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Summary

The interaction between sibling species that share a zone of
contact is a multifaceted relationship affected by climate
change [1, 2]. Between sibling species, interactions may
occur at whole-organism (direct or indirect competition) or
genomic (hybridization and introgression) levels [3–5].
Tracking hybrid zonemovements can provide insights about
influences of environmental change on species interactions
[1]. Here, we explore the extent andmechanismofmovement
of the contact zone between black-capped chickadees
(Poecile atricapillus) and Carolina chickadees (Poecile caro-
linensis) at whole-organism and genomic levels. We find
strong evidence that winter temperatures limit the northern
extent of P. carolinensis by demonstrating a current-day
association between the range limit of this species and
minimum winter temperatures. We further show that this
temperature limitation has been consistent over time
because we are able to accurately hindcast the previous
northern range limit under earlier climate conditions. Using
genomic data, we confirm northward movement of this con-
tact zone over the past decade and highlight temporally
consistent differential—but limited—geographic introgres-
sion of alleles. Our results provide an informative example
of the influence of climate change on a contact zone between
sibling species.

Results

Hybrid Zone Movement and Geographic Introgression
Genomic comparisons show that the chickadee hybrid zone in
southeasternPennsylvaniahasmovednorthbetweenhistorical
(2000–2002) and contemporary (2010–2012) periods (Figures
1A–1C; Figure S1 available online). From the 1425 locus data-
set, which consisted of 167 individuals, 75 loci showed clinal
geographic variation and had cline widths less than 100 km.
Of these clinal loci, 23 had significantly different cline center
estimates (i.e., nonoverlapping 95% confidence intervals) be-
tweenperiods afterBonferroni correction (TableS1). Averaging

across these 23 loci, the center of the hybrid zone shifted north
byw11.5 km over the past decade (Figures 1A and S1).
There were two genetic clusters in both periods (Table S2).

Analyses with the program STRUCTURE revealed (1) genetic
admixture within historical and contemporary Nolde Forest
(NF) and HawkMountain (HM) populations and (2) the absence
of genetic admixture at Great Marsh (GM), Villanova University
(VU), and Tuscarora State Forest (TU) (Figure 1C). Eleven indi-
viduals showed admixture in the historical sample, which
we determined by examining parental species membership
coefficient proportions: proportions < 0.99 in either parental
category indicate admixture (Figure 1C, using membership
coefficient proportions outlined in [6] and [7]); six (56%) of
these had the signature of F1 hybrids. Seven individuals
showed genetic admixture in the contemporary sample; four
(57%) of these possessed genetic signatures of F1 hybrids.
Geographic introgression of alleles was highly variable

across the genome, with individual loci showing either consis-
tency or inconsistency between periods (Figures 1A and 1B;
Table S1). A subset of loci exhibited generally concordant cline
center estimates clustered around the contact-zone center,
whereas other loci showed variable extents of northward intro-
gression (Figure 1B). Loci within these two clusters were
partially consistent between time periods (Table S1). The loci
exhibiting narrow cline widths and concordant centers were
significantly more likely to be located on the Z chromosome
than on autosomes and to be identified as interspecific FST

outlier loci in previous analyses (Table S1) (S.A.T., R.L.C.,
I.L., T.A.W., and V.F., unpublished data).

Distribution and Climate
Independent eBird data allowed us to map contemporary and
historical locations of the contact zone between Poecile atri-
capillus and Poecile carolinensis across a broader geographic
extent than the transect of genetic sampling locations (Figures
2A and 2B) and similarly revealed the hybrid zone move-
ment seen in the genomic data. Changes in proportions of
P. carolinensis within the region of each sampling site further
match anecdotal data from the sites (Figure 2C; Table 1).
Cold winter temperatures appear to limit the northern extent

of P. carolinensis. The northern range limit of P. carolinensis is
not coincident with a physical boundary or habitat shift, but
instead closely aligns with the mean minimum winter temper-
ature 27!C isotherm [8, 9]. Physiological experiments have
shown that P. atricapillus tolerates low winter temperatures
better than P. carolinensis does [10]. We used eBird data
and climate records from the PRISM database (2011, PRISM
Climate Group; map created July 6, 2013) to evaluate the rela-
tionship between mean minimum daily winter temperature
([MDWT]; December to February) and the location of the
chickadee contact zone (Figures 3A and 3B). We chose to
build the model using MDWT given the aforementioned evi-
dence of a relationship between the northern range limit
of P. carolinensis and this parameter. By considering evi-
dence for cold temperatures limiting the northward limit of
P. carolinensis, we believe that MDWT is the best-available
temperature indicator from PRISM, reflecting both typical
minimum temperatures and extreme fluctuations. Note that
mean and minimum temperatures are typically correlated.*Correspondence: sat235@cornell.edu
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An eBird observation site was considered to be within the
contact zone if at least 5% of the surrounding area was calcu-
lated to have both P. atricapillus and P. carolinensis (Fig-
ure 3A). The probability that an eBird observation site was
within the contact zone was highly correlated with MDWT (Fig-
ures 3C and 3D). This correlation, however, changed slightly
from east to west across Pennsylvania: the temperatures
that predicted the location of the contact zone were warmer
in the interior of Pennsylvania than at the coast (Figure 3D).

Accounting for longitudinal variation in the predictive ability
of temperature, the statisticalmodel describing the contempo-
rary location of the contact zone (from eBird) based on current
MDWT (from PRISM) was accurately able to predict (hindcast)
the location of the contact zone a decade ago based on tem-
perature data from that period (AUC = 0.91). Importantly, in
the region of our genetic transect in southeastern Pennsylva-
nia, mean minimum winter temperatures have increased over
the past decade: model assessment site MDWT increased
by 0.76!C during this time period (PRISM Climate Group).
The predictive ability of the model is not an artifact of the
absence of temperature change or contact zone movement
over the past decade; rather, it captures observed temporal
variation and movement in the chickadee contact zone.

Discussion

Climate-Mediated Movement of the Chickadee Hybrid Zone
Climate change is causing northward movement of the chick-
adee hybrid zone, as seen in both our geographically focused
genomic transect in southeastern Pennsylvania and more
broadly in the eBird comparisons that span the past decade.
Our use of genomic comparisons between sampling periods
and our novel approach to contact zone modeling using the
eBird database have allowed us to document consistency in
observed hybrid zone movement between genomic and distri-
bution data. We have also documented consistency between
observed movement from distribution data and predicted
movement from our climate model; additionally, MDWT has
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Figure 1. Genomic Evidence for Contact Zone
Movement

(A) Locus-specific geographic clines depicting
P. atricapillus allele frequencies for 23 loci with
nonoverlapping 95% confidence intervals for
both sampling time periods. Historical samples
(2000–2002) in gray, contemporary samples
(2010–2012) in black; arrows indicate mean cline
center estimates.
(B) Locus-specific geographic cline centers
plotted against cline widths. Contemporary sam-
ples in black, historical samples in gray.
(C) Bayesian assignment probabilities from
STRUCTURE for P. atricapillus (light gray) and
P. carolinensis (dark gray) at K = 2. Each horizontal
line represents one individual. q = the probability of
assignment to each genetic population. Dashed
lines indicate threshold q values used to catego-
rize individuals (see Results). Population acronyms
as in Figure 2C.

significant predictive power with respect
to the geographic location of the contact
zone. We suspect that other features of
the environment that potentially amelio-
rate the effects of winter temperatures

may influence regions closer to the coast. For example, the
minimumwinter temperature records we used do not describe
the duration over which cold temperatures are experienced.
Coastal sites may experience their lowest temperatures for a
shorter duration than inland sites, given the moderating effect
of the Atlantic Ocean. The rate of hybrid zone movement
exhibited by the chickadee hybrid zone in southeastern
Pennsylvania (w1.0 km/year) generally matches the rate of
hybrid zone movement of the chickadee hybrid zone recorded
in Ohio (1.0–1.6 km/year) [1, 10–13] and in other moving hybrid
zones [1].
It has been hypothesized that the chickadee hybrid zone is a

tension zone in whichmaintenance of the narrow zone width is
likely caused by strong intrinsic selection against hybrids [11].
Results from our geographic cline analysis support this asser-
tion. Multiple loci, distributed through the chickadee genome,
exhibit clinal variation across the hybrid zone and have narrow
widths (Figure 1A; Table S1). This pattern is potentially the
result of underdominant selection (heterozygote disadvan-
tage) against admixed genomes in hybrids. Furthermore, the
increased number of clinal loci that we detected on the Z
chromosome follows expectations from Haldane’s rule and
could reflect selection against heterogametic ZW individuals.
Broadly, a pattern of increased differentiation of the sex chro-
mosomes compared to the autosomes is common in birds and
other organisms [14, 15]. Other explanations for this pattern
include smaller effective population size of sex chromosomes
and lower recombination rates, potential for a higher propor-
tion of infertility alleles on sex chromosomes [16], meiotic drive
[17], and Z-maternal interactions [18]. Differential response
of the parental species to climate change (i.e., expansion of
P. carolinensis northward), rather than differential survival of
hybrids, is likely responsible for the rapid northward shift in
hybrid zone location. The predictive ability of our model indi-
cates clearly that climate is playing a role in the northward
movement of this hybrid zone.
Northward movement of the chickadee hybrid zone may be

facilitated by mate choice and superior competitive ability of
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P. carolinensis males [12, 13]. The direction of movement of
the chickadee hybrid zone we recorded matches predictions
based on mating preferences of P. atricapillus females, which
preferentially seek out extra pair copulationswith carolinensis-
like males [13], potentially because carolinensis tends to be
dominant in interspecific male competitions [12]. We currently
lack detailed data on differential fertility and/or survival of F1
hybrids and backcrosses that could explain the hybrid zone
movement we detected without an influence of climate. How-
ever, hatching success of hybrid offspring is significantly lower
than either parental species in southeastern Pennsylvania
(R.C., unpublished data), like it is in Ohio [11], and multiple
allelic clines indicate that selection against hybrids is strong,
potentially due to underdominance. The high proportion of
hybrids that are F1 and the low number of backcrossed
hybrids in our data also suggest that the fitness of hybrid
chickadees is low. In the absence of hybridization, we may
expect the same directional movement of the hybrid zone,
given that P. carolinensis appear to be dominant in interspe-
cific interactions, which may aid in territory acquisition at the
northern edge of their range [12].

Investigations into physiological tolerance differences be-
tween P. carolinensis and P. atricapillus suggest that
P. atricapillus are better adapted to colder winter tempera-
tures (to a large extent as a function of body size) and that
increases in winter temperatures may facilitate northward

Figure 2. P. atricapillus and P. carolinensis Distri-
butions, eBird Localities, and Study Sites

(A) Approximate ranges of P. atricapillus and
P. carolinensis and contact zone.
(B) Cumulative distribution of eBird reports for
P. atricapillus (black), P. carolinensis (gray), or
both species/hybrids (yellow) in eastern North
America during breeding (May to June) in 2010–
2012.
(C) Approximate location of contact zone (yellow)
and sampling transect in southeastern Penn-
sylvania. TU = Tuscarora State Forest (40.80N;
276.03W), HM = Hawk Mountain (40.65N;
276.00W), NF = Nolde Forest (40.28N; 275.96W),
GM = Great Marsh (40.14N; 275.74W), VU = Villa-
nova University campus (40.04N; 275.34W). Num-
ber of samples per site indicated in parentheses
(2000–2002 or 2010–2012).

Table 1. Proportion of P. carolinensis Reported to eBird at Sites
Surrounding Genomic Sampling Locations in Both Historic and
Contemporary Time Periods

Site 2001 2011

Tuscarora State Forest 0 0
Hawk Mountain 0 0.09
Nolde Forest 0.86 0.91
Great Marsh 1.00 0.99
Villanova University campus 0.98 1.00

expansion of P. carolinensis [10]. Our re-
sults support this interpretation and indi-
cate that similar responses to climate
warming are occurring in discrete regions
of the contact zone. Hybrid individuals
may be particularly sensitive to winter
temperature minima, given their admixed
genome and the potential for mitonuclear

incompatibilities [10]. Concomitant strong selection against
hybrids and increased dispersal ofP. carolinensis into the con-
tact zone in response to climate change would produce the
pattern of a rapid northward movement that we see in both
whole-organism and genomic data sets.

Hybrid Zone Movement and Climate
In a recent synthesis, 23 hybrid zones for which primary liter-
ature exists were shown to have moved at rates between
0.02 and 5.8 km/year over varying timescales; however, the
underlying causes of hybrid zone movement were often
unknown or anecdotal [1]. The fastest-moving hybrid zones
involved species with high dispersal ability, including butter-
flies [19], birds [20–22], and invasive ants [23, 24], in hybrid
zones thought or known to be tension zones [1, 25]. Similarly,
12 of 39 avian hybrid zones have moved within recorded his-
tory at varying rates and for multiple reasons [14]. When
zones that are increasing steadily in width (unlike the chick-
adee hybrid zone) are excluded, 9 of 15 zones in which shifts
could have been detected from repeated surveys show
movement [14]. The mean rate of movement of these hybrid
zones (w1 km/year) matches what we report for the chick-
adee hybrid zone, and the majority of the zones that show
movement without concomitant broadening are moving
along north-to-south axes [14]. Climate change was impli-
cated as a causal factor for hybrid zone movement in 2 of
23 overall cases of hybrid zone movement and in 4 of
12 cases of moving avian hybrid zones [1, 14]. Notably,
the well-studied carrion crow (Corvus corone)/hooded crow
(Corvus cornix) hybrid zone is only moving where the line of
contact runs east to west (allowing north-to-south move-
ment) in Denmark and Scotland. This movement, which
may be a response to climate change, is similar to what we
report here [1, 14].
Linkages between climate change and hybrid zone move-

ment have been explored rigorously in only a handful of cases.
Most recently, climate change and hybrid zone movement
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were investigated in a western European avian hybrid zone
between migratory melodius warblers (Hippolais polyglotta)
and icterine warblers (Hippolais icterina) using species distri-
bution modeling [2]. Engler et al. sought to determine the
relative influence of species interactions and climate on
hybrid zone movement, concluding that biotic interactions
(i.e., competition with H. icterina) are currently limiting range
expansion of H. polyglotta northward [2]. These biotic limita-
tions may impede the ability of H. polyglotta—the apparently
less competitive species—to respond to climate change. It
seems unlikely that biotic interactions will impede move-
ment of the chickadee hybrid zone in response to climate
change, given that the southern species, P. carolinensis,
appears to dominate interspecific interactions [12]. In fact,
mating preferences may even facilitate movement as previ-
ously discussed [13]. Not surprisingly, this comparison high-
lights that the influence of climate on hybrid zone movement
will be complex and hard to predict, always influenced by spe-
cies interactions and ecology. However, in both situations,
climate change is having an impact, direct or indirect, on spe-
cies interactions.

General Conclusions
We document an example of climate-mediated movement of a
North American avian hybrid zone using a combination of tem-
poral genomic, distributional, and climatic sampling, making
use of the world’s largest citizen science database. The rate
of hybrid zone movement we report is comparable to move-
ment rate estimates for other hybrid zones, and our explora-
tion of the association of the contact zone with meanminimum
winter temperature provides the first robust evidence that
climate change is influencing the movement of this hybrid
zone. We encourage others to harness the power of compre-
hensive analyses and data sets for our understanding of the in-
fluence of environmental change on speciation and species
interactions.

Experimental Procedures

Sample Collection and Preparation
Blood samples were collected as described in [13]. We chose samples from
two periods that were 10 years apart (2000–2002 and 2010–2012). Within
each period we selected unrelated individuals, with the goal of having as
even a sampling as possible across available sampling locations in each

Figure 3. Association between Contact Zone Position and Temperature

(A) Chickadee contact zone mapped from eBird reports from 2010–2012 showing P. atricapillus (black shading), P. carolinensis (gray shading), and contact
zone (minimum 5% of sites predicted to have both species, orange). Red line denotes approximate location of genomic sampling transect.
(B) Mean daily minimum winter temperature in 2011. Red line denotes approximate location of genomic sampling transect.
(C) Quadratic logistic regression of mean minimum daily winter temperature (December 2009 to February 2012) and contact zone position estimated from
spring eBird data (2010–2012).
(D) Heat map of complex relationship between predictive ability of daily minimum winter temperature and longitude for contact zone position.
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period. In 2000–2002, samples were only available from four locations (Fig-
ure 2C). An additional location, TU, was added to the sampling regime in
2006 to ensure that one sampling site remained ahead of the moving hybrid
zone. This site is included in the 2010–2012 transect, with five sampling
points (Figure 2C).
DNA was extracted from all samples using DNeasy extraction kits

(QIAGEN) and standard blood extraction protocols, eluted in water, and
concentrated using a vacuum centrifuge. Blood samples are archived at
Villanova, and DNA extractions are archived at the Cornell Lab of
Ornithology. Villanova University’s IACUC approved protocols for all field
methods.

Genomic Data
Genotyping-by-sequencing (GBS) libraries were prepared and analyzed at
the Institute for Genomic Diversity (IGD) at Cornell [26], using the enzyme
PstI for digestion and creating a library with 96 unique barcodes. GBS
libraries were sequenced on two lanes of an Illumin HiSeq 2000 (100 base
pairs [bp], single-end) at the Cornell University Life Sciences Core Labora-
tories Center. GBS data were processed as in [27]. See Supplemental
Experimental Procedures for data filtering details.

Admixture Analyses
To examine temporal changes in population admixture, we used
STRUCTURE version 2.3.1, analyzing each time period separately [28]. We
present details of the STRUCTURE analyses in the Supplemental Experi-
mental Procedures.

Geographic Cline Fitting and Concordance
To quantify hybrid zone movement, we used a geographic cline approach.
Details can be found in the Supplemental Experimental Procedures.

Distribution Modeling and Climate Association
To map the distribution of the contact zone between P. atricapillus and
P. carolinensis, we used records from the eBird database [29]. We looked
for evidence that winter temperature determines the contact zone (Fig-
ure 3A) by using information on the contact zone derived from our eBird
distribution map (as explained in the Supplemental Experimental Proce-
dures) and information on MDWT from PRISM. We provide details of our
distribution modeling and climate association approaches in the Supple-
mental Experimental Procedures. We conducted all analyses of eBird
data using the R statistical language [30], with the supplemental spatial
analysis package sp [31] for manipulation of spatial data, the generalized
linear model (GLM) function for conducting logistic regression analysis,
and the supplemental PresenceAbsence package [32] for calculating AUC
statistics.

Accession Numbers

The Dryad DOI for the SNP data reported in this paper is 10.5061/
dryad.7gg47.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-
dures, one figure, and two tables and can be found with this article online
at http://dx.doi.org/10.1016/j.cub.2014.01.069.
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atricapillus allele frequencies for the 75 loci exhibiting clinal variation.  
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Table S1, related to Figure 1A and B. Interspecific FST, geographic cline parameters for both 
time periods (2000-2002 shaded grey, 2010-2012 unshaded), and putative chromosomal 
positions (based on alignment of GBS tags to the Zebra Finch genome) for the 75 loci that show 
clinal variation across the zone of contact. Interspecific FST outlier loci (bold + italicized). 
 
Locus FST Center Width Centre Width Position 

2402 0.75 109.04 18.13 119.00 3.33 1 
2936 0.44 106.53 39.56 120.19 58.12 3 
4872 0.52 104.31 65.00 116.09 34.70 19 
6466 0.59 108.06 20.42 116.69 34.70 1 
6773 0.76 106.98 14.28 119.00 3.34 Z 
7200 0.56 113.92 19.90 122.24 16.56 8 
7252 0.51 104.37 32.28 101.70 68.05 10 

10116 0.57 106.97 19.52 118.92 40.94 5 
11304  0.39 85.11 80.93 100.79 68.37 5 
13296 0.5 113.14 40.68 117.36 30.10 4 
13298 0.63 108.57 15.81 118.86 22.46 4 
13439 0.44 115.03 41.47 114.71 37.36 4 
14452 0.24 116.33 18.76 131.00 37.40 1A 
14974 0.3 113.35 42.74 126.70 31.53 3 
15361 0.55 108.69 28.01 117.48 28.74 1A 
16034 0.52 110.12 80.34 114.13 48.37 13 
16646 0.49 116.96 44.92 122.85 33.98 5 
18491 0.52 108.60 75.56 113.17 58.73 8 
18509 0.62 105.70 20.13 118.49 18.43 5 
20053 0.63 109.19 18.20 118.34 3.25 5 
20854 0.51 101.03 73.37 105.04 56.74 5 
23528 0.53 103.46 55.21 118.06 39.39 9 
23963 0.57 111.41 30.98 118.56 26.55 2 
26109 0.75 112.19 21.38 119.00 3.33 Un 
34177  0.46 92.01 81.44 104.25 67.00 1A 
36959 0.43 116.13 26.32 124.57 22.78 1 
38281 0.56 104.83 25.84 111.62 48.10 3 
40606 0.76 109.36 23.90 118.83 20.51 Z 
41934 0.76 111.19 21.74 118.58 3.27 Z 
43099 0.4 110.43 20.72 118.13 92.81 1 
47215 0.5 106.06 42.53 103.73 60.43 1A 
47709 0.25 118.57 14.35 125.36 24.26 1A 
49913 0.63 108.55 41.18 119.01 32.52 3 
52460 0.5 106.68 44.18 114.26 32.53 14 
52650 0.54 106.13 57.56 114.99 37.44 19 
60288 0.6 110.21 30.42 116.20 26.63 2 
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60421 0.74 109.32 17.61 119.13 3.35 1 
64664 0.76 107.82 16.52 118.90 3.33 Z 
67975 0.57 111.42 20.68 118.58 33.31 3 
68066 0.54 106.52 33.67 116.95 33.54 19 
76264 0.58 109.63 28.35 116.59 27.22 2 
78968 0.51 118.09 25.43 121.44 18.10 Z 
81898 0.76 108.24 16.78 118.87 3.31 Z 
82180 0.76 108.09 16.11 118.88 3.31 Z 
82750 0.76 109.08 17.00 119.00 3.34 5 
83243 0.34 116.89 23.68 125.90 25.77 1B 
87715 0.76 110.07 18.34 117.63 19.20 1 
89121 0.18 109.89 82.51 136.14 77.26 3 
90034 0.29 115.91 33.14 123.27 38.08 1 
95247 0.45 114.24 22.47 125.65 22.50 1A 
98617 0.76 106.92 14.35 118.79 3.30 Z 

105642 0.05 115.57 70.08 123.35 65.63 1A 
106823 0.26 114.82 36.58 137.18 62.16 Un 
107804 0.59 109.67 24.83 117.27 22.48 5 
108282 0.64 107.80 42.60 117.25 28.10 3 
108579 0.54 107.17 75.08 115.79 35.82 2 
115173 0.75 111.53 20.37 119.00 3.33 1A 
117446 0.25 119.93 3.37 142.90 59.68 1 
118914 0.5 107.22 29.22 111.61 25.76 4 
124102 0.41 102.81 27.29 113.85 34.55 20 
141413 0.58 110.37 29.44 118.60 26.55 9 
141683 0.76 110.37 19.27 119.26 3.35 1 
143902 0.76 106.71 14.60 118.89 3.32 Z 
143986 0.76 110.65 19.01 118.70 3.30 1 
146318 0.46 117.10 21.30 122.87 21.08 1A 
147414 0.76 110.25 19.91 117.96 38.80 5 
147796 0.46  86.74 90.07 83.29 87.89 4A 
148901 0.63 113.07 24.14 119.56 18.63 1 
151111 0.75 107.95 16.75 119.00 3.33 Un 
153446 0.45 106.03 16.85 118.71 24.04 1A 
154344 0.76 108.21 19.64 118.90 3.31 Z 
169164 0.27 119.85 3.37 142.84 38.62 1A 
174663 0.64 108.71 40.02 117.87 32.85 3 
177657 0.26 107.15 32.69 117.20 66.76 4 
186465 0.64 112.84 21.26 119.49 20.88 1A 
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Table S2, related to Figure 1C. Likelihood estimates for different values of K (number of 
genetic clusters) from STRUCTURE including mean ln likelihood (ln P(X|K)) for 20 iterations and 
ΔK for each value of K calculated using the method outlined in Evanno et al. (2005). 

 2000-2002 2010-2012 

K ln P(X|K) ΔK ln P(X|K) ΔK 

1 -75464  -69687  

2 -69554 5292 -63048 5564 

3 -70170 1164 -64123 141 

4 -69441 - -65374 4747 

5 - - -70273 - 
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Supplemental Experimental Procedures 

UNEAK and post-processing methods, and genomic dataset generation  

Raw Illumina data files were filtered to individual genotypes using the Universal Network 

Enabled Analysis Kit (UNEAK) pipeline [S1], which is available as part of TASSEL 3.0 [S2]. 

The UNEAK pipeline retains reads with a barcode, restriction enzyme cut site and no ambiguous 

bases (‘N’s) in the 64 bp of the sequence following the individual barcode, and trims all 

acceptable reads to 64bp after the barcode. The pipeline then clusters reads into tags and stores 

counts of the tags present in each barcoded individual. All unique tags are then merged, and their 

counts in the whole sample of individuals are stored. The pipeline then performs a pairwise 

alignment of tags. Tag pairs with 1bp mismatches are considered as candidate SNPs. Reciprocal 

pairs of tags are retained as SNPs according to standard protocols of the Cornell Institute for 

Genomic Diversity with a user-specified error tolerance rate (0.03 here). After SNP 

identification, counts of each tag (or allele) are output for each locus and each individual. 

Following UNEAK filtering, individual genotypes were re-called using a global sequencing error 

rate of 0.03 and following the method detailed in [S3]. Genotype likelihood was calculated using 

a binomial sampling distribution. A genotype was called if its AIC value was at least 4 lower 

than the next best genotype. If this condition was not met, the genotype was coded as ‘missing’. 

Loci with a mean observed heterozygosity greater than 0.75 were discarded as a way to filter out 

potential paralogs. Discarding loci with heterozygosities between 0.5 and 1 did not significantly 

impact our results (data not shown). After filtering, we had 1425 loci that could be confidently 

called in at least 80% of individuals. 

Illumina sequencing of 190 individuals on two lanes of the Illumina Hi-Seq platform 

resulted in 496,872,131 reads. This dataset was trimmed to 400,000,000 reads which contained a 
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unique barcode and cut site remnant and no ambiguous sites (‘N’s). Prior to filtering, the data 

consisted of 103,641 SNP loci with mean coverage 2x (minimum coverage per individual 0.08x, 

maximum coverage per individual 303x). Of 190 individuals, 167 passed initial filtering. The 

UNEAK pipeline was run for the remaining 167 individuals, identifying 20,363 biallelic SNP 

loci, many of which had low coverage or were present in only a handful of individuals. Loci with 

more than 20% missing data and with observed heterozygosity > 0.75 were excluded, resulting in 

a dataset of 1,425 loci, with a mean coverage of 22x (min 12x, max 239x). From alignment of 

the GBS tags to the zebra finch genome the loci in this dataset are putatively distributed 

throughout the chickadee genome on chromosomes 1 – 28 and the Z chromosome, excepting 

chromosome 16. (Taylor et al. in review). 

 

Admixture analyses 

To examine temporal changes in population admixture we used STRUCTURE Ver. 2.3.1, 

analyzing each time period separately [S4]. Analyses were performed using an admixture model, 

correlated allele frequencies, a burn-in period of 50 000 cycles, and 500 000 additional cycles 

(determined from test runs to be sufficient for parameter stabilization). Using the no admixture 

model and sampling sites as prior information did not produce significantly different results (data 

not shown). Analyses were repeated 20 times for K = 1 – 5, where K = the number of genetic 

populations.  
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Geographic cline fitting and concordance 

To quantify hybrid zone movement we used a geographic cline approach. We fitted allele 

frequencies for each locus to a tanh model of cline shape by MLE [S5], and corrected sample 

sizes following [S6] as 

 

!! =
2!

2! ∗ !!" + !!" + 1
 

 

where N is the number of individuals sampled in a deme, FIS is the deficit of heterozygotes (zero 

if not positive), and FST is the fluctuation of allele frequencies between loci, after accounting for 

differences in their cline shapes. It is calculated from the residual variation around the regression 

line fitted during the concordance analysis (see below). 

Initially tanh clines were fitted for each locus that allowed both cline centre and width to 

vary in both time periods. Two further models were fitted to the historic data, constraining either 

the centre or the width to be equal to that for the same locus in the contemporary sample. 

Constrained and free models were compared using likelihood ratio tests. 

The concordance between mean hybrid index and allele frequency at each individual 

locus was calculated using the logit-logistic model of [S7]. The predicted allele frequency p in 

deme i is given by  

!! = !
!!!

!!! + (1− !)!!!!! 

 

where S is the mean hybrid index over all loci, u gives the relative difference in cline position, 

and v gives the relative difference in slope. Perfect concordance between a focal locus and the 
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mean hybrid index would result in u = 0 and v = 1.  Parameters u and v were fitted by MLE, 

using the R package mle2.  

 

Distribution modeling and Climate association 

To complement the genetic information collected from 2010 - 2012 on the transect of 

intensively-studied locations, we created a model of the current distribution of P. atricapillus and 

P. carolinensis over a broader area, based on data from the eBird database [S8]. We used eBird 

data from the area between 36° and 41°N latitude and 74° and 92° W longitude, and contained 

45462 records with observations of the two chickadee species from the months of May and June 

(the middle of the breeding season) of 2010 through 2012 inclusive. From these data, we created 

a map of the contact zone by making a spatial interpolation of the proportions of sites within 

overlapping 0.5° × 0.5° degree grids spaced at 0.015° intervals across the area of interest (Figure 

3A). To assess whether the eBird data contained enough information to show contact zone 

movement over the past decade we examined proportions of Carolina chickadees reported in 

regions surrounding transect sampling locations and compared these to long-term site-specific 

data, as well as estimates of population admixture from the genomic data.  

We chose not to use the distribution data from eBird to directly describe broad-extent 

changes in the location of the contact zone between the two species of chickadees, because 

results from preliminary analyses indicated that the data from eBird were too sparse from the 

earlier period of 2000-2002 to assess the location of the contact zone in this earlier period.  

Hence, we used a different approach to examining evidence for shifts in distribution, by testing 

the hypothesis that changes in range have occurred as a result of climate change and the 

determination of northern range limit of P. carolinensis. The northern range limit of P. 
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carolinensis, and thus contact zone between P. carolinensis and P. atricapillus, closely aligns to 

the average minimum winter temperature -7°C isotherm and physiological evidence suggests that 

P. atricapillus in Ohio are better able to tolerate winter temperatures than P. carolinensis [9-11]. 

We first examined whether winter temperature accurately predicted the location of the contact 

zone in 2010-2012, and then examined whether this relationship also held a decade earlier based 

on predicting the location of the contact zone in this earlier period, using temperature data from 

this earlier period, for locations where we did have data from eBird.  

We looked for evidence that winter temperature determines the contact zone (Figure 3A) 

using information on the contact zone derived as explained above and information on mean 

minimum winter temperature obtained from PRISM (http://www.prism.oregonstate.edu/).  We 

chose mean minimum winter temperature as our climate descriptor recognizing that minima 

should reflect temperature fluctuations and extremes, and chose not to model variance for the 

purposes of this study because of an absence of an obvious mechanism for effects of extreme 

temperatures on chickadee physiology, and the fact that mean and minimum temperatures are 

typically correlated. The data points were all eBird data locations within the area of interest, and 

we classified a location as being in the contact zone if at least 5% of eBird checklists within a 

0.5° block reported both of the chickadee species (the orange region in Figure 3A). The value for 

minimum winter temperature at each of these locations was the average minimum daily 

temperature from the period Dec. 2009 - Feb. 2012 obtained from PRISM GIS data layers. The 

region within which we assessed the relationship between minimum winter temperature and 

contact zone location was restricted to central Pennsylvania, between 78° and 75° degrees west 

longitude, which encompassed the contemporaneously sampled genomic transect. We restricted 

our analysis to data from this region for two reasons. First, we removed the eastern-most 
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available data in order to reduce the possible confounding effect of maritime climate causing 

differences in the meaning of the daily minimum winter temperature values: e.g., minimum 

temperatures might be experienced for shorter durations closer to the Atlantic ocean. 

Nevertheless, there might still be a gradient maritime effect that extends well inland, and so we 

modeled this in our analyses as an east – west gradient. However, this east – west gradient is 

only interpretable to the east of the Appalachian Mountains that run roughly north – south, which 

is the reason for our second, western constraint on the extent of the data used. The statistical 

model that we fit to our data was a logistic regression in which presence in the contact zone was 

the binary response variable and the predictors were: minimum winter temperature as linear and 

quadratic predictors, longitude as a linear predictor, and an interaction between longitude and 

squared minimum temperature. In biological terms, this model predicts the probability that any 

location will be within the contact zone, allowing for peak probabilities at some intermediate 

temperature, and with the temperature at which this peak probability occurs being allowed to 

vary from east to west.    

Given the relationship between minimum temperature and presence in the contact zone 

that we identified for the years 2010-2012, we evaluated whether this relationship was causal or 

merely a correlation by looking at the accuracy with which this model was able to predict the 

location of the contact zone for the smaller number of locations at which data from eBird were 

available in the years 2000-2002. Observed information was created for this earlier period using 

the same methods outlined above, and the locations of the 2000-2002 points and their associated 

minimum winter temperatures during this time period were run through the logistic regression 

model created for the period a decade in the future (see previous paragraph), in order to produce 

predictions of whether each point was or was not in the contact zone.  In order to make estimates 
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of presence in the contact zone for the earlier period robust, we only used data from 2000-2002 

locations if these locations had at least 20 sites within a 0.5° × 0.5° block surrounding each focal 

location. The accuracy with which predictions matched the observed status of each site was 

evaluated by calculating the AUC statistic to compare predicted probabilities with observed 

information. AUC values range from 0.5 (no association between observation and prediction) 

and 1 (perfect association between ordering of sites from highest to lowest probabilities. 

All analyses of data from eBird were conducted using the R statistical language [S12], 

with the supplemental sp package [S13] used for manipulation of spatial data, the glm function 

used for conducting the logistic regression analysis, and the supplemental PresenceAbsence 

package [S14] used to calculate AUC statistics. 
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