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Abstract 

Data center cooling typically involves non-uniform 

airflow and temperature distributions, which are affected 

by the IT workload distribution. It is helpful to simulate 

the airflow and temperature to optimize the workload 

distribution. Traditional computational fluid dynamics 

(CFD) simulation is usually time-consuming while 

conventional reduced order models (ROMs), though 

computationally fast, may generate inaccurate results 

even after being fully trained. In Situ Adaptive Tabulation 

(ISAT), contracting to conventional ROM, can make 

prediction with error lower than a user-specified 

tolerance. To demonstrate using of ISAT for optimal 

workload distribution in data center, this paper presents a 

preliminary study of an ISAT-based genetic algorithm 

optimization platform. The ISAT is trained offline by 

using the results from CFD simulations using a 

hypothetical simple data center. The optimal workload 

distribution determined by the platform leads to 

approximately 6.8% of energy savings when compared to 

the benchmark with a uniform workload distribution. We 

note that the time cost for the entire optimization process, 

including the training of ISAT is about 4 hours, which is 

acceptable in the design phase. 

Introduction 

ASHRAE (2015) recommends 27 oC as the maximum 

inlet temperature for the IT equipment. In reality, 

computer room air conditioners (CRACs) in many data 

centers are operated at a significantly lower supply 

temperature to avoid hot spots. While providing 

redundant cooling, this leads to reduced cooling 

efficiency (Tang et al. 2008). Therefore, it has been a 

research topic on how to improve the energy efficiency 

while still providing enough cooling to the data center 

whitespace, where the IT equipment is placed. One of the 

approaches is to optimize the workload distribution such 

that CRACs can operate at a higher supply temperature or 

lower airflow rate (Banerjee et al. 2010).  

Moore et al. (2005) proposed several algorithms for 

workload placement to maximize the supply air 

temperature while ensuring the server inlet temperature 

not exceeding the threshold. Tang et al. (2007) 

investigated several load placement strategies to 

minimize heat recirculation. Among these research, the 

CFD simulations were conducted to obtain the thermal 

map of the data center with regard to workload 

distribution, which required huge computational efforts to 

cover a large number of scenarios.   

To reduce the computational cost, simplified airflow 

models were proposed for fast prediction of indoor 

environment. Zhang et al. (2009) developed a lumped 

model to predict rack-inlet temperatures under various 

supply airflow and rack-load scenarios. Since only one 

effective aggregated rack and cooling unit were 

considered based on a well-mixed assumption, the 

lumped model may fail to capture local airflow pattern 

and temperature distribution. Potential flow models were 

used to predict the airflow and temperature distribution 

(Toulouse et al. 2009). However, the potential flow model 

is an approximate and simplified model, which may not 

be as accurate as CFD, particularly when simulating the 

jet flows from the perforated tiles.  

Other than using physic-based models to generate 

simplified models, statistics-based approaches, 

sometimes referred to as reduced order models (ROMs) 

were also employed. Proper orthogonal decomposition 

(POD) was used to predict the velocity and temperature 

distribution in an office (Elhadidi and Khalifa 2005) and 

rack-inlet temperature distribution in a raise-floor data 

center (Demetriou and Khalifa 2013). Artificial neural 

network (ANN) models were used to predict thermal map 

of data centers (Moore et al. 2006), perforated-tile 

flowrates and rack-inlet temperatures (Song et al. 2011). 

However, the predictions of such statistics-based models 

may become inaccurate when the queries lie beyond the 

training domain.  

To overcome the limitations of these simplified models, 

an online self-learning ROM called in situ adaptive 

tabulation (ISAT) was proposed. ISAT is a storage-and-

retrieval algorithm that was originally developed by Pope 

(1997) to accelerate turbulent combustion simulations. 

Tian et al. (2018) applied it in the indoor environment 

simulation and presented promising results in terms of its 

training and prediction. ISAT, which allows user to 

specify an error tolerance, retrieves the output of a query 

using linear interpolation if the error of such retrieval is 

estimated within the error-tolerance. Otherwise, as 

opposed to the conventional ROMs that would continue 

the retrieving, ISAT will call a full-scale simulator (such 

as CFD) to resolve the query. We will cover the detail of 

the ISAT in the coming section. 

In this paper, we present an optimization platform based 

on ISAT and genetic algorithm to optimize workload 
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distribution in a hypothetical data center. To accelerate 

the training of ISAT, we employ a fast fluid dynamics 

(FFD) model running on graphics processing unit (GPU) 

(Tian et al. 2017; Tian, VanGilder, Han, et al. 2019; Tian, 

VanGilder, Condor, et al. 2019) to simulate the airflow 

and temperature distributions under different workload 

distributions. With the optimal workload distribution 

determined by the platform, CRAC supply-air 

temperature can be increased approximately by 0.8 oC, 

and this leads to 6.8% cooling energy savings. 

Methodology 

Introduction of ISAT and FFD 

The idea of ISAT is to dynamically establish a lookup 

table, based on which a new query can be quickly 

evaluated by local linear regressions (Pope 1997).  

In both training and evaluation stages, to answer a new 

query, ISAT will first determine the nearest record to the 

query point. If a query point is within the Ellipsoid of 

Accuracy (EOA) of the nearest record in the ISAT table, 

ISAT will estimate outputs using linear approximation 

(retrieve). If the query point is outside the EOA of the 

nearest record, ISAT will simultaneously perform a linear 

approximation (retrieve) and a direct evaluation by 

calling CFD simulations to determine the outputs.  

Afterwards, the error between the solutions from retrieve 

and direct evaluation will be compared. If the difference 

is less than the total error tolerance, a grow action will be 

executed to enlarge the current EOA of the record to 

include the query point; Otherwise, an add action will be 

performed to store the query point and its related data as 

a new record in the ISAT table. The detailed description 

of the workflow of the ISAT algorithm can be found in 

(Tian et al. 2018).  

To accelerate the training process, we employ FFD 

running on graphics processing unit to perform the 

airflow and thermal simulation. FFD is a faster alternative 

to traditional CFD. FFD solves the same governing 

equations as CFD does, but employs a different solving 

technique. FFD was reported to be 50 times faster than 

CFD and an additional factor of 30-1000 times speedup 

can be achieved using parallel  computing (Zuo and Chen 

2010; Tian et al. 2017). Tian, VanGilder, Han, et al. 

(2019) adopted FFD to simulate data center airflow and 

found that FFD could achieve comparable accuracy to 

CFD with the potential of significantly reduced solution 

time. The readers may refer to (Zuo and Chen 2009; Tian, 

VanGilder, Han, et al. 2019) for detailed description of 

FFD. 

Optimization platform based on ISAT-FFD 

The idea of ISAT-FFD is that the prediction can be 

retrieved based on an existing data record if the estimated 

error is within a pre-defined tolerance. Otherwise, the 

prediction will be obtained by calling FFD to conduct an 

airflow and thermal simulation. We have conducted some 

preliminary studies to evaluate using of ISAT-FFD for 

indoor airflow simulations (Tian et al. 2018).  

 

Figure 1: Framework of the ISAT-based genetic 

algorithm (GA) optimization platform 

In this study, the optimization is performed based on 

ISAT after it is fully trained offline using FFD 

simulations. As shown in Figure 1, an optimization 

platform that links ISAT-FFD with genetic algorithm 

(Mitchell 1998) is developed to automate the whole 

process from training/evaluation of ISAT to genetic 

algorithm optimization.  

The conventional airflow optimization evaluates the 

fitness function (also called objective function, which 

may be, for example, best thermal comfort) by directly 

performing airflow simulations (e.g. CFD or FFD) to 

predict the indoor velocity and temperature distribution 

and then calculate the predicted mean vote (PMV) to 

evaluate the thermal comfort. Different from conventional 

method, the idea of this optimization platform is that we 

first train a reduced order model ISAT by a series of data 

set extracted from airflow simulations. For example, we 

may use a series of data set including the boundary 

conditions (as inputs) and the corresponding average 

velocity and temperature at the occupant zone (as outputs) 

to train the ISAT and store data in a database. Then the 

ISAT should be able to predict the average velocity and 

temperature at the occupant zone for a new boundary 

condition based on existing neighboring points in the 

database.  

After the training finishes, the genetic algorithm is called 

to perform optimization as shown in Figure 1. The genetic 

algorithm first generates a series of candidate solutions 

(initial population), which are then evaluated and sorted 

with fitness function predicted by ISAT. Through 
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selection, crossover and mutation, better solutions will be 

inherited to the next generation with a higher probability. 

After iterations of the above procedure until the genetic 

algorithm is converged, the optimal solution will be 

exported. The advantage of this platform is that a fully-

trained ISAT should be able to evaluate the performance 

of candidate solutions using the retrieve action (linear 

regression) for most cases, which is much faster than full 

airflow simulations. 

Case Study 

In the data center airflow management area, the rack-inlet 

temperature is a critical parameter to evaluate the cooling 

performance, which can be influenced by multiple factors, 

such as, CRAC supply air temperature, and airflow 

pattern near the racks (which may lead to mixture of hot 

air with cool air). The maximum rack-inlet temperature 

should not exceed 27 oC per ASHRAE specs (ASHRAE 

2015). As a result, if the maximum rack-inlet temperature 

is raised due to local hot spots caused by mixture of hot 

air with cold air in front of the racks, the cooling system 

has to lower supply air temperature or increase supply 

flowrate, which leads to a lower efficiency of the cooling 

system.  

The workload distribution, which this paper is focusing 

on, has significant effect on the airflow pattern near the 

racks and further influences the rack-inlet temperature. 

Therefore, we could eliminate the hot spots by optimizing 

workload distribution and increase the supply air 

temperature to improve the cooling. 

FFD Modeling of the hypothetical data center 

The whitespace (data center room where the IT 

equipment is placed) is 6.7m, 5.5m, 3.7m in length, 

width, and height, respectively. The total whitespace 

floor area of the reference data center is 36.8 m2 (396 ft2) 

and the layout is shown in Figure 2. The data center 

includes 10 racks with a total power of 60 kW. CRAC 

pumps cool airflow to the raised-floor plenum, and the 

supply airflows is distributed to the inlet of racks through 

10 25%-open-area perforated tiles. The cool airflow is 

then drawn into the racks, heated, and extracted from hot 

aisles back to the CRAC directly through the room 

without a ceiling plenum. We note that this hypothetical 

data center is proposed to reflect a typical data-center 

layout. 

The total workload is evenly distributed over 10 racks in 

the benchmark. The IT airflow is estimated as rack power 

multiplying by 212 m3/h/kW (125 cfm/kW). The total 

supply airflow rate is 12,750 m3/h, which leads to an air-

ratio of 1. 

For modeling simplicity/convenience, we made the 

following simplifications. First, only whitespace is 

modeled, and the underfloor plenum is excluded. Since all 

the perforated tiles in this case are 25% open-area-ratio, 

to model the whitespace and under-floor plenum in a 

detached way is justifiable, as the airflows in the two 

spaces are fairly separated (Tian, VanGilder, Han, et al. 

2019).  Second, we employed a black-box rack model and 

therefore workload is shifted from rack-rack (as opposed 

to IT-to-IT). For the detailed description of the rack 

model, refer to literature (Tian, VanGilder, Condor, et al. 

2019). 

 

Figure 2: Plan view of the hypothetical simple data 

center 

Settings for FFD Simulations 

As recommended by VanGilder and Zhang (2008), FFD 

simulation adopted an uniform 6 inches (0.15 m) grid, 

resulting into a total of 38,016 cells. Since FFD simulation 

is inherently transient; we use a time step size of 0.1 s and 

simulation time of 200 s, which is adequately long to 

reach steady-state conditions. FFD employs a zero-

equation turbulence model (Dhoot et al. 2016). The FFD 

simulation was performed on a workstation with 4 

Intel(R) Xeon(R) E5-1603 CPUs and an AMD FirePro 

W8100 GPU and the results of initial tests showed that the 

time cost of a FFD simulation is about 61 s. 

Training of ISAT-FFD 

From sensitivity analysis, we found that the IT power of 

the racks located at the ends of the rows have relatively 

larger influence on the overall maximum rack-inlet 

temperature. We assume that the powers of Rack-1 and 

Rack-6 are always the same (represented by Input 1) and 

the powers of Rack-5 and Rack-10 are always the same 

(represented by Input 2). For other racks, we assume that 

the remaining IT power is uniformly distributed over the 

6 racks in the middle of the rows. 

Table 1: Results of training ISAT-FFD models for the 

three cases 

Items\Cases Case 1-1 Case 1-2 Case 1-3 

No. of Queries 255,497 15,630 4,190 

No. of Retrieve 253,673 15,433 4,103 

No. of Grow 1,542 160 63 

No. of Add 282 37 24 

Training Time (hr.) 34.7 3.8 1.8 

We proposed three cases with predefined total error 

tolerances: 0.2 oC, 0.4 oC, and 0.6 oC for Case 1-1, 1-2, 

and 1-3, respectively. The two inputs range from 1.0 kW 

to 10.0 kW. The output is the maximum rack-inlet 

temperature of the 10 racks. The results of the three cases 

are shown in Table 1Table 1. In Case 1-1, the total 

number of queries used in the training is 255,497, in 

which 99.3% are retrieve actions, 0.6% are grow actions 

and 0.1% are add actions. In Case 1-2 and Case 1-3, the 

total numbers of queries drastically dropped to 15,630 and 



4,190. Consequently, the numbers of the retrieve, grow 

and add actions are also significantly decreased. As a 

result, the training process takes 34.7 hours for Case 1-1, 

and only 3.8 hours and 1.8 hours for Case 1-2 and Case 

1-3.  

 

Figure 3: Error distributions of evaluation points for the 

three cases 

After the training was completed, we evaluated the 

accuracy of the ISAT table using 50 randomly-generated 

data points (the same 50 data points for each case) and 

correlated the prediction accuracy with the user-defined 

total tolerance in the training. As shown in Figure 3, the 

errors of ISAT predictions for the evaluated points are 

generally within 0.2 oC, 0.45 oC and 0.85 oC for Case 1-

1, Case 1-2 and Case 1-3, respectively. Moreover, 75% of 

the predictions of the queries are within 0.12 oC, 0.25 oC 

and 0.45 oC for the three cases, respectively. Generally, 

we conclude that the ISAT prediction error is at the same 

order of the total error tolerance specified at training 

stage. To achieve a balance between prediction accuracy 

and training cost, we think that 0.4 oC is a proper error 

tolerance for this specific case. 

Optimization of Workload Distribution 

The optimization of the rack workload distribution was 

performed based on the trained ISAT. Here we note that 

although we chose 0.4 oC error tolerance in Case 1-2 for 

training of ISAT, we also include the optimization results 

based on Case 1-1 and 1-3 for comparison. 

We set in GA the population size to be 30 and the number 

of generations to be 100. The crossover and mutation 

probabilities are set to be 0.6 and 0.1, respectively. The 

fitness function of the optimization study is to minimize 

the maximum rack-inlet temperature when the total 

supply flow rate of the CRAC remains unchanged.  

The optimization results are shown in Table 2. Generally, 

the three cases obtain similar optimal solutions. The 

optimal values of Input 1 and Input 2 are in the range of 

about 1.0-1.3 kW and 9.6-9.9 kW, respectively. The 

maximum rack-inlet temperatures with optimal workload 

distributions are 15.4 oC from ISAT predictions for the 

three cases. To evaluate the accuracy of the ISAT-based 

optimization, we performed a FFD-based optimization. 

The results show that there is only 0.1 oC difference 

between the ISAT predictions and the results from FFD 

simulations for the three cases. 

Table 2: Optimization results of the three cases 

Items\Cases Case 1-1 Case 1-2 Case 1-3 

Fitness 

Function 

Minimize maximum rack-inlet 

temperature 

Input 1 (kW) 1.22 1.01 1.27 

Input 2 (kW) 9.57 9.9 9.88 

ISAT Output 

(oC) 
15.4 15.4 15.4 

Direct FFD 

Simulation (oC) 
15.5 15.5 15.5 

Figure 4 compares the time costs for performing 

optimization in different cases. The time cost of FFD-

based optimization (FFD-GA), which directly calls FFD 

simulations to perform optimization, is roughly estimated 

by the time cost of each FFD simulation (61s) and the total 

number of FFD calls (3000) during the optimization. Case 

1-1, Case 1-2, and Case 1-3, which first train ISAT using 

FFD and then perform optimization by calling ISAT, take 

only 69.1%, 7.7% and 7.1% of the time of the FFD-GA.  

 

Figure 4: Comparison of time costs for FFD-based 

optimization (FFD-GA) and ISAT-based optimization 

(Case 1-1, Case 1-2 and Case 1-3) 

Evaluation of Energy-Saving Potential 

The CRAC supply air temperature can be scaled up until 

the rack-inlet temperature reaches maximum threshold 

recommended by ASHRAE to improve cooling 

efficiency. In the present case, the maximum rack-inlet 

temperature is decreased by 0.8 oC from the benchmark 

by optimizing workload. Therefore, the supply air 

temperature of CRACs can be raised from 20.7  oC to 21.5 
oC. Based on the empirical formula describe in (Moore et 

al. 2005), the coefficient of performance (COP) is 

estimated to be increased from 3.39 to 3.63, which results 

in an energy saving of 1.1 kW. The cooling energy saving 

percentage is estimated to be 6.8% by optimizing 

workload distribution compared to the benchmark with a 

uniform workload distribution. 

Conclusion 

This paper proposes an optimization platform that 

integrates ISAT with a global optimization engine to seek 
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the optimal IT workload distribution. The platform is 

demonstrated using a hypothetical data center, in which 

ISAT is trained by using FFD simulations. With an error 

tolerance of 0.4 oC, the training cost of ISAT is 

approximately 3.8 hours and the optimization takes an 

additional 0.1 hours. Compared to the benchmark having 

a uniform workload distribution over racks, the optimal 

workload distribution results into an increase of supply air 

temperature by 0.8 oC, and this is estimated to save 6.8% 

of cooling energy. In the future, we can further this study 

by exploring advanced ISAT training method to reduce 

training time cost and perform more case studies using 

real data center layouts. 
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