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Epidemiological research reveals that insufficient sleep in children has negative cognitive and emotional conse-
quences; however, the physiological underpinnings of these observations remain understudied. We tested the
hypothesis that the topographical distribution of deep sleep slow wave activity during the childhood predicts

Il\)/[e\;eﬂgpment brain white matter microstructure (myelin) 3.5y later. Healthy children underwent sleep high-density EEG at

E Y baseline (n=13; ages 2.4-8.0y) and follow-up (n=14; ages 5.5-12.2y). At follow-up, myelin (myelin water
arly marker X . L N R A

Topography fraction) and cortical morphology were also quantified. Our investigation revealed 3 main findings. (1) The

Frontal/Occipital (F/O)-ratio at baseline strongly predicted whole brain myelin at follow-up. (2) At follow-up, the
F/O-ratio was only minimally (negatively) linked to brain myelin. (3) Cortical morphology was not related to the
F/O-ratio, neither at baseline nor at follow-up. Our results support the hypothesis that during child development
EEG markers during sleep longitudinally predict brain myelin content. Data extend previous findings reporting a
link between EEG markers of sleep need and cortical morphology, by supporting the hypothesis that sleep is a
necessary component to underlying processes of brain, and specifically myelin, maturation. In line with the
overarching theory that sleep contributes to neurodevelopmental processes, it remains to be investigated whether
chronic sleep loss negatively affects white matter myelin microstructure growth during sensitive periods of
development.

1. Introduction as the maturation of motor skills by ~3.7 years (Kurth et al., 2012). While

the F/O-ratio may be a relatively simple measure of slow wave activity

The sleep electroencephalogram (EEG) objectively quantifies the
need for recovery of neuronal networks (Achermann and Borbély, 2011).
The sleep EEG can distinguish healthy from disordered brains in adults
(Plante et al., 2012) and children (Bolsterli Heinzle et al., 2014). Recent
advances have resulted in identification of a sleep EEG signature that
reflects processes of brain maturation i.e., the ratio of Frontal/Occipital
slow wave activity (F/O-ratio) (Kurth et al., 2010). This marker quan-
tifies, in a simplified way, the regional maturation of slow wave activity
topography in NREM sleep. Slow wave activity distribution is increased
in scalp regions showing structural and behavioral maturation (Kurth
et al, 2012). Interestingly, slow wave activity maturation not just
temporally accompanies measures of brain structural and behavioral
maturation, but precedes the maturation of gray matter thickness as well
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topography maturation that can also be applied to low spatial resolution
EEG, its potential to predict neuromorphological maturation remains yet
poorly understood.

EEG sleep markers as a measure of neurodevelopment may be rele-
vant in identifying processes of atypical brain maturation. For example,
children with attention-deficit/hyperactivity disorder show a less mature
slow wave activity distribution in comparison to healthy children of the
same age and sex (Ringli et al., 2013). Epidemiological studies further
reveal temporal relationships between early sleep problems and later
behavioral problems (Mindell et al., 2017; Sivertsen et al., 2015). Ob-
servations of bi-directional interactions between sleep disturbances and
symptoms of psychiatric illness contribute to the growing evidence of a
close relationship of slow waves and brain plasticity (Tesler et al., 2013).
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EEG sleep markers have thus the potential to improve early diagnosis of
developmental disorders, and may ultimately support the reduction of
social and economic burden (Olesen et al., 2012). To date, however,
investigations that quantify the prognostic potential of sleep EEG
markers for development of brain morphology years later are scarce.

The discovery of key maturational transitions in children's sleep EEG
was facilitated by data from studies using high-spatial resolution EEG
(over 120 electrode channels). The results of these relatively recent
studies indicate that (1) developmental transitions are most prominently
manifested in a re-distribution of EEG power (i.e. topography) in slow
wave activity of non-rapid eye movement (NREM) sleep (Kurth et al.,
2010); (2) slow-wave activity topography is a brain marker for matura-
tional processes in health and disease (Ringli et al., 2013; Tesler et al.,
2013); and (3) slow wave activity topography reflects processes associ-
ated with behavioral learning (Wilhelm et al., 2014) and (4) has potential
to foretell the maturation of behavioral skills by several years (Kurth
et al.,, 2012). Thus, we propose that slow wave activity topography
(simplified as the F/O-ratio) represents an early marker of behavioral and
brain development, even before morphological maturation is observed
(Kurth et al., 2012).

Although a large body of research has targeted the development of
cortical gray matter morphology, white matter microstructure remains
understudied. Novel magnetic resonance imaging (MRI) methodologies
allows for the quantification of brain white matter microstructure across
childhood (Deoni et al., 2008, 2012; Lebel and Deoni, 2018). Moreover,
it has been recently suggested that milestones in neuromorphological
maturation originate from microstructural tissue growth instead of tissue
loss (Natu et al., 2018; Sowell et al., 2004), suggesting that white matter
microstructure is a novel focus. The central component of white matter
microstructure is myelin; its growth is a principal characteristic of brain
maturation (Deoni et al., 2012) and fundamental to the development of
cognition (Fields, 2008; Johnson and Munakata, 2005). As a lipid layer,
myelin surrounds axons and increases the speed of action potential
propagation, and is thus critical to normative brain function.

Evidence is emerging that the myelin machinery is linked to neuronal
activity specific to sleep. For example, rodents exhibit differential gene
expression specific to the behavioral states of sleep or wake (Bellesi et al.,
2013, 2018; Cirelli, 2005). By pooling the transcripts from all brain cells,
one investigation uncovered that a multitude of genes expressed during
sleep are involved in membrane synthesis, including that for myelin
(Cirelli, 2005). A subsequent study targeted genome-wide profiling of
oligodendrocytes — the precursor cells that are involved in new myelin
formation (Bellesi et al.,, 2013). Results confirmed the differential
expression in sleep and wake of the transcripts in oligodendrocytes: such
that genes involved in phospholipid synthesis and myelination or else
genes promoting oligodendrocyte proliferation were transcribed prefer-
entially during sleep. Most recent findings indicate that sleep is specif-
ically related to myelin thickness (Bellesi et al., 2018), which implies that
chronic sleep loss may negatively affect myelin development. Addition-
ally, our recent investigations in children indicate that myelin is an
integrative component of local sleep need (Kurth et al., 2016) and the
propagation dynamics of slow waves across the scalp (Kurth et al., 2017).
Thus, overall evidence is increasing that slow wave activity during sleep
is connected to myelin growth. Here we test the earlier proposed concept
(Tarokh et al., 2010) that the regional distribution of slow wave activity
across the scalp is a signature with which to monitor myelin connectivity
in developing humans.

In summary, slow wave activity topography mirrors activity-
dependent plastic changes (Huber et al., 2004, 2006), and is also
linked to brain myelin development (Kurth et al., 2016, 2017). Based on
the underlying hypothesis that sleep contributes to neurodevelopmental
processes, we tested the hypothesis that the F/O-ratio sleep marker will
predict myelin content in children. We hypothesized that more “fron-
talized* slow wave activity topography at baseline relates to increased
myelin 3.5y later. We examined whether the F/O-ratio is a prognostic
marker for brain myelin development that will longitudinally predict
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myelin content (myelin water fraction; MWF) as measured in whole brain
and in identified regions of interest. Additionally, we investigated
whether the F/O-ratio during sleep was predictive of established mea-
sures of cortical morphology from baseline to follow-up 3.5y later.

2. Material and methods
2.1. Participants

Healthy children were assessed repeatedly 3.5 years apart: baseline
(T1; n=13; ages 2.4-8.0y; mean 5.1 + 1.8y, 7 females) and follow-up
(T2; n=14; ages 5.5-12.2y; mean 9.0+ 2.0y, 7 females), for sub-
samples of this cohort see studies (Doucette et al., 2015; Kurth et al.,
2010, 2016). One child entered the study at T2, resulting in 13 partici-
pants included at baseline and 14 participants at follow-up. Screening
ensured that participants were in excellent health and had no personal or
family history of psychopathology, chronic diseases, or sleep disorders
and did not currently use medications affecting sleep or daytime arousal.
Children were excluded for travel beyond 2 time zones within 2 months
before assessments, and for caffeine use, daily/nightly co-sleeping,
physical or developmental disabilities, chronic medical conditions,
head injury, preterm or post-term delivery, or low birth weight. Written
parental consent and child assent was obtained, and the Institutional
Review Board (Brown University) approved all procedures performed
according to the Declaration of Helsinki.

2.2. Study procedures

During the 5 days leading up to the assessments, subjects followed an
individualized, sleep/wakefulness schedule. This stabilization period
provided minimization of sleep restriction and entrainment of the
circadian system. Adherence to the sleep schedule was verified with wrist
actigraphy and sleep diaries, as well as daily calls or emails to the labo-
ratory. No naps were allowed during the 24h preceding the EEG
assessment. However, children who regularly napped were allowed to
nap on the day of assessment so as not to introduce heightened sleep
pressure. EEG recordings were scheduled according to individual re-
ported bedtimes and habitual patterns. At T1 and T2, participants un-
derwent all-night sleep high-density EEG (hdEEG) in the natural
environment of their homes to generate the F/O-ratio sleep EEG marker.
At T2 and within 2 weeks of the sleep assessment, maps of the myelin
water fraction (MWF), an established measure of myelin content, were
quantified using the multicomponent driven equilibrium single pulse
observation of T1 and T2 (mcDESPOT) MRI technique at Brown Uni-
versity (Deoni et al., 2008). At T2, we assessed socioeconomic context
with the Four Factor Index of Social Status (Hollingshead, 1975). This
index takes into account social status as a multidimensional concept, and
integrates the factors of education, occupation, sex and marital status.

2.3. Sleep assessed with high-density EEG (hdEEG)

All-night hdEEG assessments were scheduled according to habitual
bedtimes (128 channels, Electrical Geodesics Inc., Sensor Net, Portable
System, Eugene, Oregon, US). Signals were referenced to the vertex for
direct visualization (NetStation 4.5.1). Nets of different sizes were
selected for each child according to head circumference, and adjusted to
vertex and mastoids. Electrodes were filled with electrolyte gel (ECI,
Electro Gel). Recordings were assessed with 500 Hz (0.01-200 Hz)
sampling rate and impedances below 50 kQ.

2.4. Myelin-specific MRI

Children were imaged using a 3-T Siemens Trio Scanner, equipped
with a 12-channel head RF array while watching a movie. The mcDES-
POT protocol, which consists of a series of spoiled gradient recalled echo
(SPGR) images and fully balanced steady-state free precession (bSSFP)
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images measured over a range of flip angles, were acquired (Deoni et al.,
2012). Inversion-prepared (IR-) SPGR data were additionally acquired to
correct for transmit magnetic field (B1) inhomogeneities, while the
bSSFP data were acquired with two phase-cycling patterns to allow for
correction for main magnetic field (BO) inhomogeneities. The field of
view and imaging matrix were fitted for age and head size, while keeping
a constant voxel size (1.8 x 1.8 x 1.8 mm?>). Additional mcDESPOT
scanning parameters are provided in the Supplemental Material
(Table S1). To decrease acoustic noise, maximum imaging gradient slew
rates and peak values were reduced, and passive measures were used
(sound-insulating boreliner, MiniMuff ear pads, sound-attenuating ear
protection)(Dean et al., 2014a; Deoni et al., 2012). Acquisition of the
mcDESPOT protocol was ~30 min for each child.

2.5. Analysis

2.5.1. Neurodevelopmental marker of the sleep EEG

Standard EEG preprocessing was applied (Kurth et al., 2010),
including off-line data filtering (bandpass 0.5-50 Hz), down sampling to
128 Hz, re-referencing to the average across all channels and sleep stage
scoring (Iber et al., 2007). Semi-automated artifact rejection was per-
formed on a 20-s basis (Kurth et al., 2010) and poor quality channels
were excluded. Power spectral analysis was performed with a Fast
Fourier transform routine (20-s epochs, average of five 4-s epochs,
Hanning window, no overlap, pwelch from MATLAB signal processing
toolbox, Mathworks). Data obtained had a frequency resolution of
0.25 Hz. Artifact-free sleep was included (skipping epochs with artifacts).
We computed the maturational status of slow wave activity topography
with the F/O-ratio of slow wave activity, as previously published
(1-4.5 Hz; Fig. 1b) (Kurth et al., 2010; Lustenberger et al., 2017).

2.5.2. Myelin marker of brain morphology

Linear co-registration was performed for each subject's raw SPGR, IR-
SPGR, and bSSFP images to account for subtle intra-scan motion and
removal of non-brain signal (Jenkinson et al., 2002; Smith, 2002). BO and
B1 field maps were computed, subsequently followed by estimation of
MWEF using a constrained and iterative fitting approach to a 3-pool tissue
model. As formally shown, this approach provides stable estimations of
MWF (Deoni and Kolind, 2015; Deoni et al., 2013b). Individual MWF
maps were non-linearly co-registered to a common standardized space
using the high flip angle T1-weighted SPGR image as previously
described (Deoni et al., 2012). The resulting transformation matrix was
applied to each individual's MWF maps to align the MWF map to the
standardized space. Maps were smoothed with a 4 mm full-width-at-half
maximum 3D Gaussian kernel within a white and gray matter mask.

Brain myelin was quantified for whole brain and 3 additional brain
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regions as obtained from morphologic masks (Deoni et al., 2012). The
brain regions of interest represented core fiber tracts that were previously
linked to children's sleep, ie., superior longitudinal fasciculus, corpus
callosum and optic radiation (Kurth et al., 2016, 2017). The superior
longitudinal fasciculus is the largest anterior-posterior, intra-hemispheric
white matter connection and has been associated with the maturation of
slow wave propagation, pertaining to the speed of propagation and the
range of expanse on the scalp (Kurth et al., 2017). The corpus callosum is
the primary inter-hemispheric pathway and largest white matter struc-
ture in the brain, and myelin in this region of interest has been linked to
wave propagation distance in children (Kurth et al., 2017). The optic
radiation is a multi-sensory integration circuit that connects the lateral
geniculate body and the posterior thalamus with the primary visual
cortex and has been previously related to increased sleep pressure in
school-age children (Kurth et al., 2016). Mean MWF was calculated
within the standardized space, from morphological masks of both the left
and right hemispheres, where appropriate. Individual MWF values
measured from standard space strongly show strong concordance with
native space MWF values (Dean et al., 2014b).

2.5.3. Cortical brain markers

In adults and adolescents EEG markers of sleep need are linked to
cortical gray matter morphology. For example, gray matter volume cor-
relates positively with slow wave activity in a region-specific manner
(Buchmann et al., 2011). Further, the intense practice of a task induces an
increase in gray matter and white matter subcortical volume. These
changes are reversed after sleep indicating an interaction of sleep with
cortical microstructure (Bernardi et al., 2016). Moreover, sleep depri-
vation impairs memory function, which is in part determined by cortical
structure (Saletin et al., 2016). Thus, in order to extend the existing
knowledge on sleep-cortical morphology to younger age, we also
included cortical brain markers in the current analysis.

For cortical reconstruction, we included standard image pre-
processing correction of low frequency signal intensity variation (RF
coil bias field) using the Advanced Normalization Tools (ANTSs)
nonparametric non-uniform normalization (N3) (Sled et al., 1998).
Cortical surface area, thickness, mean curvature, and gray matter volume
were measured using the surface mesh-based cortical modeling software
package, Freesurfer (Dale et al., 1999; Fischl et al., 1999). Images were
visually inspected at each step in the processing protocol, and, when
required, manually edited using gcut (http://freesurfer.net/fswiki/FsTut
orial/SkullStripFix_freeview). This approach corrects improper skull
stripping and removes non-brain tissue including dura and eye signal.

2.5.4. Statistics
Spearman correlations were performed between the F/O-ratio of slow
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Fig. 1. A. Assessment. Children completed sleep high-density EEG (hdEEG) at the Baseline (T1) assessment and sleep hdEEG and Magnetic Resonance Imaging (MRI)
3.5y later at follow-Up (T2). Each subject is represented with a different color: 13 subjects were assessed twice (one subject entered the study at T2). B. Frontal/
Occipital (F/O)-ratio. Slow wave activity (0.5-4.5 Hz, first 60 min of NREM sleep) within a cluster of 5 electrodes in the frontal region averaged and divided by the
value of 5 averaged occipital electrodes. Clusters of electrodes are illustrated with colors, i.e., channels 10, 11 (Fz), 15, 16, 18 in the frontal cluster and 71, 74, 75 (Oz),
76, 82 in the occipital cluster (Electrical Geodesics Inc., 128-channel Sensor Net).
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wave activity at T1 and T2 with myelin content at T2 (i.e., MWF in whole
brain, superior longitudinal fasciculus, corpus callosum, optic radiation),
and with cortical markers at T2 (i.e., surface area, thickness, mean cur-
vature, gray matter volume, MATLAB corr). Partial correlations (the
above correlations extended with factor ‘age at T1 or T2’) were per-
formed to control for effects of age (MATLAB partialcorr). Wilcoxon
Signed Rank Test (MATLAB signrank) was used for two-sided comparison
of paired data. All results are reported at the significance threshold of
a=0.05. P-values were corrected for multiple testing using False Dis-
covery Rate (FDR) test (Benjamini and Hochberg, 1995).

Selected maturational markers for the sleep EEG and brain
morphology were incorporated, e.g., F/O-ratio, whole brain MWF,
cortical thickness etc. This restriction of variables limited the number of
statistical tests and thus reduced the likelihood of a type I error. Outliers
were statistically classified using Grubb's criteria (5% level). Analyses
were performed for the full data whenever available (n =13 at baseline,
n =14 at follow-up), and results are also presented for the restricted
sample (both assessments n=13). Signal analysis and statistics were
analyzed with MATLAB (Mathworks, Natick, Massachusetts, United
States, version R2012a) and the statistics toolbox (Mathworks).

3. Results
3.1. F/O-ratio of slow wave activity has state- and trait-like properties

Sleep hdEEG assessments showed sleep quality consistent with earlier
at-home reports (Mason et al., 2008): subjects obtained 8.3-9.2 h sleep
duration and nearly 90% sleep efficiency (Table 1). As expected, time in
bed, sleep duration, N1, and REM sleep decreased with increasing age,
while slow wave sleep and sleep cycle duration increased from T1 to T2
(Ohayon et al., 2004; Roffwarg et al., 1966). The F/O-ratio was computed
for the first 60 min of artifact-free NREM sleep. This approach was taken
in order to maximize comparability with existing research using the same
time window, and to facilitate comparability across participants of
different age, and accordingly, variability in homeostatic sleep pressure.
The composition of sleep stages in the selected time window was com-
parable between T1 and T2 (Stage N2: 18.6+10.5% at T1 vs.
22.7+11.5% at T2, p=0.30. Stage N3: 81.4+10.5% at T1 vs.
77.4+11.5% at T2, p=0.30, M+SD; Wilcoxon Signed Rank Test,
n=13).

Next, the comparison of T1 and T2 revealed an increase in the F/O-
ratio of slow wave activity with increasing age, indicating more “fron-
talized” slow wave activity with increasing age (p = 0.001; Fig. 2A). This
observation suggests that the F/O-ratio is a marker for maturational state
of brain activity in sleep. We also investigated age as a continuous var-
iable, due to the fact that the participants' ages were represented across
the 2-12y age range (Fig. 1). At T1, the F/O-ratio of slow wave activity
was strongly correlated with age (Rho=0.75, p=0.005; Fig. 2B), in

[N]
=
w

N
N

F/O-ratio
F/O-ratio at T1

—_
—_

*__p=0.001
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contrast to T2 (Rho = 0.41 p = 0.14; Fig. 2C). This approach uncovered
large individual variability in the F/O-ratio beyond the effect of age,
demonstrating a trait-like property of the F/O-ratio. We then measured
the stability of the F/O-ratio within participants by determining whether
a linear relationship existed between the F/O-ratio at T1 and the F/O-
ratio at T2 (Fig. 2D). The association between the F/O-ratio at T1 and
T2 reached only significance when controlling for age (Rho=—0.15,
p=0.63; partial correlation controlling for ‘age at T2’ Rho= —0.60,
p = 0.04), demonstrating that the F/O-ratio is not a universally stable
trait throughout development. Moreover, the F/O-ratio of slow wave
activity also indicates individual dynamics in its maturation.

One data point at T2 with maximal F/O-ratio was identified as an
outlier (Fig. 2C). Yet, analyses with exclusion of this point revealed very
similar results (F/O-ratio increase from T1 to T2: p =0.002, Wilcoxon
Signed Rank Test, and weak correlation between F/O-ratio at T1 and T2:
Rho = —-0.21, p=0.51, partial correlation factor ‘age at T2’: R = —0.65,
p = 0.03). Thus, we utilized non-parametric statistics and included this
data point in subsequent analyses for the following reasons: (1) this
maturation period entails large inter-individual variability of the F/O-
ratio slow wave activity marker (Kurth and Huber, 2012) and (2) this
participant was not an outlier on any other measure (F/O-ratio at T1;
MWEF in whole brain, superior longitudinal fasciculus, corpus callosum or
optic radiation; cortical reconstruction as surface area, gray matter vol-
ume, curvature or gray matter thickness). One outlier in cortical thick-
ness was retained in analyses for the same reasons.

3.2. Prognostic potential: slow wave activity topography is a predictor of
global brain myelin development

Next, we analyzed brain myelin content (MWF) to test whether slow
wave activity topography (F/O-ratio) predicts MWF development 3.5y
later. Brain myelin was quantified for selected morphological masks
(Deoni et al., 2012): myelin brain regions included whole brain and 3
core fiber tracts previously linked to children's sleep, i.e., superior lon-
gitudinal fasciculus, corpus callosum and optic radiation (Kurth et al.,
2016, 2017). Further, because previous data in adolescents and adults
indicate links between EEG markers of sleep need and cortical
morphology (Bernardi et al., 2016; Buchmann et al., 2011; Saletin et al.,
2016), we also included 4 cortical markers in the current approach. For
cortical reconstruction, we included standard image pre-processing
correction of low frequency signal intensity variation (Sled et al., 1998).

Our results revealed that MWF and cortical measures were compa-
rable with previously published data in children (Dean et al., 2014b)
(Table 1). In alignment with our hypothesis, slow wave activity maps
were predictive of myelin development, in that the F/O-ratio at T1 was
associated with MWF at T2 (Table 2, Fig. 3). This effect was particularly
strong for whole brain MWF (Spearman correlation Rho=0.84,
p=0.0005, pppgr=0.009; correction for ‘age at T1’ with partial
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-
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p=0.14 p=0.63
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Fig. 2. State-like and trait-like properties of the F/O-ratio of slow wave activity (n =13 for T1, n =14 for T2). A. F/O-ratio comparison between T1 and T2
(p =0.001, Wilcoxon Signed Rank Test). Mean and Standard Deviation are presented for both time points, next to individual data. B. F/O-ratio illustrated for effective
age at T1 (Rho = 0.75, p=0.005). C. F/O-ratio was not related to effective age at T2 (Rho = 0.41 p = 0.14). D. Linear association between F/O-ratio at T1 with T2
reached significance only with inclusion of ‘age’ as control variable (Rho = —0.15, p = 0.63; partial correlation factor ‘age at T2’: Rho = —0.60, p = 0.04). Results were
consistent with exclusion of the subject with T2 assessment only (n=13: p=0.001 for panel A; Rho =0.32 p =0.28 for panel C; no change in panels B and D).
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Table 1 % a g g .5
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Fig. 3. Prediction of whole brain myelin content by slow wave activity topography. A. Frontal/Occipital ratio (F/O-ratio) of slow wave activity at T1
(Rho = 0.84 p = 0.0005; with partial correlation Rho = 0.70, p=0.01, n = 13). B. F/O-ratio of slow wave activity at T2 (p = 0.65, n = 14; and p = 0.33 with n=13).

Marker size refers to age, with larger circles indicating older age.

correlation Rho = —0.26, p = 0.37, pgpr = 0.45; correction for ‘age at T2’
with partial correlation: Rho = —0.64, p =0.02, pgpr = 0.07) or else no
association with MWF (Table 2, Fig. 3). These data demonstrate that the
F/O-ratio assessed at T1 is a strong and specific marker of observed brain
MWF 3.5y later.

3.3. Unlike myelin, cortical development is not predicted by the F/O-ratio
of slow wave activity

In contrast to the link of sleep with myelin, we found no strong as-
sociations between the F/O-ratio and global cortical morphology mea-
sures, neither at T1 nor at T2. The F/O-ratio at T1 nearly reached
significance in explaining inter-individual variability in cortical curva-
ture at T2; however, this association was influenced by age-effects
(Rho=0.55, p=0.05, pgpr=0.61, partial correlation Rho=0.27,
p=0.39, pppr = 0.61; Table 3). In sum, brain mapping using mcDESPOT
and Freesurfer overall indicate that the topographical distribution of
slow wave activity (F/O-ratio) is an early sleep marker that predicts brain
myelin development 3.5y later, whereas global measures of cortical
morphology are negligibly predicted by the F/O-ratio in childhood
(Fig. 4).

Finally, we evaluated whether socioeconomic status confounded the
three main findings. Overall, results were consistent with including the
correction for socioeconomic status (Supplemental Tables S2, S3). First,
the F/O-ratio at T1 predicted whole brain MWF at T2 (partial correlation
with factor ‘socioeconomic status’, Rho = 0.84, p = 0.006, pgpgr = 0.005;
Supplemental Table S2). In comparison with uncorrected data, this as-
sociation is even stronger (significance with FDR correction). An

Table 3

additional association was observed between the F/O-ratio at T1 and
MWF in the corpus callosum, which did yet not survive FDR control
(partial correlation with factor ‘socioeconomic status’, Rho=0.59,
p = 0.04, prpr = 0.13; Supplemental Table S2). Second, the F/O-ratio at
T2 was not linked to MWF at T2 when accounting for effects of socio-
economic status (Supplemental Table S2). The relationship between F/O-
ratio at T2 and MWF at T2 entirely disappeared in all regions. Third, the
F/O-ratio was not related to cortical morphology at T2 when controlling
for socioeconomic status (Supplemental Table S3). In line with uncor-
rected findings, correction for socioeconomic status did not reveal any
significant associations, neither at T1, nor at T2.

4. Discussion

Our work reveals that a simple marker in the sleep EEG predicts the
development of whole brain brain white matter microstructure, i.e.,
myelin, in healthy children. We used the F/O-ratio — an established index
for EEG slow wave activity topography (Kurth et al., 2010) — with state-
and trait-like properties. Our results indicate 3 primary findings. First,
the F/O-ratio in children strongly predicts global brain myelin develop-
ment at a follow-up evaluation 3.5 years later. Second, in contrast, the
sleep marker F/O-ratio assessed at follow-up was only minimally and
negatively linked to brain myelin measured at follow-up. Third, the
F/O-ratio in childhood is not a predictor of the most commonly used
cortical developmental markers (e.g., gray matter volume, cortical
thickness). These novel findings extend work first performed in rodents
to children; that is, they support the hypothesis that slow wave activity
measured non-invasively during sleep not only reflects, but also strongly

Cortical morphology and slow wave activity topography. Associations between Frontal/Occipital ratio (F/O-ratio) of slow wave activity and cortical morphological
measures were calculated with Spearman correlations and partial correlations controlling for ‘age at T1 or T2’ (n = 13 for T1, n = 14 for T2). False discovery rate (FDR)
analysis was performed. Significant associations (p < 0.05) are presented in bold. With exclusion of the one subject with the T2 assessment only, results were overall
consistent (n=13). Relationships with F/O-ratio at T2: Surface area: Spearman correlation Rho =0.09, p=0.78, pgpr = 0.89; partial correlation: Rho = —0.01,
p=0.97, prpr = 0.97. Gray matter volume: Spearman correlation Rho = 0.24, p = 0.44, pgpg = 0.78; partial correlation: Rho = 0.21, p=0.52, pgpg = 0.84. Cortical
thickness: Spearman correlation Rho=0.36, p=0.22, pgpr =0.66; partial correlation: Rho=0.41, p=0.18, pppr=0.66. Curvature: Spearman correlation
Rho = —0.14, p = 0.64, prpr = 0.85; partial correlation: Rho = —0.38, p = 0.22, pypg = 0.66.

Cortical markers at T2 Surface area (mm?) Gray matter volume (mm?®) Cortical thickness (mm) Curvature
Spearman Partial Spearman Partial Spearman Partial Spearman Partial
correlation correlation correlation correlation correlation correlation correlation correlation
Slow wave F/O- Rho =0.30 Rho=0.15 Rho=0.12 Rho =0.05 Rho=-0.35 Rho =—-0.44 Rho =0.55 Rho=0.27
activity ratio p=0.32 p=0.64 p=0.70 p=0.87 p=0.25 p=0.16 p=0.05 p=0.39
topography at Tl Prpr = 0.61 Prpr = 0.85 Prpr = 0.86 Pror = 0.93 Pror = 0.61 Prpr = 0.61 Prpr = 0.61 Prpr = 0.61
F/O- Rho=0.24 Rho =0.07 Rho=0.37 Rho=0.28 Rho=0.27 Rho=0.36 Rho =0.02 Rho=-0.31
ratio p=0.42 p=0.82 p=0.20 p=0.35 p=0.35 p=0.23 p=0.93 p=0.31
at T2 Pror = 0.61 Pror = 0.93 Pror = 0.61 pror = 0.61 pror = 0.61 Pror = 0.61 Pror = 0.93 pror = 0.61
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Fig. 4. Summarized relationships between slow wave activity topography
(F/O-ratio), brain myelin and cortical markers of brain maturation. Asso-
ciations are coded for corrections and represent associations between parame-
ters: dashed lines are used when statistical significance of relationships no
longer existed when controlling for “age”, and thin lines when correlations were
no longer significant when corrected for multiple comparisons. Numbers (%)
refer to Rho?. Data are presented in Fig. 3, and Table 2 and 3

predicts brain myelin development in a specific age timeframe, sup-
porting its use as a maturational marker. This concept strongly promotes
sleep-related translational avenues of mental health by means of 2
fundamental components: the predictive role of slow wave activity
topography for brain development (Kurth et al., 2010), and its possibility
to be modified non-invasively, e.g., actively with behavioral tasks (Huber
et al., 2004; Wilhelm et al., 2014) or passively with auditory stimulation
during sleep (Fattinger et al., 2017).

These results confirm our previous crosssectional work showing that
the F/O-ratio increases with age (Kurth et al., 2010). As expected, we
here found that the F/O-ratio indicates a maturational state as well as an
individual trait. This observation suggests that even though the F/O-ratio
increases with age in a longitudinal manner, it shows individual vari-
ability and distinguishes neurophysiological characteristics of individual
participants. We further tested and confirmed the prognostic potential of
the individual differences in the F/O-ratio for predicting brain
morphology development beyond maturational effects. We used the
F/O-ratio as our sleep EEG marker for 2 reasons. First, brain maturation is
a region-specific process (Dean et al., 2015; Giedd, 2004; Shaw et al.,
2008), and the spatial maturation is observable in the sleep EEG, most
prominently in the slow wave activity frequency band (Kurth et al.,
2010). The F/O-ratio is a simplified and global index that previously
showed stable estimations of slow wave activity topography maturation
across childhood (Kurth et al., 2010). Secondly, the F/O-ratio can be
computed universally in already existing datasets with fewer EEG deri-
vations (frontal and occipital derivations required). The quantification of
key neurodevelopmental transitions using this simple index will support
the next translational step to test its prognostic use in pediatric devel-
opmental disorders.
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Here, we demonstrate for the first time that the F/O-ratio of slow
wave activity in children predicts whole brain myelin content assessed
3.5 years later. This new discovery extends existing research by pro-
moting a prognostic connection of sleep neurophysiology with brain
myelin during a sensitive period of development. Previous understanding
of links between sleep and brain maturation was dominated by data from
adolescents and adults proposing that cortical gray matter structure is a
primary generator of slow wave activity appearance; however, recent
advancements in myelin quantification have provided investigation of
the association between myelin and slow wave activity. Our results and
other accumulating evidence introduces the novel concept that myelin is
a key cornerstone of sleep neurophysiology — particularly in children
undergoing rapid developmental change.

Novel lines of research are currently promoting the rethinking of
cortical gray and white matter developmental trajectories (Natu et al.,
2018). Across child development, microstructural tissue growth (instead
of tissue loss) is now proposed, contesting the hitherto determined
maturational trajectories of cortical gray matter (Natu et al., 2018;
Sowell et al., 2004). Consequently, white matter microstructure is
becoming a novel focus (Deoni et al., 2012; Lebel and Deoni, 2018), yet,
to date, little is known about myelin development within the context of
sleep. In adults, data indicate that the sleep/wakefulness cycle affects
white matter with regard to cortical mean diffusivity and subcortical
volume (Bernardi et al., 2016). In adolescents, high variability in sleep
duration is linked to reduced white matter integrity assessed one year
later (Telzer et al., 2015). These authors speculate that highly variable
sleep duration in adolescents may result in long-term brain impairments.
Additionally, our previous studies with children revealed regional re-
lationships of sleep need and slow wave propagation patterns with brain
myelin (Kurth et al., 2016, 2017). Animal data further streamline these
observations by proposing that neuronal activity specific to sleep pro-
motes the brain myelin machinery (Bellesi et al., 2013; Cirelli, 2005).
Our current results support this concept with a prospective approach.

Although slow wave activity undergoes age-related maturation
(Kurth et al., 2010), it is at the same time modified by experiences (Huber
et al., 2004, 2006; Wilhelm et al., 2014). This dualism in the factors that
regulate slow wave activity obscures the effects of genetics (pre-
programmed maturation processes) and the environment (experi-
ence-induced changes). In the present approach, we considered this
phenomenon by presenting results controlling and not controlling for
age. This allowed distinguishing the associations that were merely driven
by age from those that were robust after controlling for age. The latter
findings revealed that individual differences in slow wave activity
topography indeed account for variability in myelin content, thereby
illuminating the predictive value of individual traits in slow wave activity
topography for myelin maturation. Explicitly, associations between
F/O-ratio with whole brain MWF were robust, signifying that the myelin
outcome is predicted by individual differences in the sleep marker
F/O-ratio. In contrast, callosal effects and those observed in MWF of
superior longitudinal fasciculus were primarily driven by maturation
(i.e., age). In the process of brain maturation, sleep EEG profiles expe-
rience the influence of nature in one brain region, and nurture in another
(Rusterholz et al., 2018). This dynamic may influence the state- and
trait-like characteristics of the F/O-ratio.

The central role of sleep in developmental processes is increasingly
recognized (Volk and Huber, 2015). Brain activity during sleep itself may
actively contribute to neurodevelopment (Kurth et al., 2012, 2013; Olini
and Huber, 2014; Schoch et al., 2018). Age-specific properties in the
regulation of slow oscillations were suggested as a fundament of such
relationships: slow oscillations reflect burst firing (Steriade et al., 1993a,
1993b), and firing mode specific to sleep may alter the functionality of
glutamatergic synapses by changing AMPA receptor availability (Birtoli
and Ulrich, 2004; Lante et al., 2011) (for detailed discussion see (Kurth
et al., 2012)). In the context of the current investigation, neuronal ele-
ments underlying slow wave activity topographical distribution may be
targets for interventions to modify brain myelin.
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Links between behavioral learning and white matter plasticity remain
understudied (Fields, 2011; Kukley et al., 2007; Stevens et al., 2002).
Cellular and molecular mechanisms underlying the association of white
matter and learning may involve changes in myelin for-
mation/remodeling, fiber crossing, axon diameter, astrocyte morphology
or angiogenesis (Zatorre et al., 2012). Given these factors, it not sur-
prising that our results uncovered a global relationship of MWF and our
simple sleep EEG marker. This finding aligns with our recent research
(Kurth et al., 2017) that supports the finding that slow wave activity
topography is linked to global myelin connectivity in children. However,
it remains possible that slow wave activity considered in a more regional
(less global) manner also reflects properties of cortical measures in
children, as concluded from research with adults (Buchmann et al.,
2011).

Implications from this investigation open a sleep-centered window of
opportunity: the promotion of “good” sleep may foster healthy myelin
development. Particularly, at-risk groups may benefit from diagnostic
and prevention advances, and sleep-centered interventions may promote
healthy neurodevelopment with non-invasive behavioral (Werner et al.,
2015) or auditory strategies (Fattinger et al., 2017). We recognize other
predictors of myelin development, including genetic and nutritional
factors (Deoni et al., 2013a). Yet, here we demonstrate that the most
established marker of sleep depth (slow wave activity) is conserved in
neuronal network development. Although experimental studies in
developing humans are limited, only longitudinal data can identify pat-
terns with important functional roles in the establishment and mainte-
nance of human brain connectivity. Thus, these findings mark an initial
and important step towards the goal of ultimately linking specific sleep
patterns to their etiology in neurodevelopmental and neuropsychiatric
disorders.

Socioeconomic context is intertwined with neurodevelopment
(Hackman and Farah, 2009) and with sleep quality in children (El-Sheikh
et al., 2010). Yet, while age is a key confounder in this study, we found
that socioeconomic status plays no principal role in our main effects. The
observation that interactions of sleep with myelin or cortical measures
are independent from the social context may be important when devel-
oping healthy interventions targeting sleep.

Of note, variability in sleep architecture was rather low in our data.
This may be surprising given the well-known maturation of slow wave
sleep and REM sleep (Roffwarg et al., 1966). Yet, our within-subject
statistics confirm the developmental effects as expected (Kurth et al.,
2010; Ohayon et al., 2004). While the nature of the data (small sample
size, wide age range) mask developmental effects, moderator variables
known affect sleep architecture (pathologies, sleep problems) were
controlled in our thoroughly screened healthy cohort. Also, homeostatic
effects originating from variable sleep pressure were also carefully
controlled via adherence to regular bedtimes during several days pre-
ceding assessment. Further, the small sample size of this study, and
relatedly, confined statistical power should be considered with caution.
Yet, we reduced the likelihood of a type I error to support the predictive
value by enclosing, ie., mean MWF values for a restricted number of
brain regions, the focus on one sleep marker, and statistical control for
age-effects. This restriction did not allow for investigating regional as-
sociation of sleep and brain morphology more closely. Further, this study
design was framed previously and thus restricted, (i.e., wide-age range of
participants and MRI only at T2). The availability of MWF at baseline
would allow to test whether the F/O-ratio is related to MWF already at
T1. It is known that myelin grows rapidly across the first 3 years of life,
and keeps maturing until leveling off in adolescence/young adulthood
(Lebel and Deoni, 2018). We anticipated myelin growth in all partici-
pants of our sample from T1 to T2, because follow-up assessments were
spaced to encompass the age when myelin growth occurs rapidly in
healthy children (Dean et al., 2015). Examining the relationship between
MWF and slow wave activity at T1 was not crucial to the current goal of
this study: our aims were to identify an early physiological marker that
was simple to measure and that predicted later brain structure. For these
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reasons we selected a sleep EEG marker that can be applied to low spatial
resolution EEG. Finally, future systematic investigations in children
within a more similar age at each assessment time point would be
important to identifying the confounding effects of socioeconomic
context and psychosocial status.

In conclusion, the F/O-ratio in the sleep EEG is a simple index and a
promising prognostic physiological tool that predicts global brain myelin
development in children. Findings complement animal data (Bellesi
et al., 2013; Cirelli, 2005) and support the theory that neuronal activity
specific to sleep promotes the brain myelin machinery. Based on our
current understanding, we cannot identify whether specific sleep be-
haviors in children represent a risk for brain development; however, it
should soon be possible to examine whether chronically shortened or
fragmented sleep in sensitive periods of development alter brain myelin
growth leading to compromised health outcomes.
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