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A Systematic Evaluation of Accelerating Indoor Airflow Simulations 

Using Cross Platform Parallel Computing 

With new advances in computer hardware and software, users now have widespread 

accessibility to multicore devices inside personal computers making it feasible for fast 

indoor airflow simulations. Some exciting preliminary results of a cross-platform 

parallel computing framework OpenCL using specific hardware were reported. 

However, those results are largely based on two hypotheses: 1. OpenCL code on all 

devices will generate the same results; 2. On the same device, running in parallel with 

multiple processors will be faster than running in sequential with a single processor. 

This study attempted to evaluate these two hypotheses by systematically studying the 

accuracy and computing speed of OpenCL for indoor airflow simulations. A Fast Fluid 

Dynamics (FFD) code was selected as an exemplar indoor airflow simulation program. 

To compare the cross-platform ability of OpenCL, the evaluation was performed using 

four Graphics Processing Units (GPUs) and five Central Processing Units (CPUs) from 

three manufacturers, with different degrees of computing capability and mounted on 

two operating systems. The test subjects were evaluated using four case studies 

consisting of various indoor airflows. A sequential FFD code programmed in C and a 

Computational Fluid Dynamics (CFD) program were first used to perform the case 

studies and generate numerical benchmarks. The comparison of the numerical 

simulation results with experimental data showed that CFD and FFD can predict the 

studied flows with averaged relative errors of 9.99% and 11.30%, respectively. 

Afterwards, the accuracy and speedup of the OpenCL code was compared with 

numerical benchmarks. Although the OpenCL code on the CPUs generated identical 
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numerical results, the OpenCL results from the GPUs were slightly dissimilar. This is 

likely due to varying interpretations, by the manufactures, of an IEEE standard. 

Depending on the hardware, the speedups of the OpenCL code varied from 0.7-4.2 

times on the CPUs and 5.1-129.3 times on the GPUs. The slowdown of computing 

speed happened when running OpenCL on a two-core CPU in a Windows Operating 

System using the Boot Camp on a Mac computer. Finally, a separate study on the 

relationship between speedup and global work size showed that a speedup of 1139 can 

be achieved when using an AMD FirePro W8100 GPU.  

Keywords: FFD, OpenCL, Parallel Computing, Indoor Airflow Simulation 
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Nomenclature 

OpenCL: Open Computing Language 

CPU: Central Processing Unit 

GPU: Graphics Processing Unit 

NVIDIA: A GPU manufacturer 

AMD: A CPU and GPU manufacturer 

Intel: A semiconductor chip marker 

CUDA: Parallel computing platform created by NVIDA 

OpenCL_FFD: The FFD model implemented in the OpenCL  

C_FFD: The FFD model implemented in the C language 

C_Reference: The results computed by the C_FFD 

ܷ: Velocity vectors, m/s 

ࣘ : Scalar variable, such as temperature and species concentration; 

 ܲ : Pressure, pa 

 Density, kg/m3 : ߩ 

   : Spatial directions, mݔ 

 Time, s : ݐ

1
ߩ ݂ : External force vector, m/s2 

	ܵ : Source term for scalar variables 

 Kinematic viscosity of air, m2/s : ߥ 

 Transport coefficient, m2/s :ߞ
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1. Introduction 

 Indoor air quality in buildings relies heavily on ventilation design (Godish and 

Spengler 1996). Using computer simulation models one can evaluate the performance 

of the ventilation system by looking into some key parameters such as air velocity, 

temperature, and contaminant concentration. As reviewed by Chen (2009),  there are 

primarily three computer simulation models for indoor ventilation prediction: Multi-

zone (Axley 2007), Zonal (Megri and Haghighat 2007) and Computational Fluid 

Dynamics (CFD) (Ladeinde and Nearon 1997) models. Among them, CFD has become 

the most popular due to its detailed prediction of key parameters. However, one 

challenge of applying the CFD model for indoor ventilation predictions is the long 

computing time (Zhai et al. 2002).  

In order to reduce the computing time, one can perform the CFD simulation 

using supercomputers or cloud computing services (Gropp et al. 2001). However, this 

method is usually costly and may not be readily available. An alternate solution is to use 

multicore devices widely available in modern personal computers (Zuo and Chen 

2009a, 2010a; Corrigan et al. 2011; Gorobets et al. 2013a; Gorobets et al. 2013b; Wang 

et al. 2011). These devices include GPUs, multi-core CPUs, Digital Signal Processors 

(DSPs), and other microprocessors. For instance, Zuo and Chen (2009b) sped up the 

CFD simulation 10-30 times by running it on a NVIDIA GeForce 8800 GTX GPU 

using CUDA (NVIDIA 2007).  

However, CUDA only supports NVIDIA GPUs.  A more appealing option is 

OpenCL, which supports GPUs, CPUs, Digital Signal Processors (DSPs), and other 
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microprocessors from different manufacturers (Khronos 2012). Our literature review 

showed that there is only one indoor airflow simulation study using OpenCL (Wang et 

al. 2011). In their study, Wang et al. evaluated one Intel CPU and three NVIDIA GPUs 

on a Windows operating system using one case study. Despite providing speedup data, 

they did not provide sufficient validation of the OpenCL code in terms of result 

accuracy.  

Although we would assume consistency in the numerical results across different 

hardware and operating systems using OpenCL, it remains critical to validate this 

assumption before adopting OpenCL for the indoor airflow simulation. Likewise, it is 

also interesting to observe how much speedup one can expect on different hardware. As 

a result, this study attempted to systematically evaluate the accuracy and speedup of 

cross-platform computing using OpenCL for indoor airflow simulations. In the 

investigation we selected five CPUs and four GPUs differing in types, ages, and 

manufacturers.  

After implementing a Fast Fluid Dynamics (FFD) model using the OpenCL 

framework, we validated and evaluated both the FFD model and the OpenCL codes 

using four different cases that cover basic indoor airflows. These cases are largely based 

on the experiments done by Wang and Chen (2009), which include forced convection 

and mixed convection in enclosed spaces. We did not additionally study the natural 

convection since the modelling of mixed convection is comparably difficult to the 

modelling of natural convection. The FFD simulation of natural convection flow has 

been reported in previous studies (Zuo and Chen 2009c). By gradually increasing the 

complexity of the studied flow, we want to study if and how the flow complexity is 

going to affect the result consistency as well as the speedups. CFD simulations results 

were also presented as a comparison. Finally, after analysing the result consistency, 
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speedup, and overall portability, we provided suggestions on using OpenCL for indoor 

airflow simulations. 

2 Parallelization of FFD in OpenCL 

In this section we introduce the procedure of parallelizing the FFD in OpenCL. 

FFD solves the same set of governing equations as CFD, however, with different 

numerical algorithms. FFD can provide a 30-times speedup compared to CFD with 

some compromises in accuracy (Zuo and Chen 2009c). To reduce the computing time, 

FFD used simplified numeric algorithm and used the numeric viscosity to replace the 

turbulent viscosity (Zuo et al. 2012). Thus, FFD is not as accurate as CFD and cannot 

catch detailed turbulent flow characteristic near the wall (Zuo and Chen 2009c) . 

Recently, FFD has been used for fast and informative indoor environment modelling. 

Some examples include natural ventilation in buildings (Jin et al. 2013), wind loading 

optimization for a tree-form surface (Chronis et al. 2011), ventilation in an office space 

(Jin and Chen 2015), coupled simulation of indoor environment and HVAC system 

(Zuo et al. 2014a, 2014b), and smoke dissipation in buildings (Zuo and Chen 2010b). 

FFD solves the following governing equations: continuity, momentum, and 

balance equations for energy and species using a time-splitting method: 
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where ܷ and ܷ are velocity vectors;	ࣘ is scalar variable, such as temperature and 

species concentration; ܲ is pressure; ߩ is density; ݔ is spatial directions and ݐ is time; ݂ 
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is an external force vector;	ܵ is source term; ߥ is kinematic viscosity of air; ߞ is the 

transport coefficient. For the detailed procedure of  FFD refer to the previous work (Zuo 

and Chen 2009c, 2010c). 

The OpenCL implementation of FFD is shown in Figure 1. The program can be 

divided into a host program and its kernels. As stated in the OpenCL specification 

(Khronos 2012), the host program runs sequentially on the Host hardware (e.g. CPU) 

while the kernels run in parallel on the device hardware (e.g. GPU or other processors of 

the CPU). The entire implementation is a hybrid of C and OpenCL code. The C code is 

responsible for the main program structure while the OpenCL code is used to execute 

the kernels. The kernels are created based on the discretization of the governing 

equations introduced previously. These codes are then compiled in Mac OS X using 

Xcode 7.0  (Xcode 2012) and in Windows using Microsoft Visual Studio 2013 

professional (Microsoft 2013) together with the AMD APP SDK (AMD 2013). 

 

 

Figure 1 Structure of parallelized FFD using OpenCL 
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3. Numerical Experiment Settings 

3.1. Hardware Device 

As summarized in Table 1, four GPUs and five CPUs were selected. All five 

CPUs are manufactured by Intel while the GPUs are from AMD, NVIDIA, and Intel. 

Note that CPU 1 and CPU 5 are the same Core i7 2620M CPU installed on a MacBook 

Pro laptop. We named it as CPU 1 under Windows 7 (running using Boot Camp) and 

CPU 5 under Mac OS X. The peak performances for the hardware can be found online 

(NVIDIA 2012; AMD 2011, 2014; Intel 2012a, 2012b, 2012d, 2012c). In general, using 

double-precision floating point (DPFP) can reduce the round-up errors so that the 

calculations can be more accurate than those in single-precision floating point (SPFP). 

However, some devices in this study, e.g. AMD GPUs, did not support the DPFP in 

OpenCL environment. To carry out fair comparison, all simulations in this study were 

performed using SPFP.  

 

Table 1 Technique details of devices used in this study  

Device 
Manufac

turer 
Model Year 

Base 
Frequency 

(MHz) 

Peak 
Performance 

in SPFP 
(GFLOPS) 

Peak 
Performance 

in DPSP 
(GFLOPS) 

Memory 
Bandwidth 

(GB/s) 

# of 
Cores 

Operating 
System 

CPU 1 Intel 
Core i7 
2620M 

2011 2,700 
N/A 

 
43 21.3 2 Win 7 

CPU 2 Intel 
Xeon E5 

1603 
2012 2,800 N/A 90 31.4 4 Win 7 

CPU 3 Intel 
Core i7 
4790 

2014 3,600 N/A 230 25.6 4 Win 7 

CPU 4 Intel 
Core i5 
3210M 

2012 2,500 
N/A 

40 25.6 2 
Mac 
OS X

CPU 5 Intel 
Core i7 
2620M 

2011 2,700 N/A 43 21.3 2 
Mac 
OS X 

CPU 6 Intel 
Core i7 

3720 QM 
2012 2,600 N/A 83 25.6 4 

Mac 
OS X 

GPU 1 Intel 
HD 

Graphic 
4000 

2011 1,350 346* N/A 25.6 16 
Mac 
OS X 

GPU 2 NVIDIA 
GT 

650M 
2012 850 653 N/A 28.8 384 

Mac 
OS X 
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GPU 3 AMD 
FirePro 
V4900 

2012 800 768 N/A 64 480 Win 7 

GPU 4 AMD 
FirePro 
W8100 

2014 824 4,200 2,100 320 2,560 Win 7 

*Estimated due to lack of official information  

3.2. Case Description 

To evaluate the performance of the parallelized FFD in OpenCL, we selected 

four different cases which cover the basic indoor airflow types. The benchmark data is 

available for all four cases.  

3.2.1. Flow in a Lid-Driven Cavity 

The flow in a lid-driven cavity is shown in Figure 2. The dimension is 1 m × 

0.0233 m × 1 m. The top of the cavity is moving at a speed of 1 m/s. The Reynolds 

number is set to be 400, based on the lid velocity, length of the cavity in the X direction, 

and kinematic viscosity. The benchmark data is available (Ghia et al. 1982). A non-

uniform grid of 129 × 3 × 129 was used for the simulation.  

 

Figure 2 Sketch of Lid-Driven Cavity case 

3.2.2. Forced Convection in an Empty Room 

This case simulates an isothermal flow in an empty room (Wang and Chen 

2009). The room size is 2.44 m × 2.44 m × 2.44 m with other critical dimensions listed 

1 m/s

Y Z
X
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in Figure 3. The grid resolution is 40 × 40 × 40 and the inlet velocity is 1.36 m/s.  The 

experimental data (Wang and Chen 2009) is available at 10 different locations in Figure 

4. 

 

 

Figure 3 Schematic of the forced convection in an empty room 

 

 

Figure 4 the distribution of ten locations with experimental data available 

3.2.3. Forced Convection in a Room with a Box at Centre 

Based on the previous case, this case further increases the flow complexity by 

adding an obstacle (1.22 m × 1.22 m × 1.22 m) in the middle of the room (Figure 5). 
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Again, detailed measurements at the locations described in Figure 4 are available  

(Wang and Chen 2009).  

 

Figure 5 Schematic of the forced convection in an empty room with a box. 

3.2.4. Mixed Convection in a room with a Box at the Centre 

Based on the case described in 3.2.3, this case analyses the mixed convection in 

a space, such as an aircraft cabin, by adding a heat source to the obstacle and controlling 

the temperature of the walls (Wang and Chen 2009). In the experiment, the temperature 

of the box surface, inlet flow, ceiling, floor, and other walls is 36.7 ºC, 22.2 ºC. 25.8 ºC, 

26.9 ºC, and 27.4 ºC, respectively. The experimental data is also available for locations 

in Figure 4 (Wang and Chen 2009). 

3.2.5. CFD Simulation Setup 

To validate the capability of FFD model, steady CFD simulations were 

performed for the above four cases using Fluent 16.1.0 (Fluent 2015) on cloud. A 

laminar flow model was applied for the lid-driven cavity flow. A RNG k-ɛ turbulence 

model (Yakhot and Orszag 1986) with the standard wall function was utilized for other 

cases as suggested by Chen (1995). The SIMPLE (Patankar and Spalding 1972) scheme 

was used to resolve pressure and velocity coupling. This study used standard scheme for 

pressure discretization and second-order upwind scheme for other equations 

2.44 m

2.44 m

2.36 m East Wall

0.08 m Outlet

2.41 m West Wall

0.03 m Inlet

1.22 m

1.22 m
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discretization. The CFD simulation applied the same amount of grid as the FFD 

simulation although the grid distributions were different due to the wall function applied 

in the CFD simulation. The convergence criterion is set to have residual within 10-3 for 

velocity and 10-6 for temperature calculation. According to Wang and Chen (2009) the 

mesh grid used in the forced convection and mixed convection cases was fine enough to 

achieve grid independent results. 

We conducted a grid dependency study using four sets of grids (20 × 20 × 20, 

30 × 30 × 30, 40 × 40 × 40, and 80 × 80 × 80) for the forced convection in an empty 

room in case 3.2.2. As shown the Figure 6, the result from grid of 80 × 80 × 80 is 

almost the same as that from 40 × 40 × 40. Thus, a grid resolution of 40 × 40 × 40 is 

sufficiently fine to conduct the remaining studies. The typical resulted ݕା is around 30 

with this grid resolution. Wang and Chen (2009) also drew similar conclusion in their 

study.  

 
(a) 

 
(b) 

Figure 6 Grid dependency study using forced convection in an empty room (case 3.2.2) 

4. Analysis of Results 

To provide clarity, we labelled the parallelized FFD in OpenCL as 

OpenCL_FFD and the sequential FFD in C as C_FFD. We employed two benchmarks 
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including one from the experimental data and the other from the C_FFD on a single 

core of CPU 2 (labelled as C_Reference). 

4.2. Accuracy Evaluation 

Figures 6-10 shows the comparison between OpenCL_FFD on the CPUs and 

GPUs with C_Reference, the CFD results, and the experimental data.  Beginning with 

lid-driven cavity case which has a laminar flow, FFD (presented as C_Reference) is 

slightly worse than the CFD results which are perfectly aligned with the experimental 

data (Figure 7). By increasing the complexity of flows from laminar to turbulent, one 

can find in the forced convection the CFD still surpassed FFD in accuracy (Figure 8). 

FFD without the turbulence model was found to be deficient in capturing the flow 

features near the boundaries, especially the lower part of the profile. By further 

increasing the airflow features with an obstacle, one can see that even CFD with the 

turbulence model, cannot accurately predict the airflow near the boundaries (Figure 9). 

However, CFD still outperformed the FFD, which under-predicted the velocity 

magnitude, due to the omission of turbulent effect. Finally, in the mixed convection 

case (Figures 9 and 10) which was deemed the most complicated, interestingly the CFD 

predictions are closer with the experimental data than those in the forced convection 

(Figure 9). Again, FFD, due to lack of the turbulence models, predicted the trend with 

relatively poor accuracy.  

To quantify the relative error between simulated and measured data, we 

employed an Euclidean norm estimator (Celebi et al. 2011):   

ɛ ൌ
ඨ∑

൫࢞ෝష࢞൯


࢞


ࡺ


ࡺ
, 

             (4)

where ݔො and ݔ are the simulated and measured value at i point, respectively; N is the 

total number of points selected for comparison. This estimator has been used to 
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calculate the overall discrepancies at certain points between the results (Wang and Zhai 

2012; Wang et al. 2010).  

Table 2 summarizes the relative errors of FFD and CFD simulations, CFD 

simulations have relative errors within the 20% for all locations and cases. The 

averaged relative error for all locations and cases is 9.99%. As an intermediate method, 

FFD is less accurate than CFD in most locations. Surprisingly, the averaged relative 

error of FFD for the studied cases is 11.30%, which only slightly larger than that of 

CFD. At Z=2.3622 m near the ceiling of the box at Location1, for example in case 

3.2.2, CFD predicts a flow velocity of 0.235 m/s while the experimental data is 0.079 

m/s. This point contributes approximately 40% to the total value of the estimator for the 

CFD. That’s why visual differences of the profiles in Figure 8 and Figure 9 are largely 

different from those shown in the estimator in Table 2.  

It is worth to mention that the CFD with the RNG k-ɛ turbulence model 

generated better results than that without the turbulence model, as was presented in 

previous research (Jin et al. 2012). This is consistent with the conclusion from Wang 

and Chen (2009) that RNG k-ɛ can generate overall good performance for cases 2-4. 

Table 2 Relative Difference of Velocity Profiles Predicted by CFD and FFD  

Case Program 
ɛ (%) 

Location1* Location 3* Location 5 

Case 3.2.1: Flow in a Lid-Driven 
Cavity  

CFD 0.18 2.88 N/A 

FFD 5.57 8.11 N/A 

Case 3.2.2: Forced Convection 
in an Empty Room 

CFD 6.82 9.25 12.27 

FFD 7.85 10.6 9.97 
Case 3.2.3: Forced Convection 
in a Room with a Box at Center 

 

CFD 17.09 19.24 14.36 

FFD 17.99 22.19 14.66 

Case 3.2.4: Mixed Convection in 
a Room with a Box at Center 

 

CFD 6.9 15.54 5.39 

FFD 10.4 11.00 5.98 

*For case 3.2.1, Location 1 and Location 3 are the line at X=0.5m and the line at Z=0.5m, in the XZ plan 

which was sliced at Y=0.01165m, respectively. 
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When running OpenCL_FFD on the CPUs, the results are the same as 

C_Reference for all the case studies (Figure 7a, 7a, 8a, 9a, and 10a). Surprisingly, 

results from OpenCL_FFD on the GPUs are not always consistent with C_Reference. 

When the flow is simple, e.g. lid-driven cavity case, all the GPUs generated identical 

results as C_Reference (Figure 7b). However, when the flow gets complex, the GPU 

results diverge slightly from C_Reference, as well as from each other (Figure 8b, 8b, 9b 

and 10b). This shows that the accuracy of the OpenCL_FFD depends on the executing 

GPU, which is contradictory to the hypothesis that all OpenCL devices should generate 

the same results.  

 
(a) 

  
(b) 

Figure 7 Horizontal velocity profiles in the vertical mid-section (X=0.5m) for the lid-

driven cavity flow (case 3.2.1) 
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(a) 

 
(b) 

 Figure 8 Comparison of velocity profiles for forced convection in an empty room 

(case 3.2.2) 

 

 
(a) 

 
(b) 

Figure 9 Comparison of velocity profiles for forced convection in a room with a box 

(case 3.2.3) 
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(a) 

 
(b) 

Figure 10 Comparison of velocity for mixed convection in a room with a box (Case 

3.2.4) 

 

 
(a) 

 
(b) 

Figure 11 Comparison of  temperature for mixed convection in a room with a box 

(Case 3.2.4) 

 

We can use Coefficient of Determination R2 to quantify the difference between 

OpenCL_FFD and C_Reference. The R2 is defined as follows: 

ࡾ ൌ  െ
∑ ሺ࢞ି࢞ෝሻ



∑ ሺ࢞ି࢞ഥሻ



, (5)



19 
 

where ݔ is the value at i point in the profile from C_Reference; ̅ݔ is the mean value of n 

points from C_Reference;  ݔො is the value at i point in the profile from OpenCL_FFD; n 

is the total number of points in the profile, which in this case is 100. Table 3 

summarizes the R2 for velocity and temperature profiles at different locations in Figures 

7-10 for the three cases. For most cases, the value of R2 is above 0.9 which indicates that 

the errors are not significant. Intriguingly, the value of R2 seems independent to the 

GPU manufacturers, the complexity of the flow, or locations at which profiles were 

extracted.  

Table 3 R2 of the results from OpenCL_FFD on GPUs  

 

R2 of velocity profile for the 
forced convection in an empty room 

R2 of velocity profile for the 
forced convection in a room with a box 

GPU 1 GPU 2 GPU 3 GPU 4 GPU 1 GPU 2 GPU 3 GPU 4 

Location 1 0.9106 0.9270 0.9946 0.9994 0.9994 0.9979 0.9825 0.9958 

Location 3 0.9931 0.9902 0.9969 0.9993 0.9982 0.9969 0.9956 0.9964 

Location 5 0.8907 0.8927 0.9852 0.9769 0.9678 0.9794 0.9794 0.9636 

 

R2 of velocity profile for the 
mixed convection in a room with a box 

R2 of temperature profile for the 
Mixed convection in a room with a box 

GPU 1 GPU 2 GPU 3 GPU 4 GPU 1 GPU 2 GPU 3 GPU 4 

Location 1 0.9947 0.9969 0.9995 0.9931 0.9722 0.9939 0.9987 0.9941 
Location 3 0.9846 0.9887 0.9966 0.9831 0.9990 0.9994 0.9999 0.9991 

Location 5 0.9568 0.9544 0.9891 0.9700 0.9781 0.9706 0.9904 0.9786 

 

To investigate why OpenCL on GPUs generated different results, we performed 

a numerical experiment to check the output at each step of OpenCL_FFD simulation. 

For example, Table 4 shows the comparison for case 3.2.2 at five control volumes. Two 

references were created using C_FFD on the CPU 2 and CPU 4.  

The GPUs computed different values than the C_Reference at either the 1st or 

100th time step. The difference is less than 2×10-6 at the first step. This indicates that 

the inaccuracy may be a round-off error since SPFP is applied. However, the difference 
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increased up to 5×10-6 at the 100th time step, which is likely due to the accumulation of 

the round-off errors. 

A recent study  (Gu et al. 2015) provided more insights on the inconsistency of 

the OpenCL based calculations on the GPUs. It found that due to the lack of 

clarification in the current OpenCL specification, manufacturers could implement the 

Fused Multiply and Add (FMA) process in different ways, although they are all 

compatible with the IEEE-754 2008 standard  (IEEE 2008). Moreover, current AMD-

manufactured GPUs are not IEEE-754 compatible since they implement a truncation 

instead of round-off operation during their FMA process. Therefore, the round-off 

errors observed in Table 4 are likely caused by the varying FMA implementations. As a 

results, the hypothesis that the OpenCL code will generate the same results on different 

results is not valid for the current OpenCL version 1.2 (Khronos 2012). 

4.3. Computing Speed Evaluation 

4.3.1. Case Study Speedup 

We define the speedup N as  

ࡺ ൌ (6) ,ࡸࢋࡻ࢚/ࢎࢉࢋ࢈࢚

where ݐ is the computing time used by the benchmark code (C_Reference on a 

CPU) and ݐை is the computing time used by OpenCL_FFD on different devices.  

The speedup of OpenCL_FFD for the multi-core CPU was calculated based on 

the C_Reference using a single processor of the same CPU. The implementation of the 

OpenCL_FFD code flattened a two-dimensional array of variables into one-dimension, 

which reduced data access time when compared to C_FFD, which used a two-

dimensional array for its variable storage. As a result, the optimization in 

implementation makes it possible that speedups of OpenCL_FFD can be higher than the 
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number processors. For instance, the speedups of CPU 4 are larger than 2 which 

correlates with its number processors. It is also interesting to see that OpenCL_FFD on 

CPU 1 (which is on a Mac Computer running Windows using Boot Camp) is slower 

than the C_Reference. As a comparison, CPU 5, the same CPU on the Mac computer 

running on Mac OS X has a much higher performance. Since OpenCL_FFD achieved 

speedups on other CPUs while under a native Windows machine (CPU 2 and CPU 3), it 

is likely that the slowdown of CPU 1 is caused by the use of Boot Camp on the 

MacBook Pro laptop to run Windows.  
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Table 4  Comparison of GPU results at 1st and 100th time steps in 5 control volumes for the mixed convection in a room with a box (Shading of 

cell indicates that the GPU result is different than the reference computed by CPU) 

Device  OS 

Value at selected points (i,  j,  k) 

U @ 
(2, 38, 34) 

U @ 
(2, 38, 34) 

U @ 
(2, 12, 38) 

U @ 
(2, 12, 38) 

T @ 
 (13, 23, 40) 

T @ 
 (13, 23, 40) 

V @ 
(1, 29, 35) 

V @ 
(1, 29, 35) 

U@ 
(14,23,38) 

U 
@(14,23,38) 

1st  
time step 

100th 
time step 

1st  
time step 

100th 
time step 

1st  
time step 

100th  
time step 

1st  
time step 

100th  
time step 

1st  
time step 

100th  
time step 

Reference 1 Windows 0.031247 0.033471 0.098339 1.359278 22.199999 22.200006 0.000635 0.000155 0.000000 1.351563 

Reference 2 
Mac OS 

X 
0.031247 0.033471 0.098339 1.359278 22.199999 22.200006 0.000635 0.000155 0.000000 1.351562 

GPU 1 
Mac OS 

X 
0.031247 0.033469 0.098339 1.359277 22.199999 22.200005 0.000634 0.000155 0.000000 1.351564 

GPU 2 
Mac OS 

X 
0.031247 0.033469 0.098339 1.359277 22.199999 22.200005 0.000634 0.000155 0.000000 1.351564 

GPU 3 Windows 0.031247 0.033469 0.098339 1.359278 22.200001 22.199999 0.000634 0.000155 0.000000 1.351564 

GPU 4 Windows 0.031247 0.033471 0.098338 1.359278 22.200001 22.200001 0.000634 0.000155 0.000000 1.351563 
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Table 5 Speedups of OpenCL_FFD on CPUs for all case study  

Device  
Number 

of 
Processors 

Speedup 

Lid driven 
cavity flow 

Forced convection 
in an empty room 

Forced convection 
in a room with a 

box 

Mixed convection 
in a room with a 

box 

CPU 1 2 0.8 0.8 0.8 0.7 

CPU 2 4 4.2 2.7 2.6 2.6 

CPU 3 4 2.1 2.1 2.0 2.1 

CPU 4 2 2.5 3.0 2.5 2.6 

CPU 5 2 2.0 2.2 1.9 1.9 

CPU 6 4 3.8 4.1 3.2 3.3 

 

The speedup of OpenCL_FFD for the GPUs was calculated based on C_Reference 

on CPU 2. As shown in Table 6, a higher peak performance can lead to a larger speedup. 

For example, GPU 4 has the highest peak performance which is about one order of 

magnitude larger than other studied GPUs. As a result, GPU 4 provided speedups which 

were one to two orders of magnitude higher than the others. However, the speedup is not 

perfectly proportional to the peak performance; other factors may also affect the speedup 

such as the global work size. The global work size is the number of all work items, which is 

equal to the total number of grids in our case. In next the section we discuss how the global 

work size affects the speedup. 

Table 6 Speedup of OpenCL_FFD on GPUs for all case study  

Device  
Peak 

Performance 
(FLOPS) 

Speedup 

Lid driven 
cavity flow 

Forced convection 
in an empty room 

Forced convection 
in a room with a 

box 

Mixed convection 
in a room with a 

box 

GPU 1 346* 7.6 5.3 5.1 5.1 

GPU 2 653 7.9 8.1 7.2 7.2 

GPU 3 768 17.5 15.9 13.7 13.8 

GPU 4 4,200 129.3 77.2 72.6 73.3 

*Estimated due to lack of official information  
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4.3.2. Impact of Global Work Size 

In order to analyse the impact of global work size on the performance of the 

devices, we measured the speedup of OpenCL_FFD using different ranges. The test was 

performed using a lid-driven cavity case described in section 3.2.1 but with a different 

dimension of 1m × 1m × 1m. Three devices (CPU 2, GPU 3, and GPU 4) were examined 

in the test. Since the global work size is equal to the number of grids in our case, we can 

adjust the global work size by adjusting the number of grids. 

As we can see from Figure 8, OpenCL_FFD on CPU 2, GPU 3, and GPU 4 can 

eventually achieve a maximum speedup of 12, 140, and 1139, respectively. The speedup of 

OpenCL_FFD on CPU 2 can be larger than its number of processors due to the 

optimization in the OpenCL implementation for more efficient data access, which is 

discussed in the section 4.2.1. Note that a threshold exists for each device which dictates if 

the speedup increases or stalls with the increase of global work sizes. The threshold is about 

1.25×105 for CPU 2 and about 2.16×105 for GPU 3 and GPU 4. When the global work size 

is below the threshold, the speedup increases with the work size because the computing 

capacity of the device is not fully utilized. After the work size exceeds the threshold, the 

speedup stops increasing because all the device’s computing capacity is used up. 

 

Figure 12 Speedup of OpenCL with different global work size for the lid-driven cavity flow 
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5. Conclusion 

This study evaluated two hypotheses for the cross-platform computing using 

OpenCL for indoor airflow simulation. The first hypothesis that the OpenCL code will 

generate the same results on different devices was not valid for the current OpenCL version 

1.2. Although running the OpenCL code on the different CPUs produced the identical 

results, the results generated by GPUs differ with a R2 larger than 0.9. The dissimilar 

results by GPUs are likely caused by the divergent FMA implementation from different 

GPU manufacturers. Although the initial discrepancies are small at level of 10-6, they can 

accumulate over time during simulations.  

The second hypothesis that running in parallel on multiple processors of the same 

device will speed up the indoor airflow simulation was valid although the speedup is 

affected by the capacity of the device (e.g. peak performance) and the global work sizes. In 

addition, optimizing the data access can provide additional speedup. A separate study on 

the relationship and number of grids showed that a speedup of 1139 times can be achieved 

using an AMD FirePro W8100 GPU. 

In addition, the comparison of FFD and CFD with RNG k-ɛ model showed that both 

CFD and FFD can predicted the studied flows with averaged relative errors of 9.99% and 

11.30%, respectively. 

In conclusion, OpenCL is an appealing method for accelerating the indoor airflow 

simulations by utilizing parallel computing on local devices. However, it is critical that 

GPU manufacturers address the irregularity in the FMA implementation to ensure 

consistent results can be generated by different GPUs. As an intermediate method, the 

accuracy of FFD is comparable to the CFD.  



26 
 

Acknowledgments 

To Be Added 

References 

AMD. "Firepro V4900." 
https://www.amd.com/Documents/AMDFirePro_FamilyBrochure.pdf. 

AMD. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-
processing-app-sdk/. 

AMD. "Firepro W8100." http://www.amd.com/en-
us/products/graphics/workstation/firepro-3d/8100. 

Axley, J. 2007. Multizone Airflow Modeling in Buildings: History and Theory. HVAC&R 
Research, 13 (6):907-28. 

Celebi, M. E., F. Celiker, and H. A. Kingravi. 2011. On Euclidean Norm Approximations. 
Pattern Recognition, 44 (2):278-83. 

Chen, Q. 1995. Comparison of Different K- Models for Indoor Air-Flow Computations. 
Numerical Heat Transfer Part B: Fundamentals, 28 (3):353-69. 

Chen, Q. 2009. Ventilation Performance Prediction for Buildings: A Method Overview and 
Recent Applications. Building and Environment, 44 (4):848-58. 

Chronis, A., A. Turner, and M. Tsigkari. 2011. Generative Fluid Dynamics: Integration of 
Fast Fluid Dynamics and Genetic Algorithms for Wind Loading Optimization of a 
Free Form Surface. Proceedings of  the Proceedings of the 2011 Symposium on 
Simulation for Architecture and Urban Design. 

Corrigan, A., F. F. Camelli, R. Löhner, and J. Wallin. 2011. Running Unstructured Grid‐
Based CFD Solvers on Modern Graphics Hardware. International Journal for 
Numerical Methods in Fluids, 66 (2):221-9. 

Fluent. "Fluent 16.1.0." http://www.ansys.com/Products/Fluids/ANSYS-Fluent. 
Ghia, U., K. N. Ghia, and C. T. Shin. 1982. High-Re Solutions for Incompressible Flow 

Using the Navier-Stokes Equations and a Multigrid Method. Journal of 
Computational Physics, 48 (3):387-411. 

Godish, T., and J. D. Spengler. 1996. Relationships between Ventilation and Indoor Air 
Quality: A Review. Indoor Air, 6 (2):135-45. 

Gorobets, A., F. Trias, and A. Oliva. 2013a. A Parallel Mpi+ Openmp+ Opencl Algorithm 
for Hybrid Supercomputations of Incompressible Flows. Computers & Fluids, 
88:764-72. 

Gorobets, A., F. X. Trias, and A. Oliva. 2013b. An Opencl-Based Parallel CFD Code for 
Simulations on Hybrid Systems with Massively-Parallel Accelerators. Procedia 
Engineering, 61:81-6. 

Gropp, W. D., D. K. Kaushik, D. E. Keyes, and B. F. Smith. 2001. High-Performance 
Parallel Implicit CFD. Parallel Computing, 27 (4):337-62. 

Gu, Y., T. Wahl, M. Bayati, and M. Leeser. 2015. Behavioral Non-Portability in Scientific 
Numeric Computing. In Euro-Par 2015: Parallel Processing, 558-69. Springer. 

IEEE, S. A. 2008. Standard for Floating-Point Arithmetic. IEEE 754-2008. 
Intel. "E5-1603." http://download.intel.com/support/processors/xeon/sb/xeon_E5-1600.pdf. 



27 
 

Intel. "I5-3210m." http://download.intel.com/support/processors/corei5/sb/core_i5-
3200_m.pdf. 

Intel. "I7-2620m." 
http://www.intel.com/content/dam/support/us/en/documents/processors/corei7/sb/co
re_i7-2600_m.pdf. 

Intel. "I7-3720qm." http://download.intel.com/support/processors/corei7/sb/core_i7-
3700_m.pdf. 

Jin, M., and Q. Chen. 2015. Improvement of Fast Fluid Dynamics with a Conservative 
Semi-Lagrangian Scheme. International Journal of Numerical Methods for Heat & 
Fluid Flow, 25 (1):2-18. 

Jin, M., W. Zuo, and Q. Chen. 2012. Improvements of Fast Fluid Dynamics for Simulating 
Air Flow in Buildings. Numerical Heat Transfer, Part B: Fundamentals, 62 
(6):419-38. 

Jin, M., W. Zuo, and Q. Chen. 2013. Simulating Natural Ventilation in and around 
Buildings by Fast Fluid Dynamics. Numerical Heat Transfer, Part A: Applications, 
64 (4):273-89. 

Khronos, G. "The Opencl Specification, Version 1.2." 
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf. 

Ladeinde, F., and M. D. Nearon. 1997. CFD Applications in the HVAC&R Industry. 
ASHRAE Journal, 39 (1):44-8. 

Megri, A. C., and F. Haghighat. 2007. Zonal Modeling for Simulating Indoor Environment 
of Buildings: Review, Recent Developments, and Applications. HVAC&R 
Research, 13 (6):887-905. 

Microsoft. "Microsoft Visual Studio 2013 Professional." https://msdn.microsoft.com/en-
us/library/dd831853(v=vs.120).aspx. 

NVIDIA. 2007. Nvidia Cuda Compute Unified Device Architecture-- Programming Guide 
(Version 1.1). Santa Clara, California: NVIDIA Corporation. 

NVIDIA. "Gt 650m." https://www.techpowerup.com/gpudb/547/geforce-gt-650m.html. 
Patankar, S. V., and D. B. Spalding. 1972. A Calculation Procedure for Heat, Mass and 

Momentum Transfer in Three-Dimensional Parabolic Flows. International journal 
of heat and mass transfer, 15 (10):1787-806. 

Wang, B., B. Zhao, and C. Chen. 2010. A Simplified Methodology for the Prediction of 
Mean Air Velocity and Particle Concentration in Isolation Rooms with Downward 
Ventilation Systems. Building and Environment, 45 (8):1847-53. 

Wang, H., and Z. J. Zhai. 2012. Analyzing Grid Independency and Numerical Viscosity of 
Computational Fluid Dynamics for Indoor Environment Applications. Building and 
Environment, 52:107-18. 

Wang, M., and Q. Chen. 2009. Assessment of Various Turbulence Models for Transitional 
Flows in an Enclosed Environment (Rp-1271). HVAC&R Research, 15 (6):1099-
119. 

Wang, Y., A. Malkawi, Y. Yi, and T. C. Center. 2011. Implementing CFD (Computational 
Fluid Dynamics) in Opencl for Building Simulation. Proceedings of The 12th 
International Building Performance Simulation (Building Simulation 2011). 

Xcode. https://developer.apple.com/xcode/download/. 
Yakhot, V., and S. A. Orszag. 1986. Renormalization-Group Analysis of Turbulence. 

Physical review letters, 57 (14):1722. 



28 
 

Zhai, Z., Q. Chen, P. Haves, and J. Klems. 2002. On Approaches to Couple Energy 
Simulation and Computational Fluid Dynamics Programs. Building and 
Environment, 37 (8-9):857-64. 

Zuo, W., and Q. Chen. 2009a. Fast Parallelized Flow Simulations on Graphic Processing 
Units. Proceedings of  the the 11th International Conference on Air Distribution in 
Rooms (RoomVent 2009), Busan, Korea. 

Zuo, W., and Q. Chen. 2009b. High-Performance and Low-Cost Computing for Indoor 
Airflow. Proceedings of  the Proceedings of the 11th International IBPSA 
Conference (Building Simulation 2009), Glasgow, U.K. 

Zuo, W., and Q. Chen. 2009c. Real-Time or Faster-Than-Real-Time Simulation of Airflow 
in Buildings. Indoor Air, 19 (1):33-44. 

Zuo, W., and Q. Chen. 2010a. Fast and Informative Flow Simulations in a Building by 
Using Fast Fluid Dynamics Model on Graphics Processing Unit. Building and 
Environment, 45 (3):747-57. 

Zuo, W., and Q. Chen. 2010b. Fast Simulation of Smoke Transport in Buildings. 
Proceedings of  the the 41st International HVAC&R congress, Beograd, Serbian, 
December 1-3. 

Zuo, W., and Q. Chen. 2010c. Improvements on the Fast Fluid Dynamics Model for Indoor 
Airflow Simulation. Proceedings of  the 4th National Conference of IBPSA-USA 
(SimBuild 2010), New York, NY. 

Zuo, W., M. Jin, and Q. Chen. 2012. Reduction of Numerical Viscosity in FFD Model. 
Engineering Applications of Computational Fluid Mechanics, 6 (2):234-47. 

Zuo, W., M. Wetter, D. Li, M. Jin, W. Tian, and Q. Chen. 2014a. Coupled Simulation of 
Indoor Environment, HVAC and Control System by Using Fast Fluid Dynamics 
and Modelica. Proceedings of  the 2014 ASHRAE/IBPSA-USA Building Simulation 
Conference, Atlanta, GA, Sep. 10-12. 

Zuo, W., M. Wetter, D. Li, M. Jin, W. Tian, and Q. Chen. 2014b. Coupled Simulation of 
Indoor Environment, HVAC and Control System by Using Fast Fluid Dynamics 
and the Modelica Buildings Library. Proceedings of  the American Society of 
Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). 

 


