) is differentiable with a derivative satisfying

%Q:IZAR_(I)._._ E  : /.’.:‘\(;Z%?m

dt .
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where again A is the parameter of the underlying exponential distribution, The con-

Stant C'is shown to lie between 2.18 and 4.31 though numerical evidence Suggfsfs

that its true value is a little more than 3.4. What is interesting about (2) is that it is

a first analytic resu]t expressing the intuitively appealing idea that the rate of

growth of a spatia] epidemic is Proportional to the size of jts frontier. This idea has
25

been extended by Mollison?s to other epidemics. An interesting open problem is to
obtain some result of the sam

€ nature as (2) when the underlying distribution is not
exponential .

) ) , 19 [ ing.
For a more recent work on the ideas of this section see Hammersley,'” King
man?? or Smythe, 30

7. Growth processes

Closely related to the percolation processes described abov
cesses studied by Richardson, 27 pjg family of
lation and the model studieq by Willi

e is a class of growth pro-
Processes includes first passage perco-
ams & Bjerknes, for the spread of an abnor-

yeomb of two-dimensiona] space, say the

s in discrete jumps r=0,1,2 ... At time
I'=0, the cell at the origin is black and ) Other cells are white, If 4 cell is black at
ime ¢ i cell is white at time 7 ap

The growth process Go'p) D e
This process is exactly like Gp exce
at time ¢ becomes black at time ¢+

e

oy [POR

o

i g
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tion of # and p which is greater than 0 and less than or equal to 1 for all n and all p
which are greater than zero. A simple argument shows that this is almost e).{ac-tly
the same as first passage percolation on the dual tessellation with the restriction
that the time coordinates y; have to take integer values.

A growth process wirh, deaths ‘
Again this is a growth process of the same type as Gp except that black cells do
ﬂO.t Iemain black permanently. Instead if a cell is black at time ¢ and has a white
neighbour jt becomes white at time ¢ + 1 with probability q.
An interesting problem in connection with this process is finding conditions
Which guarantee the survival of the black cells. A fairly obvious necessary condition

Sthat g<p. As far as I know it is still not known whether this is sufficient.
An epidemipc model
Divide the plane into squares and start the process at time =0 with one

Patticle in eqp, Square. Suppose that the particle at the origin is unwell and all the
Others are p

: ealthy, As time passes the particles follow independent ].Brownia_n
Motion trajectories, A Square becomes black (= unhealthy) at the first instant it

:Omaiﬂs 3 sick particle. A healthy particle becomes unwell as soon as it shares a
quare with ap unwell particle. '

The Eqep, 8rowth process

is is Probably the simplest growth process and was first studied by Eden.* The
Plane j5 divided into Squares. At time ¢ = 0 the one cell is black and all other cells
e white, A Stage =7 + 1 we pick at random an edge from the boundary of the
atla‘fk configuration at time n, and make the white cell sharing this edge black. Thus
ime £ = 1 we have a connected configuration consisting of exactly n black cells.
U after say three stages of time the possible configurations (with origin

Fig-lo

_79
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marked) are as shown. [ et Cn be the set of all
each ¢ e C,, associate g Probability P(c) that at s
figuration is in fact ¢ . S
Problem. Let I = the time for the point x = » to become black. Obviously £, 2
n and by symmetry arguments ¢, >
An interesting and stif} unso

Its see Lunnon. 23 .
Richardson?” studies the ‘shape’ of the black configuration in these processes

. . e
‘time progresses, His formal results are not easily stated and in some ways pose mor
problems than they solve! F

. 1 S
Of example in the process Gp computer Slf“mauo.gs
indicate that as p varjes from 1 to O the ‘shape’ of the black configuration varl
from a diamond to 2 circle.

the black region tends to become more jagged. At the moment there is no theoretl
cal reason for this, . :

8. Related problems
We conclude with 5 brief description_of Some related problems.

The Ising model o f ferromagnetism

Consider a finite graph G. With each Vertex v of G associate a spin @, which ca_l_]
take the valyes 21, If there is a coupling constant Je associated with each edgee=

(u.v) of G the Hamiltonian of the System w is defined tq be

Hw)=—3 Je(0,~1)

_ - eeE(G) -
where E(G) is the edge set of G angd Oc the spin of the edge e under w is given by

Physics such as the Ashkin-Teller model, ang
Kasteleyn,'® ' _ -

Random clumping

Many practical problems reduce to the sirﬁple mode] in " ‘ jg-
which lamjnae of neglig
ible thickness are scattered randomiy ang independently On a plane surface and the

- 80

possible n-cell configurations. With
tage n of the Eden process the con-

v 4

. ils of '
ent configurations there are in C,. For details of -
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problem is to determine the average number of ‘clumps’ or the average size of a
clump. Typical examples arise in the study of quantitative problems connected with
dust particles in the air, bacterial counting, or even in one dimension traffic flow.
For a detailed account of such phenomena and the various approaches to settling
Fhem we refer to the monograph of Roach.? Basically the situation is that except
In very special cases no exact analytic solution has been found and various approxi-
mat%ons or simplifications have to be made. We show here how one such approxi-
Mation given by Roach (Chapter 5) is essentially a percolation problem.

Suppose that the laminae are placed at random points on a lattice and that the
asumption is made that only adjacent laminae overlap. That is, clumps are formed
by _li“king only those laminae whose centres are on adjacent points of the square
attice. If now we take p as the probability that a laminae falls on a particular
Yettex of the square lattice I we have exactly the cluster problem for the vertex
Percolation model, in which clusters correspond exactly to clumps.

' As a measure of the difficulty of the percolation model Roach in Chapter 6 con-
fiders the clumping problem (= vertex percolation) model for the 2 X n lattice.

N e I i

Fig. 11

This mode] pag been solved, for details see Roach.2®

Z ERTnetworks

Sur ® concept of a PERT or critical path network was first used in 1959 for mea-

Sl}nng and controlling development progress for the Polaris missile programme.

Bl.ncf th?n it has been widely used in operations research—for a bibliography see
igelow,

A PERT network consists of a network which has no directed cycles. The edges
of the Network represent jobs and the orientation and arrangement of the edges
?epends on the precedence and priorities of the jobs. For example if a project con-
:'»ISts of four jobs Jy, I, J3, J4 in which jobs Ty, J» must be completed before J3
S started and T mugt pe co,mpleted before J4 is started the corresponding network
B shOWIl in Flg. 12. Now suppose that the jobs are'assigHEd duration times; this is
®quivalent 1, assigning lengths to the edges of the network. The time to complete
the whole Project is then the length of the longest path in the network. In many.
3pplicationg the time needed to complete any job is uncertain—that is it' is taken to

® 2 random variable from a known distribution. The problem then is to ﬁn.d a
longest Toute in a random network. Since the network has no directed cycles this is
*asily seen to pe equivalent to a random shortest route problem—namely first

Passage Percolation.

81




Percolation and related topics

2 graph G we mean an assignment of one OZ

of G in such a way that if two vertlces1 E;fd
joined by an edge they have different colours. Probably the best known uns?a;ar
problem in 'combinatorial mathematics is deciding whether or not every p
graph has a four—coloun’ng.

k-colours Ci....C, to each vertex

converges to 3 limiting
statistical mechanics, find PQA).
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