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unlikely to be as dramatic as is often
presupposed. The evolution of the
mammalian olfactory processing
system and its connections with
hypothalamic and other regions
controlling reproductive physiology
and behavior have resulted in a far
more flexible and integrated system
than that for processing pheromones
in invertebrates. We are unlikely,
therefore, to discover mammalian
pheromones which drive an inevitable
and unconscious behavioral or
physiological reaction such as that
portrayed, for example, in Roald Dahl’s
celebrated short story Bitch [20] which
features a fictional odourant cocktail
capable of driving men to exhibit
unconscious intense and insatiable
sexual responses to women.
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Climate Change: A Hybrid Zone
Moves North
A shifting zone of hybridization between two chickadee species helps
us understand the proximate mechanisms driving species responses
to climate change.
Bettina Harr1 and Trevor Price2,*

In association with climate change,
the northern range limits of northern
species are moving northward [1].
These species southern range limits
also appear to be moving northward,
albeit at a slower rate and with greater
heterogeneity between species [2,3].
While the ultimate reason may well be
climate change, the more proximate
mechanisms are difficult to determine.
How much can range shifts be
attributed to changes in the available
resources (such as a longer growing
season or different kinds of food) plus
competition for these resources [4]?
One reason why it is so difficult to
determine the role of competition is
that when resource quality or quantity
gradually varies over space, theory
predicts that the species will show a
large overlap in their geographical
range. One species may be superior at
one end of the gradient and the other at
the other end so that the two species
mutually set each other’s range limit,
but over an extensive area, each
species can persist alongside the other
by consuming a different portion of the
available resources [5] (Figure 1). The
gradual spatial turnover from one
species to the other makes it difficult to
empirically demonstrate competition
as the ultimate cause of the range limits
of each species. It should make it even
more difficult to assess drivers of range
expansions and contractions under
climate change.
Hybridization between species

changes this dynamic. A small amount
of cross-mating between a pair of
species can considerably narrow the
overlap between them [5] (Figure 1).
This is essentially because any
individual that hybridizes leaves no
offspring, and hence has zero fitness.
The result is a steep cline across which
the two species regularly interact,
making it easier to directly evaluate
species interactions in range
movements. Further, in a hybrid zone,
the southern limit of one species is tied
to the northern limit of the other, so the
two boundaries move at the same rate.
This coordinated change in range
movements, plus the close proximity of
the parental forms, implies studies on
moving hybrid zones have much to
offer to our understanding of species
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Figure 1. How competition and hybridization between species affects range limits.

The blue and grey lines depict mean values of a trait (e.g., beak size) across space for two
species competing for a resource (seeds, whose mean size varies geographically, dotted
line). (A) Model in which females always mate with males of their own species. (B) Same as
(A), but conspecific preferences are imperfect, such that when males of the two species are in
equal frequency, 1% of the time the females mate with a heterospecific male. Model after [5].
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responses to climate change. A
number of bird hybrid zones are
moving along a south–north axis [6],
and one particular hybrid zone is
the focus of a new paper by Taylor
and colleagues [7] in this issue of
Current Biology.

Taylor et al. [7] used genomic
methods to study a classic moving
bird hybrid zone, that between the
black-capped chickadee (Poecile
atricapillus, to the north) and Carolina
chickadee (P. carolinensis, lying
to the south) in eastern North
America (Figure 2). Based on songs
and morphology the zone is
considered to be about 30 km wide.
It stretches >1,500 km from Kansas
to New York state, although not
everywhere along this transect do the
species actually come into contact. The
hybrid zone has been moving north at a
rate of w1 km per year for more than
100 years [8,9]. Even though northward
movement commenced long before the
current global warming trend, climate is
strongly implicated as a determinant of
zone position, because it tracks
present-day winter temperatures well
[7]. For example, the zone dips south
300 km along the trace of the Smoky
mountains in Tennessee and North
Carolina [7].

Taylor et al. [7] performed genetic
analysis of the hybrid zone in eastern
Pennsylvania. Taking advantage of a
new high-throughput method called
genotyping by sequencing (GBS), they
were able to identify and genotype
1,425 single nucleotide polymorphisms
(SNPs) in 167 individuals across the
hybrid zone. Seventy-five SNP loci
showed clinal geographic variation,
with cline widths less than 100 km
(average 31 km). These are the loci that
can be used to study the temporal
dynamics of the hybrid zone at a truly
genome-wide level. When comparing
the samples taken from the same
hybrid zone 10 years apart, 71 out of
the 75 loci showed cline centers
displaced northwards in the more
recent sample, by an average of 9 km.
Ten of the 167 individuals studied were
clearly F1 hybrids between the two
species, but there are no obvious early
generation backcrosses. The genomes
of both species as awhole appear to be
moving north, with very little, if any,
introgression between the species.

The classic conception of a hybrid
zone is that of a ‘tension zone’ in which
the parental forms mate randomly, and
hybrids have low fitness. The zone is
maintained by a balance of dispersal of
members of the parental species into
the zone and selection against the
hybrids [10]. Most hybrid zones differ
from this ideal, however. For example,
nonrandom mating is common in
hybrid zones, with individuals more
often pairingwithmembers of their own
species than would be expected by
chance. This includes some of the
best-known hybrid zones, such as that
between the Townsend’s warbler
(Setophaga townsendi), and hermit
warbler (Setophaga occidentalis), in
the Pacific northwest, about which we
will have more to say below. Also in
contradiction to the classic
conception, parental forms often suffer
reduced fitness when on the wrong
side of the zone. For example,
resources may differ across the zone
(Figure 1), or males of one species
when surrounded by the other may be
subject to aggression [6,11]. In birds, it
is the chickadee hybrid zone that
comes closest to the notion of a tension
zone [6]. Based on mitochondrial DNA
differences, the two species may be
separated by asmuch as 4million years
[6]. This long separation time would be
expected to lead to low fertility in the
hybrids, as has been confirmed in field
studies of the chickadees [9] and is
supported by the apparent absence of
recent generation backcrosses in the
genomic analysis. As far as we know,
mating is random, i.e., conspecific
pairs in a particular locality do not
appear to be more frequent than
expected based on the frequency
of the parental types in that place.
Most pair formation apparently occurs
well before the breeding season
commences and exactly how the
heterospecific pairs form remains to be
determined [12], but the species do
look very similar (Figure 2), which may
be one reason why cross-pairing is
common.
Low hybrid fitness and random

mating shouldmake for a narrow hybrid
zone, but these factors are not
expected to drive zone movement in
any particular direction. Instead,
interactions between the parental
species are likely to be the main reason
for directional movement. In several
moving bird hybrid zones, the
dominant species is displacing the
subordinate one [6]. This is a curious
finding, because if the dominant has an
inherent advantage, it raises the
question of why subordinates should
ever persist in nature [13]. We suggest
that in the case of moving zones,
behavioral dominance is a flexible trait,
reflecting response to current
conditions. Thus, in a warmer and
shorter winter, the southern species
(Carolina chickadee) may be better
suited to build up the resources that
enable it to displace the northern
species. This and other narrow hybrid
zones provide excellent systems in
which to investigate competitive
interactions between parental types in
response to climate change.
Moving hybrid zones have many

implications for the process of
speciation, as well as determinants of
range limits. Providing at least one
fertile backcross is produced, genes
can leak from one taxon to the other,
thereby slowing divergence, but



Figure 2. Birds in the zone.

Black-capped chickadee (left) and Carolina chickadee (right). Painting copyright David Sibley,
reproduced with permission.
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perhaps only at certain regions of the
genome. Some parts of the genome
may move with the zone and others get
left behind, but the extent to which this
happens does depend on the fitness of
hybrids. The black-capped/Carolina
chickadee zone apparently results in
hybrids of very low fitness and
introgression of genes from one side of
the zone should be rare. Other studies
based on small molecular datasets
have found some evidence for
introgression [14,15], which may be
ancient. However, alternatives, such as
shared ancestral polymorphism, have
been hard to rule out.

Limited, or no, introgression may be
contrasted with the findings from other
moving zones, in which the species
involved are younger and gene
exchange more frequent. Rohwer et al.
[16] found that the hybrid zone in
Washington State between southern
hermit warblers and northern
Townsend’s warblers was likely to be
moving south. This was inferred from
the presence of hermit warbler
mitochondrial DNA in Alaskan
Townsend’s warblers, 2,000 km to the
north of the present zone. Dominance
of Townsend’s males is implicated in
zone movement, and the discordance
between plumage andmtDNA could be
explained if male plumage and
associated dominance traits moved
south but the females disperse more or
less at random. Hybrid zones between
recently separated groups such as
these are calling out for genomic
analyses along the lines pioneered by
Taylor et al. [7]: climate change not only
affects range limits, but also the
potential for hybridization and
introgression during a protracted
speciation process.
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Hearing Damage and Deafness:
A Role for the Circadian Clock
Severe noise can cause permanent hearing damage. A recent study now shows
that the capacity to recover from noise damage varies with time of day, driven
by circadian clock control of a nerve growth factor (BDNF) in the inner ear.
Andrew S.I. Loudon

We are all familiar with the effects of
loud noise on our hearing. These
include ‘ringing in the ear’ and
temporary deafness, but for severe
noise trauma, these effects can be
permanent. The cause of these
problems resides in the spiral cochlea
of the inner ear, specifically involving
damage to the delicate hairs of the
inner ear, which are tuned to specific
frequencies, and also importantly the
dendrites of the auditory nerve.
The circadian clock is known to be

regulated by environmental stimuli, of
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