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Fast and Self-Learning Indoor Airflow Simulation Based on In Situ 

Adaptive Tabulation  

ABSTRACT 

Fast simulation for stratified indoor airflow distributions is desired for various 

applications, such as design of advanced indoor environments, emergency 

management, and coupled annual energy simulation for buildings with stratified air 

distributions. Reduced order models trained by pre-computed computational fluid 

dynamics results are fast, but their prediction may be inaccurate when applied for 

conditions outside the training domain. To overcome this limitation, we propose a 

fast and self-learning model based on an in situ adaptive tabulation (ISAT) algorithm, 

which is trained by a fast fluid dynamics (FFD) model as an example. The idea is that 

the ISAT will retrieve the solutions from an existing data set if the estimated 

prediction error is within a pre-defined tolerance. Otherwise, the ISAT will execute 

the FFD simulation, which is accelerated by running in parallel on a graphics 

processing unit, for a full scale simulation. This paper systematically investigates the 

feasibility of the ISAT for indoor airflow simulations by presenting the ISAT-FFD 

implementation alongside results related to its overall performance. Using a stratified 

indoor airflow as an example, we evaluated how the training time of ISAT was 

impacted by four factors (training methods, error tolerances, number of inputs, and 

number of outputs). Then we demonstrated that a trained ISAT model can predict the 

key information for inputs both inside and outside the training domain. The ISAT 

was able to answer query points both inside and close to training domain using 

retrieve actions within a time less than 0.001s for each query. Finally, we provided 

suggestions for using the ISAT for building applications. 

Key words: In Situ Adaptive Tabulation, Fast Fluid Dynamics, Reduced Order 

Model, Self-Learning, Indoor Airflow Simulation 
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Nomenclature: 

CFD: Computational Fluid Dynamics 

FFD: Fast Fluid Dynamics 

OpenCL: Open Computing Language 

GPU: Graphics Processing Unit 

ISAT: In Situ Adaptive Tabulation 

ISAT-FFD: ISAT algorithm coupled with the FFD  

ROM: Reduce Order Model 

EOA: Ellipsoid of Accuracy 

 ሺሻ: Query point in m dimension space࢞

 ሺሻ: Tabulation point in m dimension space in ISAT table࢞

Twall: Temperature on west, east, south, and north walls  

Tfloor: Temperature on the floor 

Tinlet: Temperature at inlet 

|V|inlet: Velocity magnitude at inlet 

Tocc: Temperature on average of the occupant zone, where Z<1.22 m 

|V|occ: Velocity magnitude on average of the occupant zone, where Z<1.22 m 

Tsensor: Temperature at the sensor location (1.22m, 1.22m, 1.24m) 

|V|sensor: Velocity magnitude at the sensor location (1.22m, 1.22m, 1.24m) 
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1 Introduction 

Fast simulation of stratified indoor airflow distributions is desired for building 

applications, such as design of stratified indoor environments (Wang et al. 2010), 

emergency management (Zhai et al. 2003), and coupled annual energy simulation for 

buildings with stratified air distributions (Zhai et al. 2002). Although Computational Fluid 

Dynamics (CFD) models are used in the design and evaluation of ventilation performance 

with stratified air distribution, they are usually too slow to meet the requirement of a fast 

computing speed (Zhai et al. 2002).  

To reduce the computing time, researchers proposed a Fast Fluid Dynamics (FFD) 

model as an intermediate method between the CFD and multi-zone airflow network models 

(Zuo and Chen 2009; Zuo 2010; Zuo et al. 2010). FFD solves the same Navier-Stokes and 

balance equations for energy and species that CFD does. By using different mathematical 

algorithms, FFD can increase the computing speed by 30 times when compared to CFD 

(Zuo and Chen 2009; Zuo 2010; Zuo et al. 2010). In addition, one can further accelerate the 

FFD simulation by running it in parallel on graphics processing units (GPUs) (Zuo and 

Chen 2010a). Due to its high speed, FFD has been used for simulating various airflows 

inside and around buildings (Zuo and Chen 2009; Zuo 2010; Zuo et al. 2010; Zuo and Chen 

2010c, 2010b, 2010a; Jin et al. 2012; Jin et al. 2013). Furthermore, the FFD was coupled 

with the Modelica Buildings library (Wetter et al. 2014) for integrated simulations of 

indoor environment and building HVAC systems (Zuo et al. 2016). Although significantly 

faster than CFD, FFD is still not fast enough for the aforementioned applications.  

In order to perform fast simulation of stratified indoor airflows, researchers 

proposed to use reduced order models (ROMs) (Kolokotsa et al. 2009; Hazyuk et al. 2012; 

Desta et al. 2004; Hiyama et al. 2010; Kim et al. 2015; Ahuja et al. 2011). A common 
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approach is to use a regression model with a limited number of inputs in order to construct 

the data-driven ROMs based on pre-calculated CFD results (Chen and Kooi 1988). 

However, they can rarely reflect the dynamics of a full order CFD model. On the other 

hand, ROMs can be built by using the Principal Orthogonal Decomposition method to 

extract important features (snapshots) of the flow and then project them to a Linear Time 

Invariant system (Li et al. 2013). Such ROMs can partially maintain the dynamics of the 

full order CFD model. Although it can be time consuming to run various CFD simulations 

to generate training data, the trained ROMs can compute the solution almost 

instantaneously by either interpolating or extrapolating using an existing data set. However, 

conventional ROMs can only perform well when the inputs are within or near the training 

domain. Consequently, if the inputs are too far outside the training domain, the ROMs may 

resolve them without any guaranteed accuracy (Stockwell and Peterson 2002).  

Obviously, it is too expensive to train a ROM for a domain which includes all the 

possible inputs of the application. Therefore, to overcome this drawback of conventional 

ROMs, we propose to a fast and self-learning indoor airflow simulation method. The idea is 

that we will train the ROM within a domain in which the system is most likely to operate. If 

the trained ROM cannot project the solutions accurately, a full scale CFD simulation will 

be executed. The newly generated data from the CFD simulation will then be used to 

enlarge the training domain for the ROM.  

To realize the proposed fast and self-learning airflow simulation method, we 

selected an in situ adaptive tabulation (ISAT) algorithm. ISAT is a general function 

approximation method. ISAT was originally proposed to speed up combustion simulations 

(Pope 1997). It stores key simulation data in a data table and linearly interpolates the 
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solutions from the table if the inputs are within the region where the interpolation accuracy 

is guaranteed. Otherwise, it executes a full scale simulation to obtain the solution.  

Given that FFD is a full scale airflow simulation model of high speed, the ISAT, a 

fast and self-learning approach, can be evaluated on accelerating indoor airflow simulation 

using FFD. Although ISAT has accelerated multi-species combustion simulations (Singer 

and Pope 2004; Singer et al. 2006), it is not clear that ISAT will be suitable for indoor 

airflow simulations. This study implemented and then evaluated the performance of the 

proposed ISAT-FFD model. We first introduce mathematical descriptions of FFD and 

ISAT. We then illustrate the implementation of the ISAT-FFD model on a hybrid 

computing platform consisting of a central processing unit (CPU) and a GPU. Afterwards, 

using a stratified indoor airflow, we assess the performance of ISAT at the training stage as 

well as the evaluation stage. Finally, we present the conclusion and potential applications of 

this research. 

2 Fast Fluid Dynamics 

FFD solves the Navier-Stokes equations: 

ࢁ߲

ݐ߲
ൌ 	െࢁ

ࢁ߲

߲࢞
 ߥ

߲ଶࢁ

߲࢞
ଶ െ

1
ߩ
߲ܲ
߲࢞

   (1)ࡲ

where ࢁ and ࢁ are the velocity component in ࢞ and ࢞ directions, respectively, ߥ is the 

kinematic viscosity, ߩ is the fluid density, ܲ is the pressure, ݐ is the time, and ࡲ is the 

source term, such as the buoyancy force. FFD splits the Navier-Stokes equation into the 

following three equations: 

ࢁ߲

ݐ߲
ൌ െࢁ

ࢁ߲

߲࢞
 (2) 
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FFD first solves the advection equation (2) using a semi-Lagrangian method 

(Courant et al. 1952). It then solves the diffusion equation (3) with an implicit scheme. 

Finally, it solves the pressure equation (4) together with the continuity equation    

ࢁ߲

߲࢞
ൌ 0 (5) 

using a projection-correction method (Chorin 1967). FFD also applies a similar algorithm 

to solve the conservation equations of energy and species. For more details of the FFD 

model, one may refer to the literature (Zuo and Chen 2009; Zuo 2010; Zuo et al. 2010; Jin 

et al. 2012; Jin et al. 2013; Zuo et al. 2012; Yang 2013).  

3 In Situ Adaptive Tabulation 

3.1 Mathematical Description of ISAT 

For a nonlinear model such as CFD or FFD, we describe the outputs ࢟ as a function of 
the inputs ࢞: 

࢟ ൌ ሻ (6)࢞ሺࢌ

࢞ ൌ ሼݔଵ, ,ଶݔ … , ሽ (7)ݔ

࢟ ൌ ሼݕଵ, ,ଶݕ … , ሽ (8)ݕ

where ࢞ is a set of independent scalar variable ݔ; and ࢟ is a set of dependent scalar 

variable ݕ. As an example, if a query point ࢞ሺሻ is close to a tabulation point ࢞ሺሻ,  ISAT 

can estimate ܡሺ࢞ሺሻሻ using a linear interpolation:  

ሺሻ൯࢞൫ܡ ൎ ሺሻሻ࢞୪ሺ࢟ ൌ ሺሻ൯࢞൫࢟  (9) ࢞ߜሺሻ൯࢞൫
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ሺሻ൯࢞൫ ൌ
ሺሻ൯࢞൫ࢌ߲

߲࢞
, ࢞ߜ ൌ ൫࢞ሺሻ െ  ሺሻ൯࢞

(10)

where ൫࢞ሺሻ൯ is called the mapping gradient matrix (n×m) at ࢞ሺሻ and it is stored together 

with ࢞ሺሻ in the record (Pope 1997); here, ݅ and ݆ are index. Note that the superscript which 

is located inside the parenthesis, for example, in ࢞ሺሻ, ݍ denotes the ݍ௧ query point. The 

parenthesis is used to avoid confusion of interpreting ࢞ሺሻ as ࢞ to the power of ݍ. To 

calculate ൫࢞ሺሻ൯, we can use user defined function or the ISAT algorithm using two 

neighbor points in the table. For instance, the ISAT algorithm finds neighbour record to 

 .ሺሻ. Then the mapping gradient matrix can be calculated as below࢞ ሺሻ, saying࢞

ሺሻ൯࢞൫ ൌ
ሺభሻ൯࢞൫ࢌሺబሻ൯ି࢞൫ࢌ

ሺభሻೕ࢞ሺబሻೕି࢞
. (11)

ISAT can automatically detect if a linear interpolation can be performed for ࢞ሺሻ 

based on its relationship to the region of accuracy of ࢞ሺሻ within which the interpolation 

error is not larger than error tolerance. Finally, the interpolation error ߝ is defined as: 

ߝ ൌ ቛቀ࢟൫࢞ሺሻ൯ െ ሺሻ൯ቁቛ࢞൫࢟
ଶ
 ௧௧ (12)ߝ

where ߝ௧௧ is the total error tolerance for all outputs, which is a scalar variable set by the 

user.  is an n×n scaling diagonal matrix which is predefined by the users before executing 

ISAT (Pope 1997). Its primary function is to make the interpolation error of each output 

comparable given that number of outputs is larger than one. For example, suppose an 

output consisting of velocity magnitude and temperature, and velocity magnitude and 

temperature varying at 0.01 m/s and 0.1 ºC, it is important to multiply the interpolation 

error of velocity magnitude by a factor of 10 to ensure that the accuracy of velocity 

magnitude prediction is not neglected. 
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Now, by assuming a constant approximation of ࢟൫࢞ሺሻ൯ ൌ  ሺሻ൯, and substituting࢞൫࢟

Equation (9) in Equation (12), one obtains: 

ߝ ൌ ଶ‖࢞ߜ‖  ௧௧ (13)ߝ

࢞ߜ்்்࢞ߜ
௧௧ଶߝ

 1 
(14)

Equation (14) is the criterion used to determine if the linear interpolation Equation (9) is 

valid for point ݔሺሻ. By subsequently applying Cholesky decomposition (Tuma 2002)  to 

the semi-definite symmetrical matrix 


ఌೌమ
 , one can obtain the equation below, 

࢞ߜࡽࢫ்ࡽ்࢞ߜ  1 (15)

where ࡽ is an m×m unitary matrix and ࢫ is an m×m diagonal matrix. Equation (15) defines 

a hyper-ellipsoid area, which is called the Ellipsoid of Accuracy (EOA) in ISAT. The radius 

in the ݅ direction, ݈, is defined as: 

݈ ൌ
௧௧ߝ
ߪ

 (16)

The ߪ is the ݅௧ diagonal entry of n×m diagonal matrix ࢳ, which is derived from Singular 

Value Decomposition of  . The sketch of the EOA in different dimensions is shown in 

Figure 1. It is worthy to note that due to the incorporation of the constant assumptions and 

essence of linear approximation of nonlinear function, it is not guaranteed that the 

interpolation error ߝ is less than the error tolerance ߝ௧௧ for all the points in the EOA 

(Pope 1997). 
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Figure 1 Sketch of EOA in different dimensions (a: 1D; b: 2D; c: 3D) 

3.2 ISAT Workflow 

Figure 2 shows the workflow of ISAT. Given a query point ࢞ሺሻ, ISAT will perform 

one of the following three actions: retrieve, grow or add. As the first step (step 1.1), ISAT 

will look up in the data table and find the nearest data point to ࢞ሺሻ, which is assumed 

hereby to be ࢞ሺሻ. Then step 1.2 is used to check if the query point ࢞ሺሻ	is within the EOA 

of ࢞ሺሻ. If so, the retrieve action will be executed using Equation (9) in step 2.1, and its 

linear interpolation ࢟൫࢞ሺሻ൯ will be returned in step 2.2. If not, an evaluation of the 

nonlinear Equation (6) in step 3.1 will be performed. Furthermore, the inequality (12) will 

be used to determine if the difference between the solution of Equations (6) and (9) is less 

than the error tolerance ߝ௧௧ in step 3.2. If the inequality (12) is met, the grow action will 

be performed to enlarge the EOA with minimal volume increase to contain the query point 

 in Equation (15) in step 4 using Householder matrix	ࢫ and ࡽ ሻ by updating the matrixሺ࢞

algorithm and rank-one modification algorithm (Pope 2008). The query point  ࢞ሺሻ is going 

to be abandoned. Otherwise, the add action will be performed to add the query point  ࢞ሺሻ 

as one additional record in the table of step 5. 
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Figure 2 Workflow of ISAT 

3.3 Training Method for ISAT 

As a self-learning method, the ISAT’s learning time depends on the training 

method. Besides a conventional constant interval method as sketched in Figure 3(a), we 

propose an automatic interval refinement method to generate the training data as shown in 

Figure 3(b). The constant interval method requires manually defining the interval in each 

dimension of ࢞. After all the query points are evaluated, the table is considered fully 

trained. The automatic interval refinement method dynamically refines the interval by 

halving the last one if the training is not complete. The completeness of training can be 

measured by: 

ܰௗௗା௪  ߟ ܰ௨௦ (17)

where ܰௗௗା௪ is the total number of add and grow under the current interval, ܰ௨௦ is 

the number of queries, and	ߟ is a constant coefficient. By default, ߟ ൌ 0 and ܰௗௗା௪ ൌ
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0 indicate that the training is complete if under the current interval there are no add and 

grow actions generated.  

 

Figure 3 Constant interval method and automatic interval refinement method to train the 

ISAT table. 

4 ISAT-FFD Integration 

The ISAT algorithm and FFD models have been implemented in previous studies 

(Pope 1997; Zuo and Chen 2009). We will now describe the implementation of the ISAT 

and FFD coupling, which enables setting up the ISAT algorithm, launching the FFD 

simulation, and extracting the FFD results for the ISAT algorithm. As shown in 

Figure 4, the first stage in the ISAT-FFD scheme is initialization. This includes 

setting up ISAT parameters, e.g. error tolerance and dimensions of inputs and outputs, and 

defining the training range for the studied problem. In the training stage, query points 

within the training domain are generated to populate the ISAT data table. If using the 

constant interval method, the ISAT table is completely trained once all the generated points 

are evaluated. If using automatic interval refinement method, the ISAT table training is 

completed once inequality (17) in section 3.3 is met. After the ISAT table is trained, the 

program moves to the evaluation stage, where query points within the evaluation domain 

are generated as inputs. During the evaluation stage, most queries will be handled by 

retrieve and the remaining few queries will be answered by calling FFD.  
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Figure 4 Framework of ISAT-FFD approach 

The ISAT-FFD framework was implemented using C code. To speed up the FFD 

simulation, a FFD program running in parallel on a graphic processing unit (GPU) was 

developed (Tian et al. 2016). The parallelization was realized using a hybrid code of C and 

OpenCL language (Khronos 2012). Cornell University provided the original ISAT source 

codes written in FORTRAN. The source codes are available at: 

https://tcg.mae.cornell.edu/isat.html. The simulation was performed using a DELL 

workstation with a Xeon E5-1603 CPU and AMD FirePro W8100 GPU.  

5 Numerical Experiments  

To evaluate the feasibility and performance of the proposed ISAT-FFD model for 

indoor airflow simulations, we evaluated it using a mixed convection flow in a room with a 
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box at the centre. Since the ISAT algorithm only allows one error tolerance for all outputs, 

we used the scaling matrix  defined in Equation (12) to convert the errors from different 

outputs into a single aggregated error. However, users will have to construct the scaling 

matrix  on a case-by-case basis. The following two sections will discuss the case 

description and the construction of the scaling matrix  for this case study. 

5.1 Case Description 

As sketched in Figure 5, this case involves a stratified airflow with strong buoyance 

in a closed space, by adding a heat source to the obstacle and controlling the temperature of 

the walls (Wang and Chen 2009). The box is located at the center of the room. We chose 

this case other than a real room because the experimental data obtained from a well-

controlled environmental chamber had high quality which was often used for model 

validation (Chen and Srebric 2002). The inlet velocity magnitude and temperature are 1.36 

m/s and 22.2 ºC, respectively. Note that the inlet velocity is normal to the inlet surface area. 

The temperatures of the box surface, top, floor, and other walls are 36.7 ºC, 25.8 ºC, 26.9 

ºC, and 27.4 ºC, respectively. Note that the velocity at and inside obstacle is 0. The grid 

size is 40 × 40 × 40 and the simulation time is 300s with a time step size of 0.05s. The FFD 

model and numerical settings have been validated in a previous study (Tian et al. 2016). 

After validating the FFD model, we presented the velocity magnitude and 

temperature contours at the plane sliced at Y=1.22 m, as shown in the Figure 6. Both 

contours show that the strong buoyance airflow has a stratified distribution in velocity and 

temperature. In terms of velocity, high jet is formed near the ceiling and circulation was 

shown between the box and room. Regarding the temperature, the plume clearly occurred 

above the heated box. 
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Figure 5 Schematic of the buoyance airflow in an empty room with a box. 

 

  

a) b) 

Figure 6 Velocity contour (a) and temperature contour (b) at plane at Y=1.22 m  

To further show FFD’s capability to simulate such stratified non-isothermal flow, 

Figure 7 compares the velocity magnitude and temperature profiles at one point from FFD, 

CFD, and experimental data. Profiles predicted by FFD is in reasonable accordance to the 

experiment at comparable level as CFD does. A Previous study (Tian et al. 2016) has 

systematically studied the accuracy of parallel FFD model on various flows, ranging from 

lid driven cavity flow, to isothermal flow in an empty box, to stratified non-isothermal flow 
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in a room with a box located at center. It is found that for the above case studies, FFD has 

comparable simulation accuracy as CFD does.  

 

  

a) b) 

Figure 7 Comparison of velocity magnitude profile (a) and temperature profile (b) at point 

(2.0574 m, 1.22 m) at XY plane  

5.2 Construction of the Scaling Matrix B 

For the mixed convection flow defined above, we defined two sets of inputs: 

temperature (20 - 30 ºC) and inlet velocity magnitude (1 - 2 m/s) as shown in Table 1. The 

corresponding outputs can be normalized as: 

ܸ ൌ
|ܸ|

|ܸ|௧
              (18)

ܶ ൌ
ܶ െ ܶ

ܶ௫ െ ܶ
 

             (19)
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where  |ܸ|௧ is the velocity magnitude at the inlet; ܶ and ܶ௫ are the lowest 

temperature and highest temperature in the inputs, respectively. To get the highest ratio, we 

divided the highest ܶ by the lowest ܸ. The results were summarized in Table 1. As 

the ratios are in order of 10 for all the tests, we set the diagonal entries of  corresponding 

to velocity magnitude outputs as 10. 

Table 1 Inputs and normalized outputs of the sensitivity study 

Scenario # 
Input Variables Normalized Output Variables 

Highest 
Ratio Tfloor 

(ºC) 
Twall 

(ºC) 
Tinlet 

(ºC) 
|V|inlet 

(m/s) 
Tocc |V|occ Tsensor |V|sensor 

1 25 25 20 1 0.984 0.1034 1.184 0.0799 14.8 
2 30 25 20 1 1.136 0.1285 1.308 0.0634 20.6 
3 25 30 20 1 0.756 0.1293 0.875 0.0645 13.6 
4 25 25 20 2 0.946 0.1971 1.372 0.0174 78.9 
5 30 30 25 2 0.796 0.1993 1.048 0.0159 65.9 

6 Simulation Results 

To gain comprehensive understanding of ISAT-FFD for indoor airflow simulation, 

we studied its performance in both the training and evaluation stages. The results and 

findings are presented in the following two sections. 

6.1 Performance of ISAT-FFD in Training Stage 

This section accounts the performance of the ISAT-FFD model at the training stage. 

It focuses on the cost of training (measured by training time) associated with four key 

factors: training methods, error tolerances, numbers of inputs, and numbers of outputs.  

6.1.1 Training Methods 

This test compares the training time by using the two training methods proposed in 

Section 3.3.  We used two inputs consisting of ௪ܶ and ܶ and one output of ܶ. In 

the training domain both temperatures ranged from 25 to 30 ºC. The error tolerance for the 
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output was set to 0.4. When using the constant interval method, the increment in each 

dimension was defined to be 0.1 K. 

By using the constant interval method, the ISAT-FFD evaluated 2,601 queries, 

which led to 1,424 retrieve actions, 1,130 grow actions, and 47 add actions, respectively. 

Even with a powerful GPU, the ISAT-FFD using the constant interval method took 24.8 

hours to complete the training. On the contrary, the ISAT-FFD using the automatic range 

refinement method assessed 66,049 queries, which is approximately 25 times more than the 

ISAT-FFD with constant interval method did. However, about 99.9 % of the total queries 

were resolved by retrieve actions and only 0.01% of the queries resulted in add (13) and 

grow (59) actions that required calling the FFD simulation. It is worth mentioning that the 

ISAT will perform accuracy tests randomly based on the frequency of grow actions by 

calling the FFD. The accuracy tests may shrink the EOA to ensure the accuracy of the 

retrieve action. Simulations using the constant interval method triggered 103 accuracy tests 

and the number reduced to 31 when using the automatic range refinement method. As a 

result, the ISAT-FFD trained with the automatic range refinement method only took 

roughly 8% of the time when compared to the ISAT-FFD with the constant interval 

method. 

To explain the training time difference between the two training methods, we 

plotted the add actions performed by both approaches (Figure 8a). As expected, the 

automatic range refinement method led to a more scattered distribution of add actions in 

the training domain than the constant interval method. Because each add action resulted in 

a new record in the ISAT table, fewer add actions mean that the ISAT needed fewer 

records to cover the training domain. Figure 8(b) compares the trajectories of training time 



 

18 
 

used by the two methods. Since the time required by retrieve actions are negligible 

compared to that for add and grow actions, the time increase pattern actually reflects the 

distribution of add and grow actions during the training. The increasing rate of the 

trajectory in the simulation using the constant interval method was approximately constant, 

which suggests the uniform distribution of add and grow actions over the whole evaluation. 

The training time by the automatic range refinement method increased fast for the first 100 

queries, and then the rate of increase flattened afterwards. This indicates that the add and 

grow actions mainly happened at the beginning of the training, and the ISAT-FFD model 

then can answer the remaining queries mainly using the retrieve actions. 

 

  

a)                                                                     b) 

Figure 8 Comparison of the add actions (a) and training time (b) of the ISAT-FFD using 

different training methods 

6.1.2 Error Tolerances 

Equation (16) explains the impact of the error tolerance on the shape of the EOA. 

Namely, the larger the error tolerance, the larger the size of the EOA and the less time the 
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training process takes. To set up a numerical test, two inputs consisting of ௪ܶ and ܶ 

and one output of ܶ were used. In the training domain both temperatures ranged from 25 

to 30 ºC. The automatic range refinement method was used and the error tolerance varied 

from 0.2 to 1.0 with increments of 0.2. 

The simulation results (Figure 9) show that, with the lowest error tolerance (0.2) the 

total number of queries was 263,169, out of which there were 262,813 (99.9%) retrieve, 

304 grow, and 52 add actions. The total training time was approximately 8.2 hours. By 

comparison, using a larger error tolerance (1.0) the number of queries was only 4,225, of 

which 99.3% are retrieve. As a result, it only took 0.64 hours to complete the training. 

When the error tolerance increased from 0.2 to 0.4, the training time dropped significantly 

from 8.2 hours to 2.1 hours. Subsequently, the declining rate of training time flattened. The 

relationship between the error tolerance and training time can be represented by a 

regression curve which fits into the power function with a R2 larger than 99%. It is worth to 

note that the coefficients of the power function will likely vary from case to case. 

 

Figure 9 Relationship between error tolerance and training time 



 

20 
 

6.1.3 Number of Inputs 

The number of inputs affects the training time as it determines the dimensions of the 

training domain. Also, the indoor airflow is usually sensitive to the boundary conditions, 

which in this study are the inputs of the ISAT-FFD. Changing the number of inputs will 

impact the mapping gradient matrix  in Equation (10) and hence change the shape of the 

EOA. To show the potential application of ISAT-FFD in real control purpose, we studied 

nine scenarios with the number of inputs varying from 1 to 9. The detailed information of 

inputs is shown in Table 2. We set ܶ as the output and the error tolerance as 1.0, which 

allows a prediction error of 1.0 ºC. The automatic range refinement method was also used 

in this scenario. To reduce the computing time for scenarios with large number of inputs, 

we set the ߟ in Equation (17) as 0.005. 

Table 2 Inputs and corresponding training domain in different scenarios 

Scenario # Input ࢞ Training Domain 

1 ሾ ௪ܶሿ ௪ܶ ∈ ሾ25.0,30.0ሿ 

2 ൣ ௪ܶ, ܶ൧ 
ܶ ∈ ሾ25.0, 30.0ሿ and  

the rest is the same as Scenario #1 

3 ൣ ௪ܶ, ܶ, ܶ௧൧ ܶ௧ ∈ ሾ20.0,25.0ሿ and  
the rest is the same as Scenario #2 

4 
ൣ ௪ܶ, ܶ, ܶ௧, |ܸ|௧൧ 

 
|ܸ|௧ ∈ ሾ1.0,2.0ሿ and  

the rest is the same as Scenario #3 

5 
 ௪ܶ, ܶ, ்ܶ,
	 ܶ௧, |ܸ|௧

൨ 

 

௧ܶ ∈ ሾ25.0, 30.0ሿ and  
the rest is the same as Scenario #4 

6 
 ௪ܶ, ܶ, ௧ܶ, ܶ௦௧,

	 ܶ௧, |ܸ|௧
൨ 

 

ܶ௦௧ ∈ ሾ25.0, 30.0ሿ and  
the rest is the same as Scenario #5 

7 
 ௪ܶ, ܶ, ௧ܶ, ܶ௦௧,
	 ௪ܶ௦௧, ܶ௧, |ܸ|௧

൨ 

 

௪ܶ௦௧ ∈ ሾ25.0, 30.0ሿ and  
the rest is the same as Scenario #6 

8 
 ܶ௧, ௦ܶ௨௧, ܶ, ௧ܶ,

ܶ௦௧, ௪ܶ௦௧, ܶ௧, |ܸ|௧
൨ 

 

ܶ௧ ∈ ሾ25.0, 30.0ሿ and 
 the rest is the same as Scenario #7 

9 


ܶ, ܶ௧, ௦ܶ௨௧, ܶ,
	 ௧ܶ, ܶ௦௧, ௪ܶ௦௧, ܶ௧, |ܸ|௧

൨ 

 

ܶ ∈ ሾ30.0, 35.0ሿ and  
the rest is the same as Scenario #8 
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As Shown in Figure 10, when one input was used (Scenario #1), the ISAT-FFD 

needed 9 queries to complete the training in 0.1 hours. Among them, only 2 grow and 3 add 

actions were needed. If the number of inputs is 4 (Scenario #4), the ISAT-FFD needed 655 

queries, including 9 add and 95 grow actions. It took 2.5 hours to complete the training. 

Further increasing the number of inputs to 9 (Scenario #9), we found that number of queries 

went up to around two million consisting of 493 grow and 42 add actions. The training 

process took 12 hours. Figure 10 shows that power function can depict the relationship 

between the number of inputs and training time. It is worth to mention that the coefficients 

of the power function will likely vary for different cases. 

 

Figure 10 the relationship between number of inputs and ISAT training time 

6.1.4 Number of Outputs 

The mapping gradient matrix A defined in Equation (10) is also affected by the 

number of outputs. Thus, the training time of the ISAT-FFD is furthermore a function of 

the number of outputs. Here we defined four scenarios with the number of outputs from one 

to four (Table 3). When the number of output is larger than two, we used the scaling matrix 



 

22 
 

 to make the interpolation error of each output comparable. After applying the scaling 

matrix , we intended to set the single error tolerance ɛ௦ for each output as 0.4. As 

introduced before, ISAT allows only one total error tolerance ɛ௧௧, which is calculated 

using the following definition: 

ɛࢇ࢚࢚ ൌ ඩɛࢋࢍ࢙






ൌ √ ɛ(20)              ࢋࢍ࢙

where ɛࢋࢍ࢙ is the error tolerance for the single output and  is the number of outputs.  

 

Table 3 Selection of outputs, scaling matrix and total error tolerance for different scenarios 

Scenario 
# 

Output ࢟ 
Scaling 

Matrix  ɛࢇ࢚࢚ Note 

1 ሾ ܶሿ No 0.4 ܶ ൌ 	
1
ܰ

 ܶ

ஸଵ.ଶଶ

 

2 ሾ ܶ, |ܸ|	ሿ ቂ1 0
0 10

ቃ 0.5657 |ܸ| ൌ
1
ܰ

 ඥݑଶ  ଶݒ  ଶݓ

ஸଵ.ଶଶ

 

3 ൣ ܶ, |ܸ|,	 ௦ܶ௦൧ 
1 0 0
0 10 0
0 0 1

൩ 0.6928 
Sensor location: 

(1.22, 1.22, 1.24) m 

4 ሾ ܶ, |ܸ|, ௦ܶ௦, |ܸ|௦௦ሿ 

1 0
0 10

0 0
0 0

0 0
0 0

1 0
0 10

 0.8 
Sensor location: 

(1.22, 1.22, 1.24) m 

 

In this case, we also used two inputs consisting of ௪ܶ and ܶ and both 

temperatures ranged from 25 to 30 ºC. We also used automatic range refinement method 

during the training. 

Simulation results showed that when the number of outputs was as small as one 

(Scenario #1), the training can be completed with 66,049 queries within about 2 hours. 

While increasing the number of outputs to four (Scenario #4), the required queries raised 
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roughly 64 times to 4,198,401. The number of grow and add actions increased about twice 

the amount to 118 and 25, respectively. Correspondingly, the training time also increased 

about twice to 6.74 hours. By further conducting the nonlinear regression between the 

training time and number of outputs, as shown in Figure 11, it was found that the time 

growth along the number of outputs were fitted into a power function. Again, it is important 

to keep in mind that the coefficient in the regression model is not universal for all cases. 

 

Figure 11 Relationship between the number of outputs and ISAT-FFD training time 

6.2 Performance of ISAT-FFD in Evaluation Stage 

This section evaluates the performance of a trained ISAT-FFD model by testing it 

with different new inputs. We first evaluated how it performed under different sizes of an 

evaluation domain. We then tested how the error tolerance in the training affected the 

aggregated local errors during the evaluation. The ISAT-FFD was first trained using four 

inputs and four outputs. The inputs and training domain are defined by Scenario 4 in Table 

2. The outputs and error tolerance are defined by Scenario 4 in Table 3. Similarly, the 

automatic range refinement method was used to train the ISAT-FFD. Due to the high 
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sensitivity and turbulence of the flow, we found that it was not possible to complete the 

training for the entire training domain within an acceptable time. Thus, we set the ߟ in 

Equation  (17) to 0.0005, which will deem the training completed if five or less add or 

grow actions are generated per 10,000 queries. Even with this setting, the training process 

took 23.2 hours to evaluate the total 1,185,921 queries with 122 add and 850 grow actions.  

6.2.1 Performance of ISAT under Different Evaluation Size 

The variation of the evaluation domain is defined as: 

ܶ௧ ∈ ሾ25.0 െ ܽ, 30.0  ܽሿ  
             (21)

ܶ ∈ ሾ25.0 െ ܽ, 30.0  ܽሿ               (22)

ܶ௧ ∈ ሾ20.0 െ ܽ, 25.0  ܽሿ               (23)

|ܸ|௧ ∈ ሾ1.00 െ ܾ, 2.00  ܾሿ               (24)

where ܽ and ܾ are the constants defined in the Table 4. We used a normal distribution to 

pick the value of query points in each dimension. For instance, Figure 12 shows the 

distribution of probability for one of the inputs, ௪ܶ. This will cause the ratio of queries 

residing in the training domain be higher than the ratio of evaluation domains covered by 

the training domain. For instance, in Scenario 1 of Table 4, only 52% of evaluation domain 

is covered by the training domain, but 90.7% of the evaluating queries fall into the training 

domain. We believe that this is closer to a real situation than the data generated by a 

uniform distribution. A set of 108 queries were generated based on that methodology.  
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Table 4 Generation of different evaluation domains 

 

 

Figure 12 Normal distribution used to randomly generate query points for temperatures of 

other walls. 

To better visualize a five-dimension data points on two-dimension plotting, we used 

the oval shape to represent four inputs and surface color of oval shape to show the retrieve 

error for the inputs. The coordinates of center point of ellipsoid represent the ௪ܶ and 

ܶ. The red dash line represents the training domain and the blue solid line represents 

the evaluation domain. The remaining two inputs, consisting of ࢚ࢋܶ and ࢚ࢋܸ, are 

presented by half-length and half-height of the ellipsoid after normalization: 

 

Scenario # ࢈ ࢇ 
ࢍࢇ࢚࢘ࡿ

࢚ࢇ࢛ࢇ࢜ࢋࡿ
൘  

Queries Within the Training 
Domain 

(Percentage) 
1 0.5 0.05 52% 98 (90.7%) 

2 1.0 0.10 30% 87 (80.6%) 

3 1.5 0.15 19% 70 (64.8%) 

4 2.0 0.20 12% 55(50.9%) 

5 2.5 0.25 8% 37(34.3%) 
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ܶ∗ ൌ ܶ௧ െ ሺ20.0 െ ܽሻ
ሺ25.0  ܽሻ െ ሺ20.0 െ ܽሻ

ൌ ܶ௧ െ 20.0  ܽ
5  2ܽ

 
(25)

 

ܸ∗ ൌ
|ܸ|௧
2.00  ܾ

 
             (26)

where a and b are provided in Table 4 and varies scenario by scenario. 

For scenario #1, because the generated query points were largely residing inside the 

training domain (90%), all the queries were resolved by retrieve actions (Figure 13a). 

Although there were 10 points located outside the training domain, ISAT still predicted the 

outputs using extrapolation. As a result, the evaluation took only 0.001s, which is 

negligible.  

 To evaluate the accuracy of the ISAT-FFD model, we compared the outputs of the 

ISAT-FFD with the standalone FFD simulation outputs. Here we consider the FFD 

simulation outputs as reference. Since the add and grow actions actually returned the results 

of a FFD simulation, the only source of the error was from the retrieve action which 

approximated the FFD outputs using a linear interpolation. As coloured in red, 19 points 

were retrieved with actual error larger than the error tolerance of 0.8. The maximum actual 

error is 1.54, which is about 1.92 times larger than the error tolerance.  

The results of Scenario #2 were similar to Scenario #1, as most of the queries (80%) 

were located within the training domain. There were 21 evaluation query points out of the 

domain. Again, ISAT can handle all the queries using retrieve action, as shown in Figure 

13b. 
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a) 

 

b) 

Figure 13 Distribution of evaluation points for retrieve actions (a) Scenario 1 (b) Scenario 2 
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When the training domain coverage percentage dropped to 19% in Scenario #3 and 

38% of the query points were outside the training domain, about 92% of query points can 

be handled by retrieve actions as shown in Figure 14a. Among them, 20 points were 

retrieved with actual error larger than the error tolerance of 0.8. The maximum actual error 

is 1.62, which is about 2.02 times larger than the error tolerance. Moreover, there are 1 

grow and 5 add actions, which were all located outside the training domain, as shown in 

Figure 14b. 

Similarly, further decreasing the coverage as low as 12% and 8% caused that 49.1% 

and 65.7% of evaluation points were outside the training domain, therefore less query 

points are evaluated by retrieve actions (Figure 14c and Figure 14e) and more needed either 

grow or add action (Figure 14d and Figure 14f). 

We further define speedups ݊ to quantify how fast the ISAT-FFD can be: 

݊ ൌ ܶூ

ூܶௌ்
 

(27)

where ܶூ is the total estimated time for all queries done by directly launching a FFD 

simulation; ூܶௌ் is the time cost for the all queries by the ISAT-FFD. We found that if the 

training domain covers over 30% of the evaluation domain and queries within training 

domain exceed 80.6%, the speedup can be as high as 1.5 million times. Even when the 

coverage percentage was as low as 8%, the speedup can be 5.9 times. 
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a) 

 

b) 
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c) 

 

d) 
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e) 

 

f) 
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Figure 14 Distribution of evaluation points for scenario 3-5. (a) Retrieve points in scenario 

3; (b) Add and grow points in Scenario 3; (c) Retrieve points in Scenario 4; (d) Add and 

grow points in Scenario 4; (e) Retrieve points in Scenario 5; (f) Add and grow points in 

Scenario 5; 

6.2.2 Performance of ISAT-FFD under different error tolerance 

The error tolerance ɛ௧௧  defined in Equation (20) was reported to have an impact 

on the aggregated errors during the evaluation (Pope 1997). To study their relationship in 

the context of airflow simulations, we performed the ISAT-FFD simulation with the error 

tolerance ranging from 0.8 to 2.4 with increments of 0.4. As a result, the single error 

tolerance for each output increased from 0.4 (0.4 K for temperature and 0.04 m/s for 

velocity magnitude) to 1.2 (1.2 K for temperature and 0.12 m/s for velocity magnitude). The 

number of inputs and outputs and training method are identical to those in Section 6.2. The 

evaluation domain is defined as Scenario 1 in Table 4. 

Using an error tolerance of 0.8, the aggregated errors during the evaluation were 

63.735 for the 108 queries. The error for one retrieve during the evaluation on average was 

0.59, which indicated that the overall performance of the ISAT-FFD was accurate. With the 

highest error tolerance being that of 2.8 in training, the total aggregated errors were 

110.473 for the 108 queries. On average each retrieve action contributed 1.02 to the 

accumulated error, which is about 0.37 times of the error tolerance. Figure 15 shows the 

regression curve between the error tolerance and mean retrieve error in the evaluation. The 

solid line represents the error tolerance in the training. The regression curve shows that 

when the error tolerance increased, the mean retrieve error in evaluation also grew to some 

extent, yet it was always below the error tolerance of the training. It is worth to point out 
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that the coefficient in the regression equation only pertains to the specific case study 

presented in this paper. 

 

Figure 15 the relationship between accumulated error and error tolerance settings 

7 Conclusion 

In this paper we explored the feasibility of the ISAT in predicting key information 

for indoor airflows using FFD for airflow simulation as an example. First, the investigation 

showed that the automatic interval refinement method is an efficient approach for training 

ISAT. Second, the error tolerance, the number of inputs, as well as the number of outputs, 

can significantly impact the training time. Exploiting a trained ISAT, we found that it 

performed differently depending on various sizes of the training domain. Lastly, we 

identified that the error tolerance during training could affect the mean retrieve error during 

an evaluation.  

To conclude, a well-trained ISAT table is capable of providing timely and 

reasonably accurate predictions of indoor airflows simulations. Before training the ISAT, 

users need to validate the high order models (e.g. CFD or FFD) using experimental data to 
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ensure the accuracy of flow field prediction, from which the training data is extracted. 

Afterwards, the validated high order models can generate the reliable training data to train 

the ISAT for predicting the key information. In addition, before applying ISAT into real 

project, a sensitivity study needs to be done to select as few inputs as possible to reduce 

training time. Also, it is critical to determine an appropriate error tolerance for the ISAT 

training since trade-offs exist between accuracy, performance, and training time. Finally, it 

is beneficial to make the trained domain cover the evaluation domain as much as possible 

in order to avoid the need of grow or add actions. 

ACKNOWLEDGMENTS  

This research was supported by the Assistant Secretary for Energy Efficiency and Renewable 

Energy, Office of Building Technologies of the U.S. Department of Energy, under Award No. DE-

EE0007688. The authors at the University of Miami also received the support from the University 

of Miami Provost’s Research Award to Wangda Zuo. The authors also thank Professor Stephen B. 

Pope at the Cornell University for his help in our research. 

 

This work emerged from the Annex 60 project, an international project conducted under the 

umbrella of the International Energy Agency (IEA) within the Energy in Buildings and 

Communities (EBC) Programme. Annex 60 will develop and demonstrate new generation 

computational tools for building and community energy systems based on Modelica, Functional 

Mockup Interface and BIM standards. 

 

 

 

 

 

 



 

35 
 

References 

Ahuja, S., A. Surana, and E. Cliff. 2011. Reduced-Order Models for Control of Stratified 
Flows in Buildings. Proceedings of  the Proceedings of the 2011 American Control 
Conference. 

Chen, Q., and J. v. d. Kooi. 1988. Accuracy―a Program for Combined Problems of Energy 
Analysis, Indoor Airflow, and Air Quality. Ashrae Transactions, 94:196-214. 

Chen, Q., and J. Srebric. 2002. A Procedure for Verification, Validation, and Reporting of 
Indoor Environment CFD Analyses. HVAC&R Research, 8 (2):201-16. 

Chorin, A. J. 1967. A Numerical Method for Solving Incompressible Viscous Flow 
Problems. Journal of Computational Physics, 2 (1):12-26. 

Courant, R., E. Isaacson, and M. Rees. 1952. On the Solution of Nonlinear Hyperbolic 
Differential Equations by Finite Differences. Communications on Pure and Applied 
Mathematics, 5 (3):243-55. 

Desta, T. Z., K. Janssens, A. Van Brecht, J. Meyers, M. Baelmans, and D. Berckmans. 
2004. CFD for Model-Based Controller Development. Building and Environment, 
39 (6):621-33. 

Hazyuk, I., C. Ghiaus, and D. Penhouet. 2012. Optimal Temperature Control of 
Intermittently Heated Buildings Using Model Predictive Control: Part I–Building 
Modeling. Building and Environment, 51:379-87. 

Hiyama, K., S. Kato, and Y. Ishida. 2010. Thermal Simulation: Response Factor Analysis 
Using Three-Dimensional CFD in the Simulation of Air Conditioning Control. 
Proceedings of  the Building Simulation. 

Jin, M., W. Zuo, and Q. Chen. 2012. Improvement of Fast Fluid Dynamics for Simulating 
Airflow in Buildings. Numerical Heat Transfer, Part B Fundamentals, 62 (6):419-
38. 

Jin, M., W. Zuo, and Q. Chen. 2013. Simulating Natural Ventilation in and around 
Buildings by Fast Fluid Dynamics. Numerical Heat Transfer, Part A: Applications, 
64 (4):273-89. 

Khronos, G. "The Opencl Specification, Version 1.2." 
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf. 

Kim, D., J. Braun, E. Cliff, and J. Borggaard. 2015. Development, Validation and 
Application of a Coupled Reduced-Order CFD Model for Building Control 
Applications. Building and Environment, 93:97-111. 

Kolokotsa, D., A. Pouliezos, G. Stavrakakis, and C. Lazos. 2009. Predictive Control 
Techniques for Energy and Indoor Environmental Quality Management in 
Buildings. Building and Environment, 44 (9):1850-63. 

Li, K., H. Su, J. Chu, and C. Xu. 2013. A Fast-POD Model for Simulation and Control of 
Indoor Thermal Environment of Buildings. Building and Environment, 60:150-7. 

Pope, S. B. 1997. Computationally Efficient Implementation of Combustion Chemistry 
Using in Situ Adaptive Tabulation. Combust. Theory Modelling, 1:41-63. 

Pope, S. B. 2008. Algorithms for Ellipsoids. Cornell University Report No. FDA:08-1. 
Singer, M., and S. Pope. 2004. Exploiting ISAT to Solve the Reaction-Diffusion Equation. 

Combustion theory and modelling, 8 (2):361-83. 
Singer, M., S. Pope, and H. Najm. 2006. Operator-Splitting with Isat to Model Reacting 

Flow with Detailed Chemistry. Combustion theory and modelling, 10 (2):199-217. 



 

36 
 

Stockwell, D. R., and A. T. Peterson. 2002. Effects of Sample Size on Accuracy of Species 
Distribution Models. Ecological modelling, 148 (1):1-13. 

Tian, W., T. A. Sevilla, and W. Zuo. 2016. A Systematic Evaluation of Accelerating Indoor 
Airflow Simulations Using Cross-Platform Parallel Computing. Journal of Building 
Performance Simulation:1-13. doi: 10.1080/19401493.2016.1212933. 

Tuma, M. 2002. A Note on the LDLT Decomposition of Matrices from Saddle-Point 
Problems. SIAM journal on matrix analysis and applications, 23 (4):903-15. 

Wang, L. L., W. S. Dols, and Q. Chen. 2010. Using CFD Capabilities of Contam 3.0 for 
Simulating Airflow and Contaminant Transport in and around Buildings. HVAC&R 
Research, 16 (6):749-63. 

Wang, M., and Q. Chen. 2009. Assessment of Various Turbulence Models for Transitional 
Flows in an Enclosed Environment (Rp-1271). HVAC&R Research, 15 (6):1099-
119. 

Wetter, M., W. Zuo, T. S. Nouidui, and X. Pang. 2014. Modelica Buildings Library. 
Journal of Building Performance Simulation, 7 (4):253-70. doi: 
10.1080/19401493.2013.765506. 

Yang, P. 2013. "Real-Time Building Airflow Simulation Aided by GPU and FFD." 
Concordia University. 

Zhai, Z., Q. Chen, P. Haves, and J. Klems. 2002. On Approaches to Couple Energy 
Simulation and Computational Fluid Dynamics Programs. Building and 
Environment, 37 (8-9):857-64. 

Zhai, Z., J. Srebric, and Q. Chen. 2003. Application of CFD to Predict and Control 
Chemical and Biological Agent Dispersion in Buildings. International Journal of 
Ventilation,, 2 (3):251-64. 

Zuo, W. 2010. "Advanced Simulations of Air Distributions in Buildings." Purdue 
University. 

Zuo, W., and Q. Chen. 2009. Real-Time or Faster-Than-Real-Time Simulation of Airflow 
in Buildings. Indoor Air, 19 (1):33-44. 

Zuo, W., and Q. Chen. 2010a. Fast and Informative Flow Simulations in a Building by 
Using Fast Fluid Dynamics Model on Graphics Processing Unit. Building and 
Environment, 45 (3):747-57. 

Zuo, W., and Q. Chen. 2010b. Fast Simulation of Smoke Transport in Buildings. 
Proceedings of  the the 41st International HVAC&R congress, Beograd, Serbian, 
December 1-3. 

Zuo, W., and Q. Chen. 2010c. Simulations of Air Distribution in Buildings by FFD on 
GPU. HVAC&R Research, 16 (6):783-96. 

Zuo, W., J. Hu, and Q. Chen. 2010. Improvements in FFD Modeling by Using Different 
Numerical Schemes. Numerical Heat Transfer Part B-Fundamentals, 58 (1):1-16. 
doi: 10.1080/10407790.2010.504694. 

Zuo, W., M. Jin, and Q. Chen. 2012. Reduction of Numerical Viscosity in FFD Model. 
Engineering Applications of Computational Fluid Mechanics, 6 (2):234-47. 

Zuo, W., M. Wetter, W. Tian, D. Li, M. Jin, and Q. Chen. 2016. Coupling Indoor Airflow, 
HVAC, Control and Building Envelope Heat Transfer in the Modelica Buildings 
Library. Journal of Building Performance Simulation, 9 (4):366-81. 

 




