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An Optimization Platform Based on Coupled Indoor Environment and 

HVAC Simulation and Its Application in Optimal Thermostat Placement 

 
Abstract: Model-based optimization can help improve the indoor thermal comfort and energy 

efficiency of Heating, Ventilation and Air Conditioning (HVAC) systems. The models used in 

previous optimization studies either omit the dynamic interaction between indoor airflow and 

HVAC or are too slow for model-based optimization. To address this limitation, we propose an 

optimization methodology using coupled simulation of the airflow and HVAC that captures the 

dynamics of both systems. We implement an optimization platform using the coupled models of a 

coarse grid Fast Fluid Dynamics model for indoor airflow and Modelica models for HVAC which 

is linked to the GenOpt optimization engine. Then, we demonstrate the new optimization platform 

by studying the optimal thermostat placement in a typical office room with a VAV terminal box in 

the design phase. After validating the model, we perform an optimization study, in which the VAV 

terminal box is dynamically controlled, and find that our optimization platform can determine the 

optimal location of thermostat to achieve either best thermal comfort or least energy consumption, 

or the combined. Finally, the time cost for performing such optimization study is about 6.2 hours, 

which is acceptable in the design phase. 

Keywords: FFD, Modelica, coupled simulation, optimization, thermostat placement 

1 Introduction 
HVAC systems with non-uniform airflow and temperature distributions are widely adopted in 

the building design to achieve good thermal comfort and energy efficiency. Typical examples 

include displacement ventilation (Yuan et al. 1999), data centers with raised-floor plenum 

architecture (VanGilder et al. 2018), and ventilation systems with atrium (Chen 2009). As 

suggested by Tian, Han, et al. (2018), coupled simulation models between Building Energy 
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Simulation (BES) and Computational Fluid Dynamics (CFD) can be used to study the design and 

operation of such systems. To find the optimal design and operation conditions, model-based 

optimization can be performed using the coupled simulation models. 

Plenty of researchers have presented the optimization of HVAC system operation using BES 

or optimal indoor airflow distribution using CFD. Nguyen et al. (2014) reviewed the optimization 

method using BES to study the building performance. Delgarm et al. (2016) performed multi-

objective optimization using EnergyPlus simulation and particle swarm optimization (PSO) 

scheme that can improve the energy performance of the design.  The simulation-based optimization 

methodology and its variants (using difference simulator and/or optimizations schemes) has been 

applied to the design of energy efficient buildings in different forms (general buildings, data 

centers, etc.), and promising results in terms of whole-year-energy-consumption reductions were 

presented. Similarly, the optimization methodology based on single simulator has been applied to 

study the control performance of building energy systems in a dynamic fashion (Tian, Zhang, et 

al. 2018; Chen et al. 2018; Fu et al. 2019; Afram et al. 2017; D'Agostino and Parker 2018; Han et 

al. 2013). For example, Huang et al. (2016) and Huang et al. (2017) applied the optimization based 

on the Modelica representation of the HVAC system to find the optimal set point of condensing 

water temperature and chiller staging control. Wang et al. (2017) applied optimization based on 

the Modelica representation of duct network to find the optimal opening of the valves. On the other 

hand, Liu et al. (2015) gave an overview on utilizing the optimization based on CFD to carry out 

inverse design. The adjoint method was used to optimize the air supply location, size and parameter 

for enclosed spaces, such as aircraft cabin (Liu et al. 2017). Lee (2007) and Xue et al. (2013) used 

genetic algorithm based on CFD simulations to optimize the flow control conditions for the indoor 

climate. The abovementioned researches have shown that the simulation-based optimization can 
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reduce energy consumption of HVAC systems and achieve desired thermal environment 

conditions. However, none of the above research considered the complex and dynamic interactions 

between HVAC and indoor environment, which may lead to incorrect simulation results and a 

potentially more serious consequenceɂfailure of the system. In buildings, sub-domains can be 

interconnected from the physical perspective. For example, in a feedback loop control of air 

handler and thermal indoor environment, the temperature at a specific spot in the environment is 

extracted and sent to the control module, which then modulates the air handler to adjust the 

cooling; The states of the air handler, especially the temperature and velocity at the exhaust, 

consequently determines the airflow and temperature distributions in the space. The interactive 

entangling of the two domains—mainly thermal environment and cooling system should be 

addressed in a proper way such that the important “coupling” will not be over-simplified (using 

multizone model to model a non-uniform temperature distribution) or omitted (assume the 

temperature at the specific spot same as the setpoint). Moreover, with increased attention on the 

design of the control system, the essence of being dynamic of the control process should be 

properly addressed. For example, Wetter (2009b) noted the inability to resolve the non-linear 

dynamic behavior of building energy system and its control system can lead to equipment short-

cycling. Likewise, Nassif et al. (2008)  noted the importance of dynamic models of HVAC systems 

in designing energy management control system. One can refer to literatures for more information 

on dynamic modeling of HVAC systems (Li et al. 2014).  

It is important to note that the optimization based on coupled simulation has been carried out 

in a few studies, which are typically not in the domain of interacting HVAC with indoor thermal 

environment. For example, with resilience and energy efficiency becoming a hot research topic, 

there  is emerging of researches on optimizing the integration of renewable/distributed energy 
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sources. For example, O'Shaughnessy et al. (2018) developed Solar Plus to increase the economic 

befit by performing optimization based on coupled simulations of PV panels, batteries under 

various electricity-rate structures. Ma and Xia (2017) presented a simulation-based optimization 

to control the ground source heat pump system by considering the interaction between heat pump, 

water pump, and ground heat exchanger. Yang et al. (2017) analyzed the performance and control 

strategy of a combined cooling, heating and power system in a hotel, by modeling the interaction 

of the system with solar thermal energy and compressed air energy storage. Han et al. (2017) 

studied the energy performance of the timber-glass buildings by performing optimization based on 

coupled simulation of daylighting using Radiance and building energy performance using 

EnergyPlus. Similarly, in the domain of regional heating, Pan et al. (2017) developed a feasible 

region method to improve the efficiency of integrated heat and electricity system by considering 

the interaction of two models at the same time.  

It is noteworthy that there is a paper attempting to perform optimization based on coupled 

simulation of HVAC systems and indoor thermal environment. Du et al. (2015) performed an 

optimization study to find the temperature sensor placement using coupled simulation between 

TRNSYS and CFD. However, there are few limitations to this study. First, the CFD simulation 

was performed in steady-state. Although it is believed to reduce the computational cost (as 

transient CFD simulation is costly), the steady-state CFD results may adversely affect the control 

simulation of the HVAC system. Consequently, a real dynamic interaction of HVAC systems and 

indoor environment was not considered. Second, even with steady-state simulations, the 

computational speed is still too slow to perform optimization over a large search domain. As a 

result, only a handful of discrete locations were picked, among which the optimal placement was 

determined. 
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In this paper, we first discuss the methodology and implementation of the proposed the 

optimization using dynamically coupled simulation of indoor environment and HVAC systems. 

We then identify an office room with displacement ventilation, in which we demonstrate how to 

use the optimization platform to determine the thermostat location to achieve optimal thermal 

comfort, energy efficiency, or both. The paper is structured as follows: section 2 discusses the 

methodology and detailed implementation of the optimization platform; section 3 discusses the 

evaluation of the coupled simulation model; section 4 introduces the optimization studies; and 

section 5 gives the conclusion and future work. 

2 Methodology and Implementation 

2.1 Methodology of the coupled simulation platform 
 

This paper proposes an optimization platform using the dynamically coupled simulation of 

HVAC system and non-uniform indoor environment. The platform can be harnessed to improve 

the control and energy performance of cooling system in various applications. As a prominent case, 

data center, which consumes about 2% of the electricity in the U.S.(Shehabi et al. 2016), can 

benefit from this platform to improve the energy efficiency and reduce the green gas emission. The 

whitespace in the data center used to house the racks is typically characterized with non-uniform 

temperature distribution. The temperatures at designated locations are sampled to control the 

computer room air conditioner. The optimization scheme proposed in this paper can be used to 

improve cooling energy efficiency while attaining the required thermal environment to run the IT 

equipment safely. To accelerate the computational speed of the coupled simulation, our proposed 

optimization platform employs a coupled simulation model with Modelica and Fast Fluid 

Dynamics (FFD) (Zuo et al. 2016). Modelica is an equation-based and object-oriented language 

for dynamic simulation. A Modelica Buildings library (Wetter et al. 2014) was developed to 
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facilitate building system modeling. FFD, which simulates airflow and temperature distribution in 

transient state, is about 50 times faster than its counterpart CFD (Zuo and Chen 2009) and even 

faster when adopting more advanced semi-Lagrangian algorithm (Mortezazadeh and Wang 2017). 

Parallelization of FFD to run on multi-core device can further increase the speed up to 1000 times 

(Tian, Sevilla, and Zuo 2017; Zuo and Chen 2010). In addition, to further accelerate the simulation, 

we implemented a coarse grid solver in FFD, which was reported to be able to accelerate the FFD 

simulation for 5-50 times (Jin et al. 2015). The integration of all these techniques makes the 

coupled-simulation-based optimization possible by dramatically reducing the computational cost 

of the coupled simulation, in which the airflow simulation is the bottleneck of the couple 

simulation speed. It is noteworthy that reduced-order models (Tian, Sevilla, et al. 2018), though 

computationally fast, are mostly for steady-state predictions, and therefore are not good for 

dynamic simulations.  

 

Figure 1 Optimization Methodology Based on Coupled CFD-BES Simulation 

Figure 1 shows the framework of the optimization platform using the dynamic coupling model 
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between BES for HVAC and CFD for non-uniform indoor environment. The whole optimization 

process is divided into multiple optimization steps, in which optimization is performed to find the 

optimal solution. The optimal together with the old states from the last optimization step are used 

to initialize the next optimization step. The number of the optimization steps are determined by 

the users based on their interpretation of physics to be optimized. It is noteworthy that a tradeoff 

between optimization accuracy and speed is associated with the optimization time step. 

At the heart of this optimization platform is the coupled simulation between BES and CFD. 

The coupled simulation employs a quasi-dynamic coupling scheme, and was implemented based 

on a customized interface, in which the Modelica model exchanges data with FFD dynamic link 

library through external “C” functions. Note that there are various data synchronization schemes 

and software implementation architectures available to couple the BES with CFD. For example, 

quasi-dynamic scheme requires data exchange once at a data synchronization time point while 

fully-dynamic scheme requires several iterations of data exchanges until both BES and CFD reach 

converged solution. Consequently, quasi-dynamic scheme is relatively computationally faster and 

more stable while fully-dynamic scheme is tending to be able to generate more accurate results. 

Other than customized interface to enable data exchange and control of the coupled simulation, 

middleware interface and standard interface can also be utilized. Unlike the master-slave mode 

used in this implementation, middleware, such as building control virtual test bed (Wetter 2011), 

can play the role  of controlling the coupled simulation and provide better maintainability and 

extendibility when compared to the customized interface. The standard interface, which enables 

two programs being connected directly, is straightforward and easy-to-deploy. Take functional 

mockup interface as an example, tools that are compatible with the functional mockup interface 

standard can export models as functional mockup units, which can be then coupled (it can be as 
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easy as plug-and-play) and simulated in co-simulation environment such as pyFMI (Blochwitz et 

al. 2011). One can refer to the literature review paper (Tian, Han, et al. 2018) for detailed 

explanation. Assume we have the following general equations to describe the behaviours of BES 

and CFD for the optimization step ὸȟὸ Ўὸ : 

ὼᴆ Ὢᴆὼᴆȟόᴆȟύᴆ , ὼᴆὸ ὼ ὸ  (1) 

όᴆ ᴆό ὸȟ‚ᴆ (2) 

ώᴆ Ὣᴆὼᴆȟόᴆȟύᴆ  (3) 

ύᴆ Ὤᴆὼᴆȟόᴆȟύᴆ  (4) 

ὼᴆ Ὢᴆὼᴆȟόᴆȟύᴆȟὼᴆὸ ὼ ὸ  (5) 

όᴆ ᴆό ὸȟ‚ᴆ (6) 

ώᴆ Ὣᴆὼᴆȟόᴆȟύᴆ  (7) 

ύᴆ Ὤᴆὼᴆȟόᴆȟύᴆ  (8) 

 

where the subscript in the names of function and variable names indicate the program (“1” for 

BES; “2” for CFD).  ὼᴆand ὼᴆ are vectors of state variables. ὼᴆand ὼᴆ are derivatives of ὼᴆand ὼᴆ 

with respect to time. ώᴆ and ώᴆ are vectors of outputs. όᴆand όᴆ are the inputs of BES and CFD, 

respectively. ύᴆ and ύᴆ are exchanged data between BES and CFD. The initial states of ὼᴆand ὼᴆ 

the states (ὼ ὸ , ὼ ὸ ) from last optimization step. The input vectors may be a function of the 

initial inputs (given prior to the optimization, i.e. ό ὸȟό ὸ ) and optimized values (‚ᴆ). We 

note that optimized values (‚ᴆ) are the intermediate (stepwise) values of the input variables being 

optimized in the optimization process. When the optimization completes, the optimized value will 

be the optimal solution. 

Even though above equations can be solved simultaneously (aggregated simulation or internal 
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coupling), this methodology prefers the approach of external coupling (co-simulation). Within a 

data synchronization time step Ўὸ  , ύᴆ  and ύᴆ  are held constant when used as inputs. 

Theoretically, the synchronization time step Ўὸ   should adapt to address the events in both 

simulations, so that the coupled simulation results are accurate. Here we note that events in the 

context of numerical simulation are referred to behaviours that can cause discontinuity of system 

response. Examples are turning on/off air conditioners, staging on/off chillers, etc. Without using 

proper smoothing techniques, these events can introduce step-change in the results and 

consequently bring challenges to the co-simulations in terms of controlling the co-simulation time 

step size. A typical trial-and-error approach, such as in functional mockup interface standard, is 

used to iteratively locate the event and then further adapt the co-simulation time step. This is 

particularly important when the numerical model is not properly smoothed (the response of the 

system is not always continuous), as using a constant co-simulation in such occasion could bring 

erroneous exchange data and instability to the co-simulation.  

The optimization problem at the optimization step ὸȟὸ Ўὸ   can be formulated to find 

‚ᴆ such that: 

В ίᴆώᴆȟώᴆᴆᴆɴ , where В ᴆ ρ  (9) 

where ίᴆ is a vector of functions to map the outputs of the coupled simulation to optimization 

objective functions, and is the weight that converts a multi-objective into a single-objective   

optimization. ά is the number of objectives. ὢ is the searching domain for independent variables. 

The optimization process consists of following steps: 

¶ Reconstruct the initial values: At time ὸ, the initial conditions and inputs should be given 

before solving the set of equations from (1) to (8). Both BES and CFD should be able to 

read the states and inputs from the external sources. 
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¶ Perform coupled simulations: Solving the set of equations from (1) to (8) using a co-

simulation approach for ὸ to ὸ Ўὸ  to yield the outputs ώᴆ and ώᴆ. These outputs can 

be transient or time-averaged. 

¶ Calculate objective functions: Analytically evaluating the formula (9) can be difficult, if 

not impossible. To solve the optimization through a numerical approach, this step evaluates 

В ίᴆώᴆȟώᴆ.before calling optimization algorithms to find the optimal  

¶  Call optimization engine: Based on the value of current and possibly historical values of 

the objective functions (either local search or global search), the optimization engine 

updates the optimal ‚ᴆ within the search domain ὢ. The updated ‚ᴆ will be used to further 

update the input vectors. 

¶ Repeat above process until the optimization converges to optimal values of inputs for 

current optimization period from ὸ to ὸ Ўὸ . 

¶ Repeat above process for next optimization period from ὸ Ўὸ  to ὸ ςz Ўὸ . 

2.2 Implementation of Optimization Platform 

While the optimization platform can be implemented in various ways, this paper chooses 

Modelica and Fast Fluid Dynamics (FFD) to carry out the coupled simulation and PSO algorithm 

in GenOpt (Wetter 2009a) as the optimization engine. Modelica, an equation-based and object-

oriented language, is designed for dynamic simulation of the components and systems in various 

physical domains, i.e., component models or system models of HVAC. FFD is picked for airflow 

and thermal environment simulation thanks to its fast computational-speed. Previous research has 

demonstrated that the coupled simulation model between Modelica and FFD can provide a realistic 

environment to study the dynamic interaction of the stratified air distribution and HVAC system 

(Zuo et al. 2016).  
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Figure 2 Implementation of the Optimization Methodology 

Figure 2 shows the detailed implementation of the optimization platform based on the coupled 

simulation model of Modelica and FFD. The coupled simulation implementation between 

Modelica and FFD is largely based on the previous work (Zuo et al. 2016). Customized interfaces 

for Modelica and FFD are implemented to enable accessing data in the shared memory, which is 

recognizable to both programs. The data in the shared memory consists of exchanged data (ύᴆand 

ύᴆ) and control signal that is sent from co-simulation master Modelica to control co-simulation 

slave FFD. In this research, we implemented a coarse grid solver  in the FFD dynamic linker in 

Modelica Buildings library (Wetter et al. 2014) to accelerate the computation speed, which 

employs a plume model to correct under-predictions of the thermal plume and thermal 

stratification caused by the coarse grid (Jin et al. 2015). The integration of these coarse grid 

techniques is critical for the coupled simulation to be applied for model-based optimization, as 

otherwise the computational cost for FFD is too demanding when hundreds of simulations are 
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needed. Before running the coupled simulation, it is required to predefine the data synchronization 

time step, as opposed to using adaptive time step. This is to achieve a compromise between 

computational cost and accuracy.  

The whole implementation can be divided into: 

¶ Reconstruct the initial values: Prior to starting the optimization, the Python module reads 

the text files containing states from last optimization step and initial guess of optimized 

variable ‚ᴆ, and generates text files that are to be read by Modelica and FFD to initialize 

their states and set up the parameters.  

¶ Perform coupled simulations: Afterward, the Python module serving as the optimization 

controller fires off GenOpt, which then executes the Modelica model. To save time from 

compiling the Modelica source codes, one can manually compile them into an executable 

and request GenOpt to call it during the optimization.  

¶ Calculate objective functions: At the end of each iteration in the optimization, Modelica 

and FFD exports the outputs into text files, which are then read by GenOpt to evaluate the 

objective functions and perform optimization to seek the optimal ‚ᴆ.  

¶ Call optimization engine: GenOpt can control the optimization process until the optimal is 

determined. Finally, the Python module, once found that the optimization for current step 

is done, can move the optimization for the next step. 

To further demonstrate the optimization platform, we perform a case study of seeking the 

optimal thermostat placement for an office room with displacement ventilation in the design phase. 

The objective is to achieve highest thermal comfort, or best energy efficiency, or both. In the rest 

of the paper, detailed validation of the coupled simulation model and optimization results will be 

discussed. Note that this case study is not going to conclude a general principle of thermostat 
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placement since the results are  case-dependent to a great extent. Instead, this case study is to 

demonstrate how our optimization platform facilitates model-based design for ventilation systems 

that involve with distinct stratified airflow and temperature distribution. 

3 Evaluation of Coupled Simulation Model 
The office room with displacement ventilation used in this study is derived from the literature 

(Yuan et al. 1999). The room size is 5.16 m by 3.65m by 2.43m. The inflow at the displacement 

diffuser is 17.0 oC with a flow rate if 183.1 m3/h. Two heated dummies and two boxes are put in 

the room to generate the thermal plume. We hypothetically add a VAV terminal box model to the 

room. A pressure-dependent control logic is used in the controller. Based on the thermal load of 

the room, the nominal mass flow rate of the supply air at a constant temperature of 18 oC is 0.5 

kg/s (1470 m3/h). The thermostat is placed at the middle of the ceiling and the temperature is 

extracted to control VAV terminal box. 

      

(a)             (b) 

Figure 3 (a) Schematic of the office room and (b) its VAV terminal box 
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Figure 4 Temperature comparison between FFD and experimental measurements 

We first validate the coupled simulation (assuming a constant supply airflow rate and 

temperature) against the experimental measurements. This case is directly derived from the paper 

by Jin et al. (2015). A coarse grid of 5 cells by 5 cells and by 8 cells is used to achieve optimal 

computational speed while attaining adequate accuracy. The simulation runs for 400 seconds with 

a time step size of 0.1 second. Figure 4 shows that the coupled simulation generally captures the 

variation of temperature profiles at various points in the room. We note that there are various reason 

why simulated results are not perfectly matching the experimental data. First, although the 

experiment was performed in a climate chamber where boundary conditions are well controlled, 

the boundary conditions can inevitably change over the course of experimental measurements. 

Second, the level of modeling detail is never good enough to capture all the physics regarding the 

flow, such as the detailed geometry of occupants and openings, the detailed heat dissipation pattern 

from the room items, the turbulence modeling. That is why in the paper by Jin et al. (2015), it is 

not surprising that even CFD with a two-equation k-epsilon model cannot generate identical results 

as experimental data. Nevertheless, the profiles clearly show that the temperature distribution is 

fairly non-uniform and stratified in vertical direction. This validation supports that the current grid 

together with the coarse-grid techniques in FFD can achieve a compromise between computational 
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speed and accuracy. For information regarding settings in FFD, refer to Jin et al. (2015), and for 

information regarding setting up the coupled simulation using Modelica and FFD, refer to (Zuo et 

al. 2016).  

We then study the transient characteristics of the VAV terminal box responding to the dynamic 

change of the setpoint of the thermostat. The VAV terminal box consists of a damper in air loop, 

reheating coil, a valve in hot water loop and a controller using a pressure-dependent control logic 

(Liu et al. 2012). When room temperature at sensor location is lower than setpoint (assuming a 

cooling season), the controller will first attempt to reduce the damper opening to decrease the 

supply air flowrate until a lower limit (30% of nominal supply air flowrate) is reached. If the lower 

limit is reached and the room temperature is still lower than setpoint, the controller will turn on 

the valve in hot water loop to reheat the supply air. For the detailed model of VAV terminal box, 

refer to the paper by Tian, Sevilla, Zuo, et al. (2017). Here we dynamically adjust the setpoint of 

the thermostat in the range of 24 to 26 oC every 10 minutes. The case is simulated for 3600 seconds 

(1 hour). Figure 5 shows the transient variation of the temperature at the thermostat, inflow 

temperature and flow rate, and PMV of the room. The variation of these variables is tightly related 

to the control logic used in this case study. Take the first spike of supply air temperature as an 

example. When actual temperature is lower than setpoint, the control module will first decrease 

the air flowrate until reaching the 30% threshold. However, the actual temperature is still lower 

when compared to the setpoint, then reheat using hot water will be turned on to further help 

increase the room temperature. When reheat is on, the supply airflow rate will be kept constant at 

30% of the nominal value. After actual temperature exceeds setpoint for a certain amount of time, 

we can see the reheat is being shut down, and supply airflow rate climbs while the supply air 

temperature remains at 16 ºC. We note that the temperature at the thermostat location is linearly 
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interpolated using the temperatures at the neighbouring cells in FFD. This is justifiable since it has 

been demonstrated that the coarse grid techniques would not cause significant degradation in terms 

of accuracy compared to a conventional fine grid for this case (Jin et al. 2014).  

 

Figure 5 Dynamics of VAV terminal box and indoor environment 

Due to the transient essence of the flow, the actual temperature constantly wiggles around the 

setpoint. Consequently, the controller module in the VAV terminal box adjusts the valves in the air 

loop and reheat coil to bring the actual temperature close to the setpoint. The control performance 

of the VAV terminal box is satisfactory as the actual temperature actively adapts to the change of 
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the setpoint with a margin of 1 oC. As expected, the PMV of the occupant zone, defined as the 

lower-half of the room, changes in a similar pattern as the actual temperature at the thermostat 

location. The simulation results presented in this figure also emphasise the importance of 

considering the dynamic control of the HVAC system using the dynamic simulation, as opposed 

to the steady-state simulation in previous study. The inability of the steady-state simulation to 

capture those dynamics may further lead to incorrect predictions of the control-performance and 

energy-performance of the system. 

4 Application in Optimal Thermostat Placement  
The design of the optimal thermostat placement case, which is to find the best location to 

place the thermostat in the design phase, is to evaluate the feasibility and performance of this 

platform. We will look at for an office room of typical size if this platform can predict the optimal 

location within a reasonably short time frame. Since a dynamic optimization process as shown in 

Figure 1 is essentially consisted of a series of interconnected static optimization, in which the 

optimization time step is equivalent to the simulation time, we configure this case study as a static 

optimization problem. If the static optimization can be successfully carried out in this platform, 

the capability of using this platform to perform dynamic optimization should be plausible. With 

this in mind, we first mathematically describe the optimization problem, and then we show the 

optimization results. 

4.1 Definition of Optimization Problem 

The objectives of the optimization study are to find the thermostat location to achieve optimal 

thermal comfort, or, energy efficiency, or, both, over the course of the whole simulation time. The 

energy consumption is estimated in terms of source energy considering both cooling and reheat. 

The objectives of the optimization in this case study can be formulated as: 
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ὐ ώᴆᴆᴆɴ , where ώᴆ ὴάὺȟὖ and В ᴆ ρ  (10) 

where ώᴆ represent the output from the Modelica; ᴆ represents the weight for each component in 

ώᴆ; ὴάὺ is the predicted mean vote to quantify the thermal comfort; ὖ is the energy consumption; 

m is the number of sub-objectives; ᴆ is the weight for the sub-objective i. The searching domain 

8 is defined as the ceiling of the room. In this case study, the searching domain 8 covers the ceiling 

of the room. We note that when ὴάὺ and ὖ exist in ώᴆ, we normalized the results to numbers with 

a range of 0-1 to make them comparable in magnitude before performing the linearization. 

Since the system boundary in this case study only includes the VAV terminal box (not the 

chilled water system), we simplify the calculation of energy consumption ὖ as:  

0  ᷿ ʂά Ὕ ͺ Ὕ ͺ ʂά Ὕ ͺ

Ὕ ͺ Ὠὸ, 

(11) 

where ʂ and ʂ are conversion coefficients for chilled water and hot water, which can be found 

in Energy Star Portfolio Manager (EPA 2018). Ὕ ͺ   and Ὕ ͺ   are return and supply air 

temperature, respectively. ά   and ά   are mass flow rates of the air and hot water (for 

reheating). Ὕ ͺ   and Ὕ ͺ   are the return and supply water temperature. We utilize a 

time-average PMV to evaluate the overall thermal comfort of the occupant zone over the 

simulation time. It is defined as: 

ÐÍÖ  ᷿ ὖὓὠ Ὠὸ, (12) 

where ὖὓὠ is the PMV at time t, which is calculated by the standard thermal comfort module 

“Buildings.Utilities.Comfort.Fanger” in Modelica Buildings library (Wetter et al. 2014). We 

employed average temperature and velocity at the occupant zone predicted by CFD simulations to 

calculate the PMV with assuming a fixed radiative heat gain and clothing insulation. The coupled 
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simulation platform makes it possible to dynamically predict the average thermal comfort at the 

occupant zone for a ventilation system with stratified airflow and temperature distribution. A 

standalone BES usually employs a well-mixed room model, which makes it difficult to estimate 

the thermal comfort at a certain zone or location. A standalone CFD tool should be assigned with 

a prescribed boundary condition, which make it impossible to simulate the dynamic interaction 

between indoor environment and the HVAC system. 

4.2 Optimization Results 
 

A typical outside condition was selected and the coupled simulation in this case study was 

performed for 3600 seconds (1 hour). The optimization time step was identical to the simulation 

time.  A global optimization scheme called  PSO was selected in GenOpt (Wetter 2009a). We 

performed optimizations with the settings of 10 generations and 10 particles (candidate solutions) 

in each generation, which are determined by some initial tests. We employed “best” neighborhood 

topology with a neighborhood size of 2 (Wetter 2009a). The cognitive acceleration and social 

acceleration are set as 2.8 and 1.3, respectively. The variables are the coordinates of the location 

that the thermostat may be placed at, and the searching ranges cover the whole ceiling. Three 

scenarios were considered to find the optimal thermostat locations to: a) achieve best PMV (least 

absolute value of PMV) of the occupant zone; b) achieve least energy consumption; c) achieve an 

overall optimal of combined PMV and energy consumption linearized with a 50%-to-50% weight 

coefficient. Scenarios a and b are single-objective optimizations and the scenario c is a multi-

objective optimization. Table 1 summarizes optimized results of three optimizations, in which 

sensor 1, sensor 2, and sensor 3 are the optimal locations corresponding to the scenario a, b and c. 

When thermostat is put at sensor 1 location, the thermal comfort is the highest among the three, 

while energy consumption is also the largest. When thermostat is put at sensor 2 location, 44% 
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less energy was used compared to scenario a, while the thermal comfort is the worst. When the 

thermostat is placed at sensor 3 location, an overall optimal is achieved (energy consumption is 

lower compare to scenario a and thermal comfort is better than scenario b).  

Table 1 Summary of the optimization Results 

Optimization 

Objective ╙ 
Optimal Ⱪ ╟╜╥ ╔ ╜╙ 

Number of 

iterations 

Time cost 

(hour) 

▬□○
Ⱪᴆɴ╧
ἵἱἶ

 Sensor 1 

(2.85,1.60,2.43) 

0.14 33.42 97 5.8 

╙ ╟
Ⱪᴆɴ╧
ἵἱἶ

 Sensor 2 

(2.55,1.79,2.43) 

0.39 19.03 86 5.1 

╙ ▬□○ȟ╟
Ⱪᴆɴ╧
ἵἱἶ ⱷᴆ 

ⱷᴆ Ϸȟ Ϸ  

Sensor 3 

(2.81,1.60,2.43) 

0.15 29.40 84 5.2 

 

 

Figure 6 Search trajectory of finding optimal thermostat location leading to best PMV 

The total time cost for the three optimizations is approximately 6 hours, in which up to 97 
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iterations of coupled-simulation-run were performed. Figure 6 shows the searching trajectory of 

the optimal thermostat location on the ceiling for scenario a. Each dot in the plotting represent an 

iteration in the optimization process. The converging speed is plausible as: first, after 

approximately 5 iterations, the PMV in the optimization is close to the optimal value; after 

approximately 10 iterations the searching rapidly approaches the optimal location. Looking at the 

cluster of dots covering 10th to 65th iterations, we find that the PSO as a global search scheme 

avoids the local optimal, and eventually determines the optimal after 97 iterations. We note that 

the searching trajectory may depend on the initial guess. In this optimization, the initial guess of 

the thermostat location leads to a PMV of 0.45, which may help accelerate the convergence speed 

of the optimization. 

To further study the dynamics of the airflow and VAV terminal box, we present the FFD and 

Modelica results for the three optimization scenarios in Figure 7 and Figure 8. Over the simulation 

time of 1 hour, regardless of the thermostat placement, the actual temperature varies effectively 

with the change of the set point and the difference between them are mostly within 1 ᴈ. Neither 

of the three thermostat locations is significantly better or worse than others in terms of control 

stability and accuracy. We note that if a model based on mix-air consumption is used, the 

fluctuation of the actual temperature around the setpoint in the dynamic control process would be 

overlooked, and thus the calculation of the PMV or energy consumption might be incorrect. As 

expected, three different thermostat locations lead to different PMVs and energy consumption of 

the terminal box, due to the resulted behaviors of the terminal box in terms of cooling airflow 

rate/temperature, turning on/off the reheat coil.  
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Figure 7 Time-varying temperature at the optimal thermostat locations 

In Figure 8, the PMV is constantly changing with the variation of the actual temperature at 

the thermostat location. When thermostat is placed at Sensor 1, the time-varying PMV is closer to 

0 (indicating highest thermal comfort) than the other two scenarios. This is achieved mainly by 

providing more cooling, as the airflow rate of the cooling air in the first scenario is the highest. 

Consequently, the total energy consumption, in which cooling energy accounts for the highest 

portion, is the largest among all. When thermostat is placed at Sensor 2, the time-varying PMV is 

the highest (least comfort) among all the three scenarios. This is mainly because least cooling is 

provided in this scenario and consequently least energy consumption is achieved, though in this 
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scenario, it has the largest reheating energy consumption, which accounts very little in the total 

energy consumption. Lastly, when thermostat is placed at Sensor 3, an overall optimal PMV-and-

energy-consumption is achieved, in which the third scenario has neither best PMV nor largest 

energy consumption. Its time-varying PMV is higher than the first scenario and lower than the 

second scenario, while its total energy-consumption is lower than the first scenario and higher than 

the second scenario. The reason is that the cooling provide by VAV terminal box in this scenario 

is in between those in scenario 1 and 2. 

 

Figure 8 Responses of cooling system for optimization of PMV or energy or both 

Finally, it is important to note the necessity of using a dynamic model in this kind of 
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application, which involves dynamic system control. One may argue that a coupled model based 

on a steady-state building-energy-performance model and steady-state CFD is also viable to carry 

out such optimization. While this might be true, however, the omitted dynamics by the steady-state 

models can results into inaccurate or even incorrect results. For example, during 0 to 600 seconds 

in which the set point is anchored at 25 ᴈ, a steady-state model will provide a flat/linear PMV and 

energy-consumption profile, as opposed to the time-varying profiles. Without comparison to the 

experimental measurements, we cannot conclude which one outperforms the other.  

5 Discussion 
The optimization platform has been demonstrated to seek the optimal placement of the 

thermostat in an office room with the displacement ventilation in the design phase. Dynamics of 

the VAV terminal box have been shown to be critical to determine the thermal comfort and energy 

efficiency. It nevertheless indicates that the proposed optimization platform can only be applied to 

thermostat placement or model-based design, and we have identified a few more potential 

applications: 

1. Design optimization of HVAC system. This includes the optimization of airflow or energy 

system, or both. During the optimization, the interaction between the airflow and energy 

system will be considered, which would be critical in assessing the thermal comfort and 

energy efficiency. Except for the applications listed in the introduction, a good example is 

the design of data center cooling with raised-floor architecture, in which the open-area-

ratio and location of perforated tiles can be optimized to reduce cooling energy 

consumption. 

2. Pre-commissioning (design verification) of HVAC system. Pre-commissioning or design 

verification is to ensure that the real system can deliver the performance as desired. Given 
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the fact that the real system will dynamically change in the real operation, only verifying 

the design in a nominal (design) condition is not enough. Thus, the optimization platform 

can be utilized to optimize the settings of the cooling systems and their controls. For 

example, in data center cooling application, one can seek the optimal settings of a DX 

system to avoid short-cycling and improve control reliability.  

3. Fault Detect and Diagnostics (FDD). The sensors in the thermal environment and cooling 

system may send back signal to indicate possible failures. It is critical, particularly in 

mission-critical facility, to identify whether the signal is due to the failure of the sensor or 

cooling system or normal fluctuation of the airflow. The optimization platform can be used 

to traverse all the possible failures and find the most likely one to help operators fix the 

fault. The highlight of this optimization platform compared to other FDD techniques lays 

in the fact that this optimization platform considers the interaction between the thermal 

environment and the cooling system. 

4. Operation optimization of HVAC system. Model-based control of the cooling system in 

the operation would be a good application of the optimization platform. Time stepwise 

optimization can be performance dynamically to seek optimal settings to achieve least 

energy consumption or best control response. For example, in data center cooling, one can 

dynamically adjust the server load distribution to increase the supply air temperature or 

lower the supply airflow rate to save cooling energy. When the server load is projected to 

dramatically increase in near future, one can use the optimization platform to determine 

the best supply air temperature reset to precatively handle the load increase while still 

sustaining the energy efficiency. 



27 
 

6 Conclusion and Future Work 
In this paper, we propose an optimization framework based coupled CFD-BES simulation 

model. We then implement an optimization platform using a Modelica-FFD coupled simulation 

and GenOpt as optimization engine. The optimization platform is demonstrated to seek optimal 

thermostat placement in an office room with displacement ventilation and a VAV terminal box. 

Two single-object optimization studies show that the platform is capable to find the optimal 

thermostat locations to achieve best thermal comfort or energy efficiency. Due to that these two 

objectives are interrelated, we perform a multi-objective study by linearly combining them and 

find that the platform is capable to find a compromise between multiple objectives. The total time 

cost of the optimizations in the demonstration is about 6 hours, which are acceptable in the design 

phase. 

We note that there are a few future studies that can be done to accelerate the speed of the 

coupled simulation and the optimization platform. First, parallel computing can be utilized to speed 

up the CFD simulations, which has been studied extensively in previous research. However, more 

research will be needed to couple the parallel-computing CFD simulations to BES simulations to 

ensure stable and efficient data transfer. Second, the technique of adaptive-synchronization-time 

step can be used to couple BES and CFD reduce the overhead of data transfer. Using this technique, 

a small-time step size is used only when it is required, i.e., to resolve step change or high-frequency 

dynamics. Finally, a reduced order model of indoor environment can be used to replace CFD, such 

that the computing speed can be drastically increased to a point, where a dynamic optimization 

using this platform can be carried out to assist the HVAC operations. 
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