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 Global climate change and resulting frequent extreme weather events have 

highlighted the significance of energy sustainability and resilience. Communities, 

which refer to a group of buildings located geographically together, are important 

units for energy generation and consumption. Hence, the research of community 

energy sustainability and resilience has drawn much attention during the past 

decades. However, there remain many challenges surrounding community energy 

modeling and control to achieve the low-carbon and resilient goals.  

 First, few tools are readily available for community-scale dynamic modeling and 

control-based studies. To address this gap, a community emulator was developed, 

which was designed to be hierarchical, scalable, and suitable for various applications. 

Data-driven stochastic building occupancy prediction was integrated into the 

emulator using logistic regression methods. Based on this work, we publicly released 

a library for net-zero energy community modeling using the object-oriented equation-

based modeling language Modelica.  

 Second, building load control informed by real-time carbon emission signals is 

underdeveloped as utility price-driven control has so far been dominant. To better 

facilitate community energy sustainability through decarbonization, we proposed 

four rule-based carbon emission responsive building control algorithms to reduce the 

annual carbon emissions through thermostatically controllable loads. The impact of 
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carbon net-metering, as well as the evolvement of the future energy generation mix, 

is analyzed on top of both momentary and predictive rules. Based on the simulation 

results, the average annual household carbon emissions are decreased by 6.0% to 

20.5% compared to the baseline. The average annual energy consumption is increased 

by less than 6.7% due to more clean hours over the year. The annual energy cost 

change lies between -4.1% and 3.4% on top of the baseline. 

 Third, the enhancement of community resilience in an islanded mode through 

optimal operation strategies is often faced with computational challenges given the 

large number of controllable loads. To tackle this, we proposed a two-layer model 

predictive control-based resource allocation and load scheduling framework for 

community resilience enhancement. Within this framework, the community operator 

layer optimally allocates the available PV generation to each building, while the 

building agent layer optimally schedules controllable loads to minimize the unserved 

load ratio while maintaining thermal comfort. We found that the allocation process 

is mostly constrained by the building load flexibility. More specifically, buildings with 

less load flexibility tend to be allocated more PV generation than other buildings. 

Further, we identified the competitive relationship between the objectives of 

minimizing  unserved load ratio and maximize comfort. Therefore, it is necessary for 

the building agent to have multi-objective optimization. 

 Finally, to account for the uncertainties of occupant behavior and its impact on 

resilient community load scheduling, we developed a preference-aware scheduler for 

resilient communities. Stochastic occupant thermostat-changing behavior models 
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were introduced into the deterministic load scheduling framework as a source of 

uncertainty. KRIs such as the unserved load ratio, the required battery size, and the 

unmet thermal preference hours were adopted to quantify the impacts. Uncertainties 

from occupants’ thermal preferences and their impact on load scheduling are then 

studied and addressed through chance constraints. Generally, the proposed controller 

performs better in terms of the unmet thermal preference hours and the battery sizes 

compared to the deterministic controller.   
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Chapter 1. Introduction 

 

 

 

 

 

1.1 Background 

 The climate change and global energy crises have driven the energy usage 

worldwide to become more sustainable. As part of the effort to mitigate the climate 

change, the Paris Agreement [1] sets out a global framework to limit the global 

average temperature increase. It also aims for the global emissions to peak as soon 

as possible and then to undertake rapid reductions thereafter. In the United States, 

the Biden ministration sets an aggressive goal to reduce 50%--52% of greenhouse gas 

pollution by 2030 [2]. In China, the world’s largest carbon trading market opened in 

July 2021, where more than 2,000 companies trade carbon emissions quotas there to 

help the country achieve its carbon emissions reduction goal [3].  

 The climate change has also led to the increasing frequency of extreme weather 

events, which put stress on the electric power grid. The 2021 Texas Power Crisis  [4] 

happened as a result of three severe winter storms and caused a massive electricity 

generation failure, which then led to shortages of water, food, and heat. In 2017, 

Hurricane Maria left 1.5 million customers across Puerto Rico without electricity, and 

it took eleven months to restore the power system [5].  
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 Therefore, enhancing energy sustainability and resilience is a significant topic 

and it should be practiced throughout the energy generation, transmission, 

distribution, and consumption processes. From the energy generation perspective, 

the increasing adoption of renewable energy resources helps avoid the carbon 

emissions associated with traditional fossil fuel-fired plants. Further, the 

development of microgrids integrated with distributed energy resources (DERs) 

diminishes the dependence on the power transmission and distribution, which 

promotes energy resilience. From the energy consumption perspective, buildings and 

communities are transforming to be more grid-interactive. The U.S. Department of 

Energy has developed a roadmap with recommendations for how Grid-interactive 

Efficient Buildings (GEBs) can provide a clean and flexible energy resource [6]. This 

facilitates energy sustainability and resilience through the control of flexible building 

loads targeting goals such as building energy decarbonization and resilient building 

operations.  

1.2 Challenges and Research Gaps 

 Within this context, there remain many challenges and research gaps for the 

building sector to address. Firstly, though electricity price informed building load 

control has been extensively studied to reduce building energy costs, building control 

based on real-time carbon emission signals has not drawn enough attention until 

recently. Some studies adopt carbon emission reductions as one of the optimization 

objectives [7–12]. Yet, given the highly demanding computational effort of 

optimization-based control, rule-based control remains the dominant control method 
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in building automation systems due to ease of implementation. In addition, unlike 

energy net-metering, which has been comprehensively studied in building-to-grid 

related control studies, the inclusion of carbon net-metering is relatively rare. It 

remains to be explored how the inclusion of carbon net-metering would affect the 

performance of carbon responsive building control.  

 Secondly, load management and scheduling are excessively important during 

emergency situations if buildings want to sustain power outages for longer periods. 

However, no common rules have been established about how to prioritize loads in 

buildings during island mode. It remains unclear what principles are there to follow 

and to what extent can we curtail the loads. In addition, the impact of load scheduling 

on the built environment and occupant satisfaction remains to be investigated. 

Moreover, most existing studies limit their work scope to single buildings. When the 

problem scales to the community level with various building types, the number of 

controllable loads increases rapidly. If the scheduler tries to optimize the operational 

status of every appliance at every time step, the problem becomes exponentially 

complicated, computationally costly, and challenging. 

 Thirdly, dynamic short-interval interactions between the buildings and the grid 

require accurate predictions of building loads at a short timestep. Enhanced 

knowledge about building occupant behavior closes the loop and helps enhance the 

accuracy of the predicted real-time building loads. However, occupant behavior is a 

complicated, stochastic mechanism and can be influenced by multiple contextual 

factors [13, 14]. Due to its stochasticity and the lack of a reliable database for the 
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protection of occupants’ privacy, occupant behavior modeling is still challenging and 

remains an active research field. Additionally, occupant behavior acts as one of the 

uncertainty sources in model-based building control such as model-predictive control 

(MPC). Hence, the existence of certain behaviors might impact the control 

performance and would require a priori interventions to assure a satisfying control 

result. 

 Lastly, unlike single building modeling which can be done with readily available 

commercial software, community-scale modeling often lacks suitable platforms that 

are extensible and scalable. Further, the complexity of the community model scales 

up with the number of modeled buildings. This requires the modeling platform to be 

flexible to allow the users to decide the fidelity of different parts of the model such as 

the thermal zone models, mechanical systems, and other parameters. Also, a wide 

range of simulation timesteps should be allowed considering the various dynamics 

within a community system. For instance, the simulation of DR-related controls could 

have a timestep of seconds while the thermal reactions of thermal zones are usually 

sub-hourly to hourly. Additionally, to hide the complexity of a community energy 

system, a hierarchical modeling structure is often preferred, which is not available in 

many commercially available software at the time.  

1.3 Objectives 

 Given the aforementioned research gaps, this dissertation aims to address a 

subset of the identified gaps. The major research objectives and contributions of this 

dissertation are described below.  
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 (1) An open-source library for Net-Zero Energy Communities (NZEC) 

 The open-source Modelica library built based on a real NZEC has been publicly 

released [15]. This library provides a series of Modelica component and subsystem 

models for community energy systems, including ground source heat pumps, solar 

thermal water heaters, photovoltaic (PV) panels, to name a few. This library can be 

easily utilized by users for community energy system modeling and control studies. 

 Using this library, we built a community emulator which also serves as a virtual 

testbed [16] for community-scale studies. This emulator is designed and structured 

in a highly hierarchical way to hide the complexity of the whole community energy 

system. As a result, it can be easily extended to embrace other systems (e.g., power 

distribution) or scaled up to model larger communities.  

 The building occupancy status prediction in this emulator is modeled 

stochastically. Given that no occupancy sensor data were available, we interpreted 

building occupancy from measured lighting power data and developed data-driven 

models to predict occupants’ presence in the buildings. The models were validated 

against the lighting power measurements. The results show that the proposed multi-

stage lighting power prediction method can predict daily peak power with a 2.42% 

relative error. The monthly and weekly NMBEs of lighting power are on average 

below 8.28%.  

 (2) Carbon emission responsive building control 

 To help achieve energy sustainability at a community scale, we consider the 

energy decarbonization during the buildings’ operational phase. We present a rule-
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based carbon responsive control framework that controls the setpoints of 

thermostatically controlled loads responding to the grid’s carbon emission signals in 

real-time. Based on this framework, four controllers are proposed with different 

combinations of carbon accounting methods and control rules.  

 To evaluate their performance, we performed simulation studies using models 

of a 27-home, all-electric, net-zero energy residential community located in Basalt, 

Colorado, United States. To reduce the operational carbon emissions, the controllers 

modulate the setpoints of mini-split heat pumps for pre-heating or pre-cooling, and 

heat pump water heaters for pre-heating when there is excessive PV generation from 

the rooftop PV systems or when the grid electricity is relatively “clean” (i.e., with low 

carbon intensities). The carbon intensity data of four future years from the Cambium 

data set are adopted to account for the evolving resource mix in the power grid. 

Simulation results indicate that the carbon responsive controllers can reduce the 

homes’ annual carbon emissions by 6.0% to 20.5%.  

 (3) Optimal load scheduling for resilient communities  

 To help achieve energy resilience at a community scale, we focus on resilience 

enhancement through optimal load scheduling for communities in island mode (i.e., 

disconnected from the main power grid). We designed a methodology for enhancing 

community resilience through optimal renewable resource allocation and load 

scheduling to minimize unserved load and thermal discomfort. The proposed control 

architecture distributes the computational effort and is easier to be scaled up than 

traditional centralized control. The decentralized control architecture consists of two 
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layers: The community operator layer (COL) allocates the limited amount of 

renewable energy resources according to the power flexibility of each building. The 

building agent layer (BAL) addresses the optimal load scheduling problem for each 

building with the allowable load determined by the COL. Both layers are formulated 

as an MPC-based optimization.  

 Simulation scenarios are designed to compare different combinations of 

building weighting methods and objective functions to guide real-world deployment 

by community and microgrid operators. The results indicate that the impact of power 

flexibility is more prominent than the weighting factor to the resource allocation 

process. Allocation based purely on occupancy status could lead to an increase in PV 

curtailment. Further, it is necessary for the building agent to have multi-objective 

optimization to minimize the unserved load ratio and maximize comfort 

simultaneously. 

 (4) Uncertainty of occupant behavior in load scheduling 

 Since occupant behavior has been identified as one of the major sources of 

uncertainty in building model-based controls, we propose to analyze and address its 

impact on load scheduling for resilient communities. Based on the deterministic 

scheduler proposed above, we developed an occupant preference-aware load scheduler 

for resilient communities operating in the islanded mode. Chance constraints were 

adopted to address the occupant-induced uncertainty in room temperature setpoints. 

Key resilience indicators were selected to quantify the impacts of the uncertainties 

on community load scheduling.  
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 Results show that the proposed stochastic scheduler performs better in terms 

of serving the occupants’ thermal preference and reducing the required battery size, 

given the presence of the assumed stochastic occupant behavior. This work indicates 

that it is necessary to consider the stochasticity of occupant behavior when designing 

optimal load schedulers for resilient communities.  

1.4 Organization of Dissertation 

 This dissertation is organized as follows: Chapter 1 provides a broad research 

background of this dissertation with identified research challenges. The contributions 

of this work are introduced in this chapter as well. Chapter 2 conducts a thorough 

literature review on the research topics that are related to this dissertation. Chapter 

3 discusses the development of the community emulator with stochastic data-driven 

occupancy prediction. Chapter 4 proposes four carbon emission responsive building 

controllers and compares their performance. Chapter 5 proposes a hierarchical load 

scheduling framework for the optimal operation of resilient communities. The 

uncertainties from occupant behavior are then analyzed in Chapter 6. Finally, 

Chapter 7 concludes this dissertation with limitations and future work. 

 Portions of this dissertation have appeared, or will appear, in other 

publications. Section 2.4, Chapter 5, and Chapter 6 have been published as journal 

articles. Section 3.3 has been published as a conference paper. Chapter 4 is under 

review and will be published as a journal article.  
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2.1 Introduction 

 This chapter provides a thorough literature review of the state of the art of the 

research topics discussed in this dissertation. The methods for energy modeling at a 

community scale are first reviewed with challenges identified. Among the modeling 

challenges, occupant behavior modeling is then further reviewed in detail. 

Subsequently, approaches for community decarbonization are reviewed with 

exemplary studies. Finally, the concept, existing models, and modeling approaches 

for community energy resilience are investigated comparatively.  

2.2 Modeling of Community Energy Systems 

2.2.1 Community-scale Energy Modeling 

 The energy modeling at the community scale is an active and rapidly evolving 

research area during the past decade. It refers to the computational modeling and 

simulation of the energy-related performance of a group of buildings [17], which are 

located geographically close to each other. Given that many communities often share 

the same energy system, there exist greater flexibility to accommodate large energy 

infrastructures such as district energy systems and thus richer load diversity to 

reduce the design capacity of energy systems [16]. The coordination among buildings 

can potentially provide more opportunities for providing grid services. The goal of 

community energy modeling is to analyze the short-term performance such as DR 

potentials or the long-term performance such as carbon emission and energy 

production/consumption. The analysis results can be further used for guiding the 
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decision-making of community design and retrofit, decarbonization techniques, as 

well as community resilience investments, etc.  

 Existing community energy modeling techniques can be categorized into three 

types: physics-based modeling [18–20], reduced-order modeling (ROM) [21], and data-

driven modeling [17]. The physics-based modeling method typically adopts high-

fidelity building modeling tools such as EnergyPlus for the detailed building energy 

performance prediction. The data-driven modeling method uses building energy data 

to develop data-driven models (e.g., artificial neural networks) for predicting building 

energy performance. The ROM method has a fidelity between the aforementioned two 

methods, where the coefficients of the building ROM models (e.g., RC network 

models) are predetermined according to building characteristics. Note that for 

community modeling, the location data also play an important role and can often be 

represented with the Geographical Information System (GIS).  

 Many research institutes have developed open-source readily available tools for 

community/urban scale energy modeling. For instance, URBANopt [22] is a multi-

module physics-based modeling tool developed by National Renewable Energy 

Laboratory (NREL) for high-performance buildings and energy systems at a district 

scale. The input feature file formatted as a GeoJSON file provides a list of the site 

information and the building information. Based on Ruby gems, URBANopt then 

creates the building models automatically as EnergyPlus/OpenStudio models. The 

integrated REopt [23] module then enables DERs optimal sizing and dispatching. 
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Additional functionality such as the distribution network modeling is available 

through the OpenDSS [24] module.  

 Ali et al. [25] proposed a data-driven approach for multi-scale GIS-based 

building energy modeling (BEM). Irish building stock data were used in the geocoding 

procedure to identify archetypes of the building stock. As the next step, data-driven 

models were developed with a bottom-up approach for predicting building energy 

performance at a large scale. In the evaluation step, the generated GIS-based 

building energy performance maps were used for informing district planning and 

decision-making. 

 Yu et al. [26] proposed an approach integrating GIS, BEM, and global 

sensitivity analysis to prioritize key urban planning factors on community energy 

performance. The residential building prototype models were developed using the 

clustering tree structure method. EnergyPlus was used for simulating the energy use 

intensity (EUI) of the developed residential building prototypes. Additionally, a 

combined data-driven and global sensitivity analysis was conducted with Monte 

Carlo simulations. 

 Despite the amount of the emerging development effort, a few challenges 

remain in the community energy modeling field. First, with the development of 

building-to-grid integration and electrification in the transportation sector, there 

lacks a single platform that is capable of simulating multiple infrastructure sectors 

(e.g., energy, transportation, communication, etc.). Second, very short building 

simulation intervals down to the minute or second level are becoming essential in the 
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studies of building DR services. However, traditional BEM tools such as EnergyPlus 

have a minimum simulation timestep of 1 minute, which is still too large for fast DR 

services (e.g., frequency regulation). Third, the uncertainties of occupant behavior 

within single buildings or aggregated at community scales remain underexplored, 

especially in commercial buildings excluding office buildings.  

 The first two challenges can be potentially resolved by the object-oriented 

equation-based modeling language – Modelica [27]. Traditional BEM tools tightly 

couple numerical solutions with model equations, which makes it difficult to extend 

these programs to support new use cases [28]. For instance, in a stiff system where 

the controller with a time constant of seconds is simulated together with an HVAC 

system with a time constant of hours, such stiff ordinary differential equations would 

require implicit solvers to efficiently solve the problem [29]. Traditional BEM tools 

such as EnergyPlus solve such systems in steady-state and do not support adapting 

the solver based on the use case, which causes inefficient simulation.  

 In contrast, Modelica users can easily assemble a large system with component 

models developed by library developers, which enables a more in-depth 

understanding of the system. A simulation environment then analyzes these models 

(i.e., equations), optimizes them using computer algebra, translates them to 

executable codes (e.g., C language), and links them with a numerical solver [28]. This 

acausal modeling algorithm avoids a tight coupling between the numerical solution 

methods and the model equations and makes it suitable for modeling any cyber-

physical systems of any domain. Further, Modelica has strong solvers with variable 
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timesteps (e.g., down to millisecond level), which are dependent on the system 

dynamics [30]. Hence, it is suitable for building control and DR-related 

simulations [31]. The following section discusses occupant behavior modeling, which 

addresses the third challenge. 

2.2.2 Occupant Behavior Modeling in Buildings 

 One important aspect of enabling grid interactions in communities is to 

dynamically value and classify building loads for DR purposes. The uncertainty of 

occupant behavior is responsible for discrepancies between the simulated building 

energy consumption and the actual energy consumption [32, 33]. Hence, better 

knowledge about the occupants’ behavior helps enhance the accuracy of real-time 

building load predictions. However, occupant behavior prediction is a complicated 

stochastic mechanism and can be influenced by multiple contextual factors [13, 14]. 

Conventional building energy simulation tools often adopt static schedules for 

occupants and equipment [34]. However, with the evolvement of other building 

energy-related fields, scientific and robust methods to model energy-related occupant 

behavior in buildings are in demand [13].  

 Many occupant behaviors affect building energy use and thermal comfort. 

Examples include occupant presence, window opening, window shading, lighting use, 

thermostat settings, and appliance use [35]. This section focuses on the modeling of 

the occupant behavior that has direct impacts on building power demand predictions; 

namely, the light switching, thermostat adjustment, and appliance usage. As an 

important common input of these behavior models, occupant presence modeling will 
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be discussed first. Note that other behaviors such as the window opening and closing 

and shading adjustment, which has an indirect impact on building power demand, 

are not the focus of this review.  

 The concept of building occupant behavior modeling consists of two major parts: 

occupant presence/movement modeling and occupant behavior (i.e., action) modeling. 

The former one answers the question of whether the occupants are inside the building 

and where they are. The latter one describes their interactions with the building 

electrical equipment (e.g., lighting system) in the building. The behavior of the 

occupants will influence the power demand, internal heat gain, and thermal comfort 

of the building and vice versa. Compared to conventional static schedules, the 

generation of dynamic schedules often involves stochastic modeling techniques. This 

enables real-time predictions of building power demand and its load constitutions and 

is thus important for the study of grid-interactive buildings and communities. 

 Occupant presence is a key factor in occupant behavior modeling, and it serves 

as the input of other behavior models. It describes the number of people inside a room 

or a building. Some models are capable of simulating the movement of occupants in 

a large building such as an office. A variety of mathematical methods have been 

applied to occupant presence modeling, including Markov and Hidden Markov chains, 

agent-based modeling, and data mining techniques (e.g., clustering and decision 

trees) [35–38]. According to Annex 66 project [39] final report [35], common data 

sources for presence models include occupancy, CO2, and wireless camera sensor data, 

time-use data, light switching data, etc. [37, 40–42]. The first-order Markov chain 
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technique has been widely adopted in the development of occupancy models in office 

buildings [37, 40, 41, 43]. 

 Wilke et al. [36] developed stochastic models, which were calibrated using 

survey data, to predict three types of time-dependent occupant-related quantities: the 

probability to be at home, the probability to start an activity, and the probability 

distribution function of the activity. They adopted first- and higher-order 

homogeneous Markov chains for modeling the transitions between occupant 

activities. The higher-order Markov chain extended the first-order chain by involving 

multiple past values. A Weibull distribution was used to estimate the duration of the 

occupants being at home.  

 Wang et al. [44] modeled private office occupancy with a non-homogeneous 

Poisson process model with two different exponential distributions to simulate the 

occupancy and vacancy sequence. The model requires three input parameters: mean 

occupancy duration (default value: 72.78), mean vacancy duration (default value: 

42.6), and a seed for a random number generator. They tested the model for 35 private 

offices and the model has a relative error of around 5%. They also found that the 

vacant intervals of the 35 rooms were exponentially distributed. The mean vacancy 

interval was different from room to room. When the mean vacancy intervals were 

allowed to vary hourly, the fits were improved at some hours, but not at all hours. 

This model has been implemented in Modelica Buildings library v6.0.0: 

Buildings.Occupants package [45]. It can also be implemented in EnergyPlus Energy 

Management Script (EMS). 
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 Tahmasebi and Mahdavi [46] studied the sensitivity of building performance 

simulation results to the choice of occupants’ presence models. They compared the 

occupancy, lighting, and plug load values of the same building model with fixed or 

randomized schedules. The conclusion was that random models provide more reliable 

peak values for occupancy loads. However, they also pointed out that “it is much more 

important to possess reliable estimations of actual occupancy levels than whether 

probabilistic or non-probabilistic representations of presence patterns are deployed.” 

 In terms of lighting energy use, studies have shown that the two main effective 

factors are outdoor illuminance and occupant behavior [47]. In existing occupant light 

switching models, the common data used include daylight level [48], illuminance level 

at the workplace [49, 50], occupancy sensor data [49, 50], as well as lighting power 

demand data [47]. Regarding the modeling approaches, Markov chains have been 

widely deployed [42, 49, 51]. 

 Table 2.1 lists the major findings for occupant light switching actions. Hunt [48] 

proposed the earliest model for lighting control. Love’s model [52] is similar to Hunt’s 

but categorized occupants’ light switching actions into two groups motivated by the 

expected duration of stay and indoor illuminance levels, respectively. Pigg et al. [53] 

enriched the previous theories with a statement relevant to occupants’ light switch-

off action. 

Table 2.1 Major findings for occupant light switching actions [54]. 

Findings Reference 

All lights in a room are switched on or off simultaneously. 

[48] 
Switching mainly takes place when entering or vacating a space. 

The switch-on probability on arrival exhibits a strong correlation with 

minimum daylighting illuminance in the working area. 
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Findings Reference 

People usually pertain to either of the behavioral classes: (a) switch on the 

lights for the duration of the working day even when temporarily absent (b) 

use lights only when indoor illuminance levels due to daylighting are low. 

[52] 

The manual switch-off probability of the lights strongly relates to the 

expected length of absence. 
[53] 

 

 More specifically, Hunt’s model [48] predicts the state of lights with the 

occupancy and minimum illuminance on the working plane. The switch-on happens 

at arrival and depends on the minimum illuminance at the working plane. The 

switch-off only happens when the occupant is leaving. The model adopts the logistic 

regression method and can be expressed by Equation (2.1). 

𝑦 = 𝑎 +
𝑐

1 + 𝑒𝑥𝑝{−𝑏(𝑥 − 𝑚)}
 , (2.1) 

where 𝑦  represents the probability of turning on lights at arrival; 𝑥  equals the 

logarithm to base 10 of the minimum work plane illuminances; 𝑎, 𝑏, 𝑐, and 𝑚 are 

regression coefficients. 

 Further, Reinhart and Voss [54] extended Hunt’s work by adding a model 

describing the intermediate switch-on probability. Like Hunt, the switch-on action 

depends on the minimum work plane illuminance. The switch-off probability is 

modeled in a logistic relationship with the duration of absence. The tool Lightswitch-

2002 [50] was developed based on these models. This tool can be used to simulate 

occupants’ light switching and blind control behavior.  

 Gunay et al. [55] implemented and compared twelve different sets of light 

switching behavior models in EnergyPlus EMS. They found that the lighting load 

peaks earlier when using Hunt’s switch-on model, compared to Reinhart’s model, 
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which peaks at the arrival after the last coffee break. Another finding is that people 

turn off their lights prior to departure about 95% of the time when using Reinhart’s 

switch-off model but tend to forget their lights in Boyce’s model [56]. Hence, they 

concluded that illuminance is less likely to trigger the switch-off action than the 

expected absent period. 

 For thermostat adjustment behavior modeling, research in the past relied 

heavily on user survey data. However, since the early 2010s, thermostat use data 

from both homes and offices have become available [35]. An example is the Donate 

Your Data program by ecobee thermostats [57]. In existing thermostat adjustment 

models, common data used include indoor temperature [58–61], outdoor 

temperature [59–61], building occupancy [58, 60], and thermal comfort votes [61], to 

name a few. Markov chains and logistic regression are common modeling approaches.  

 Ren et al. [58] developed a conditional probability model to predict air-

conditioner (AC) usage in a residential apartment. The input data include spot 

interview, indoor temperature, CO2 concentration, and AC power. Three types of 

triggers for AC on-off actions were considered: (1) environmental trigger – indoor air 

temperature; (2) event trigger – entering/leaving a room, going to bed, getting up; (3) 

random trigger – unidentified factors. To set up the probability model, Ren first 

obtained a Markov transfer matrix from historical data. The probability of turning 

on or off the AC was calculated based on the current on-off condition. Different 

probabilities were described as constants or discrete Weibull functions. The AC on-



20 
 
off control actions were then simulated randomly. The validation results show that 

the R-squared value ranges from 0.89 to 0.99. 

 Compared with residential thermostat adjustment behavior models, office 

building models have a larger number of occupants, different schedules and trigger 

events, and thus higher stochasticity. Sun and Hong [62] simulated office building 

AC control behavior. The AC is turned on or off when occupants enter or leave the 

room or when occupants feel hot or cold. The occupant behavior modeling tool 

obXML [63, 64] adopts the same algorithm. 

 Gunay et al. [60] developed a thermostat changing behavior model based on the 

data collected from 38 private offices. The collected dataset consisted of occupancy 

status, thermostat keypress, indoor temperature, indoor relative humidity, and 

outdoor temperature. Discrete-time and discrete-event Markov logistic regression 

models were developed to predict the probability of occupants’ setpoint increase and 

decrease actions during occupied hours. The study identified that the indoor 

temperature is the best input variable for occupant thermostat changing behavior 

prediction among the three environmental variables.  

 Lastly, the usage of household electrical appliances plays an important role in 

understanding building occupant behavior and has thus received significant 

attention [65, 66]. The common data used for appliance usage models include time 

use data [67–69], statistical data [70–72], and monitored appliance usage sensor 

data [73, 74]. In terms of modeling approaches, Monte Carlo simulation [69, 72, 74] 
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and Markov chains [67, 71] are two of the most common approaches for predicting 

the switch-on time of appliances.  

 Gunay et al. [75] built a data-driven model to predict plug-in equipment load 

patterns in private office spaces. The input data were occupancy sensor data and load 

metering data for 10 offices. They directly adopted an existing stochastic occupancy 

model for private offices [76] to generate the occupancy time series. They then 

established 10 plug load use patterns from the data and randomly assign them to the 

rooms in the building. The predicted building plug load distribution profiles were 

then obtained through Monte Carlo simulations. The model can predict the hourly 

plug load with a mean absolute error from 1.8 W to 5.7 W. The limitations of this 

study lie in that the authors did not evaluate the errors caused by occupancy presence 

models and they neglected the relationship between the occupants and the other plug-

in equipment (e.g., vending machines, microwaves, refrigerators). 

 Mahdavi et al. [77] explored the relationship between inhabitants’ presence, 

installed power for equipment, and electrical energy use in office buildings. The input 

data included occupancy presence data and load data. Three Weibull distributions 

were used to describe the plug load fractions. The authors adopted a generalized 

stochastic occupancy model (i.e., inhomogeneous Markov chain with one input) to 

generate occupancy presence time series. They then compared and evaluated the 

annual energy consumption with both measured presence data and stochastically 

generated presence data through Monte Carlo simulations. Mahdavi found that there 



22 
 
was a linear relationship between the plug load fraction and the presence probability. 

In addition, the stochastic model performed better in predicting the peak load. 

 Wang and Ding [78] developed an occupant-based energy consumption 

prediction model for typical multi-occupant offices (> 8 occupants). The input data 

included indoor occupant number time series and maximum, minimum, and standby 

input power of different office equipment. They assumed a cubic polynomial 

relationship between the occupancy rate and time. The computer input power 

probability was determined with the Markov chain-Monte Carlo method. Also, they 

assumed that other office equipment consumed 1% of the energy consumed by the 

computer. They used the model to predict annual energy consumption and validated 

the model with relative errors below 5%. The limitations of this work lie in that the 

authors did not establish a correlation between the occupant behavior and plug load 

power, where the two parts were simulated separately. Further, the model requires 

a significant amount of data as input. 

 Typically, the first step of plug load modeling is to conduct an occupant survey 

in the simulated building. As mentioned above, the input data usually include 

occupancy sensor data (e.g., 10-to-15-minute intervals). When no occupancy data is 

available, data mining techniques can be applied to get occupancy information from 

energy use data. With these data inputs, an occupancy presence model can be 

established using regression methods or adapted from an existing presence model. 

Plug load models are then linked with occupancy presence models, where an 

appliance is only switched on if there is at least one occupant present [35].  
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 To summarize, based on the literature review, stochastic modeling methods 

such as the Markov chain have demonstrated their higher accuracy and broader 

applicability over deterministic methods in occupant behavior modeling. However, 

data collection remains a fundamental problem. To better describe the occupant 

behavior in the simulated building, common inputs such as survey data, occupant 

sensor data, as well as appliance energy use data are required. 

 There exist some readily available occupant behavior tools. For example, 

obFMU and obXML [63, 64] enable the co-simulation between occupant behavior and 

conventional building energy simulation tools. Modelica Buildings library [45] has 

readily available models for occupant behavior modeling. However, presence 

modeling for multi-occupied office rooms, as well as other types of commercial 

buildings, remains a challenge due to its high stochasticity. Its accuracy will further 

impact the related lighting, thermostat, and appliance use models.  

 Lastly, no dedicated research was found for plug load interdependency modeling 

in and residential and commercial buildings. This field awaits more research efforts 

as the interdependencies affect the power pliability of buildings participating in grid 

services. 

2.3 Community Decarbonization 

 Buildings account for 35% of carbon dioxide (CO2) emissions in the United 

States, which makes buildings important contributors to decarbonization [79]. With 

the Biden administration’s aggressive goal to reduce 50%--52% of greenhouse gas 

pollution by 2030 [2], a joint effort between the buildings and the electric sector is 
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emerging to tackle this challenge. Further, the U.S. Department of Energy has 

developed a roadmap with recommendations for how GEBs can provide a clean and 

flexible energy resource [6]. On one side, the power generation is adopting more 

renewable energy, which is cleaner than traditional coal and natural gas-fired plants. 

On the other side, buildings can reduce their carbon emissions through using less 

energy (e.g., adoption of energy efficiency measures) or using cleaner energy (e.g., 

load shifting to cleaner hours).  

 Building decarbonization can be achieved during various phases of the building 

life cycle, including design, retrofit, and operation. The design phase often 

incorporates carbon analysis into early design building energy models [80], and some 

of the studies focus on embodied carbon emission reduction [81]. For the retrofit 

phase, several studies have been reported to optimally adopt energy efficiency 

measures, building system electrification, and high renewable penetration in existing 

communities for the purpose of enhancing energy performance while attaining carbon 

neutrality [82–86].  

 The above two phases are generally static and concern the long-term carbon 

emission performance of the buildings. During the building operation phase, carbon 

responsive building control is more flexible, and its deployment requires less capital 

investment. Adopting carbon emission reductions as one of the objectives or control 

inputs in optimization-based building control has received increased attention in the 

last decade [7–12]. Jin et al. [87] proposed a user-centric home energy management 

system that is based on a multi-objective MPC framework. Carbon emission reduction 
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serves as one of the objectives along with the minimization of energy cost, thermal 

discomfort, and user inconvenience. Leerbeck et al. [88] developed an optimal heat 

pump controller for building space heating. Using weather and CO2 emission 

forecasts as inputs to an MPC, approximately 16% of CO2 emissions were saved 

compared to typical thermostatic control.  

 Despite the rapid development of optimization-based control methods, rule-

based control is still the dominant control method in building automation systems 

due to ease of implementation. For example, Clauss et al. [89] investigated predictive 

rule-based control for reducing the annual CO2 equivalent greenhouse gas emissions 

(CO2eq.) for a Norwegian single-family detached house. The controlled object was the 

building heat pump system. Historical weather and CO2eq. emission data from 2015 

were used for simulations. The results showed that the carbon responsive control 

cannot reduce the yearly CO2eq. emission due to the limited daily fluctuations in the 

average CO2eq. intensity of the Norwegian electricity generation mix. 

 Carbon accounting methods play an important role in carbon responsive 

building control. Although electricity net-metering has been broadly taken into 

account in utility bill calculations, carbon accounting methods have seldom been 

discussed in the literature. The emissions reduction effect of clean electricity back 

feeding to the grid has generally been neglected in the design and evaluation of 

carbon responsive controllers. Additionally, historical CO2 emission data are typically 

adopted in existing studies. With the increasing penetration of renewable energy in 
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the power grid, it is worth exploring evolving emission forecasts and their impact on 

control strategies. 

2.4 Community Energy Resilience 

 In this section, the concept of resilience is first explored. Then, we conducted a 

comprehensive review of 30 energy resilience models. We summarized the modeling 

scenarios and the problems they tackle, as well as their typical assumptions. Based 

on the literature review, typical approaches to study energy infrastructure resilience 

are introduced. This review highlights the features and trends of existing models 

concerning their ability to address the multi-dimensional aspects of energy resilience.  

2.4.1 Concept of Resilience 

 Resilience, as an emerging concept in the area of engineering, was first 

introduced in 1973 by Holling into the fields of ecology and evolution [90]. This 

concept was first used to describe the ability of an ecosystem to continue functioning 

after changes. Today, resilience has been broadly applied across many fields, 

including natural disasters and risk management [91], civil infrastructure 

studies [92], system engineering [93], energy systems [94, 95], and more.  

 Though consensus on the definition of resilience is lacking [96], the essence of 

resilience definitions is generally the same; that is, it is an overarching concept that 

encompasses the system performance before and after disastrous events. Francis and 

Bekera [97] reviewed various approaches to defining and assessing resilience and 

identified three resilience capacities: adaptive capacity, absorptive capacity, and 
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recoverability. Resilience therefore can be defined as “the ability of an entity to 

anticipate, resist, absorb, respond to, adapt to and recover from a disturbance” [98].  

 Resilience is a multi-dimensional concept. Its qualitative and quantitative 

studies often involve interdisciplinary efforts. Meerow et al. [99] reviewed the 

literature on urban resilience and concluded that “applying resilience in different 

contexts requires answering: Resilience for whom and to what? When? Where? And 

Why?” They, thus, pointed out the key considerations in the application of resilience: 

the stakeholder, the stressor, the temporal and spatial scale, and the motivation. 

Razafindrabe et al. [100] developed a Climate Disaster Resilience Index to measure 

the existing level of climate disaster resilience of targeted areas. This index utilizes 

25 variables in five resilience-based dimensions: natural, physical, social, economic, 

and institutional. Carlson et al. and McManus et al. [98, 101] provided frameworks 

for system-level and region-level resilience overview to address personal, business, 

governmental, and infrastructure aspects of resilience. Roege et al. [102] formulated 

a scoring matrix to evaluate the system’s capability to plan, absorb, recover and adapt 

from the perspective of physical, information, cognitive and social.  

2.4.2 Energy Resilience Models 

 Energy infrastructures include electric power, natural gas, and fuel networks. 

Among all critical infrastructure (CI) sectors, energy infrastructure is identified as 

the most crucial one due to the enabling functions they provide across all other CI 

sectors (PPD-21). For example, water supply and sewer systems rely on electric power 

systems to operate their pump stations. Information and telecommunication systems 
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rely on power networks to carry out information transmission tasks. Transportation 

systems rely on fuel networks to obtain power for different kinds of vehicles. The 

dependence of other critical infrastructures on the energy network can lead to its 

vulnerability: Disruptions in the energy system may trickle down to other dependent 

infrastructure systems and possibly even back to itself, where the failure 

originated [103, 104]. This cascading and escalating characteristic of failure adds to 

the energy network’s vulnerability. Energy infrastructures are also vulnerable to 

climate change. For example, the rising sea level and increasing frequency of major 

storms lead to severe floods in coastal areas, where a lot of energy infrastructures are 

located [105], such as power plants, natural gas facilities, and oil and gas refineries. 

Moreover, high-impact low-probability events, such as hurricanes and terrorist 

attacks, further threaten the operation of energy infrastructures.  

 Based on the aforementioned importance and vulnerability, the study of energy 

infrastructure resilience has become an urgent and significant research topic. 

Different researchers approach this problem in various ways. Many simulate energy 

infrastructure resilience as an optimal operation problem [106–110]. Some adopt 

agent-based modeling (ABM) techniques to reveal the complex interactions among 

energy system components [111–114]. Others improve traditional topological metrics 

of the power grid by embodying its physical behavior [115]. In response to the 

emergence of “big data” resources, some research applies large-scale data analysis in 

energy resilience studies, especially for power grid studies [116, 117].  



29 
 
 To understand what problems are being tackled and how researchers are 

approaching these problems, this section first summarizes the research problems of 

the selected models and their corresponding key assumptions. Then, in the following 

section, the modeling approaches adopted by these models are introduced. They are 

representative of typical methods for conducting energy infrastructure resilience 

studies. 

 Given that resilience describes a system’s ability to sustain disruptions and to 

recover quickly from them, energy infrastructure resilience models concentrate on 

solving two major problems: 1) resource allocation and hardening planning in the 

preparation stage, 2) power outage management and service restoration in the 

immediate aftermath and recovery stage. Due to limited budgets, identifying the 

most vulnerable components in the system and hardening them with minimized 

economic costs is one main topic the research community cares about. The second 

topic aims to mitigate the impacts of the disasters and to recover services quickly. 

Typical implementations include models that simulate the restoration process or that 

abstract the restoration process as an optimal control problem [106]. Common 

restoration measures include repair crew dispatch, distributed generation (DG), and 

switch device remote control to name a few. 

 Since the energy infrastructure sector is closely related to other CI sectors, an 

emerging number of studies focus on the study of interdependencies within the 

energy infrastructure sector and across CI sectors. Within the energy infrastructure 

sector, interactions between the natural gas system and the power grid system are 
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studied [118]. Across different sectors, researchers try to involve energy, water, 

transportation, and communication systems in the same modeling and simulation 

framework to find more holistic solutions. 

 For different application focuses, the models are usually developed under 

various assumptions of the real world. In models of distributed generation or 

microgrid technologies, it is typically assumed that the remotely controlled automatic 

switch devices are available in the distribution network so that lines can be 

opened/closed, and loads can be connected/disconnected to form multiple microgrids. 

The switches are assumed to have local communication capabilities to exchange 

information with their neighboring switches [119]. In most resilience models that 

simulate defender and attacker activities, the decision-maker has a budget to harden 

a maximum of power lines and to place a maximum of DG units. The system operators 

are aware of the status of all the components after the occurrence of the outage [120]. 

The worst-case attack scenario occurs, and the hardened lines and nodes are assumed 

to survive the disaster. For models that study weather impacts, it is assumed the 

system is exposed to the same weather conditions at any given time by modeling the 

weather event as a standstill event. This reduces the complexity of the modeling 

procedure because no regional weather aspects are considered. The restoration time 

during high and extreme wind speed events is equal to the restoration time during 

normal wind speeds [121, 122]. For models studying interdependencies between 

power and gas systems, it is assumed that electricity generation consumes gas and 
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gas compressors consume electricity [120]. Other specific assumptions depend on the 

modeling objectives and the scale of the model. 

 Table 2.2 summarizes basic information for the selected models including name, 

developer/author, scenario, and purpose/problem tackled. “Scenario” gives the 

specific modeling object of a model. “Purpose/problem tackled” describes the targeted 

problem the model was developed to solve. Among all the models, 15% are for power 

outage management and service restoration, 21% are for vulnerability and reliability 

analysis, 18% are for resource allocation and hardening planning and 12% are for 

infrastructure interdependency analysis. The rest address problems such as 

electricity market studies, weather event impact studies, general presentation, and 

analysis. 

Table 2.2 Basic information of the selected energy resilience models. 
 

Name Developer/Author Scenario Purpose/Problem Tackled 

1 Two-stage outage 

management model 

(2018) 

Arif et al. Power 

distribution 

systems 

Improve the computational efficiency 

in solving outage management 

problems for large distribution 

systems, co-optimize the repair, 

reconfiguration, and DG dispatch to 

maximize the picked-up loads and 

minimize the repair time. 

2 Microgrids formation 

scheme (2016) 

Chen et al. Power 

distribution 

systems 

Create a microgrid operation scheme to 

restore critical loads from the power 

outage by controlling the ON/OFF 

status of the remotely controlled switch 

devices and DG.  

3 Sequential service 

restoration 

framework (2018)  

Chen et al. Power 

distribution 

systems 

Generate a sequential service 

restoration framework for distribution 

systems and microgrids in large-scale 

power outages. A sequence of control 

actions includes coordinating switches, 

distributed generators, and switchable 

loads to form multiple isolated 

microgrids.  

4 Multiple energy 

resilient operation 

model (2015)  

Manshadi and 

Khodayar  

Electricity and 

natural gas 

systems 

Identify the vulnerable components 

and ensure the resilient operation of 

coordinated electricity and natural gas 

infrastructures considering multiple 

disruptions within the microgrid by 
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Name Developer/Author Scenario Purpose/Problem Tackled 

improving the resilience of generation 

and demand scheduling.  

5 Two-stage robust 

optimization model 

(2016) 

Yuan et al. Power 

distribution 

systems 

Resilient distribution network 

planning to coordinate the hardening 

distributed generation resource 

allocation with the objective of 

minimizing the system damage.  

6 A risk optimization 

model (2017) 

Nezamoddini et al. Power 

transmission 

networks 

Determine the optimal investment 

decision for the resilient design of 

transmission systems against physical 

attacks. The investment costs are 

minimized such that the load 

curtailment does not exceed a certain 

threshold value. 

7 The planner-

attacker-defender 

model (2017) 

Fang et al. Power 

transmission 

networks 

Study the combination of capacity 

expansion and switch installation in 

electric systems that ensures optimum 

performance under nominal operations 

and attacks. The planner-attacker-

defender model is adopted to develop 

decisions that minimize investment 

and operating costs, and functionality 

loss after attacks. 

8 Attack structural 

vulnerability model 

(2010) 

Chen et al. Power 

transmission 

networks 

Propose a hybrid approach for 

structural vulnerability analysis of 

power transmission networks, in which 

a DC power flow model with hidden 

failures is embedded into the 

traditional error and attack tolerance 

methodology. 

9 CitInES (2013) Page et al. Energy 

generation, 

storage, 

transport, 

distribution 

systems, and 

demand 

Present a multi-energy modeling 

environment to simulate and optimize 

urban energy strategies. Energy 

demand is modeled to consider the 

costs and impacts of demand-side 

measures. Optimization techniques are 

involved to provide answers to urban 

energy infrastructure planning issues.  

10 An improved model 

for structural 

vulnerability analysis 

(2009) 

Chen et al. Electric power 

systems 

Structural vulnerability analysis of 

power networks. Depicting a typical 

power network as a weighted graph 

based on electrical topology by 

introducing its bus admittance matrix. 

11 Graph Model (2006) Holmgren Electric power 

systems 

Model electric power delivery networks 

as graphs, calculate values of 

topological characteristics of the 

networks, and evaluate different 

strategies to decrease the vulnerability 

of the system. 

12 Tri-level defender-

attacker-defender 

model (2018) 

Lin and Bie Power 

distribution 

systems 

Find the best hardening plan under 

malicious attacks given the available 

defending resources and operational 

restoration measures for a distribution 

system. Resilient operational measures 

include optimal DG islanding 

formation and topology 

reconfiguration. 
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Name Developer/Author Scenario Purpose/Problem Tackled 

13 A "proof-of-concept" 

model (2011) 

TU Delft The 380kV 

power network 

in the 

Netherlands 

Explore the adaptation of energy 

infrastructures to climate change. 

14 Electricity Market 

Complex Adaptive 

System (2006) 

Argonne National 

Laboratory (ANL) 

Electric power 

and financial 

networks 

Modeling and simulation of operations 

in restructured electricity markets. 

15 Natural Gas 

Infrastructure 

Toolset (2006) 

ANL, 

Infrastructure 

Assurance Center 

Natural gas 

networks 

Provide an analyst with a quick 

method to access, review, and display 

components of the natural gas 

network; perform varying levels of 

component and systems analysis, and 

display analysis results.  

16 Critical 

Infrastructure 

Modeling System 

(2006) 

Idaho National 

Laboratory 

Electric power 

system, 

human 

activity, and 

supervisory 

control and 

data 

acquisition 

(SCADA) 

Provide decision-makers with a highly 

adaptable and easily constructed 

‘wargaming’ tool to assess 

infrastructure vulnerabilities including 

policy and response plans.  

17 Critical 

Infrastructure 

Simulation by 

Interdependent 

Agents (2006) 

University Roma 

Tre 

Electric power 

system and 

SCADA 

Analyze short-term effects of failures 

in terms of fault propagation and 

performance degradation.  

18 Integrated energy 

system reliability 

evaluation model 

(2016) 

Li et al. Electricity 

distribution 

network, 

distributed 

renewable 

energy system, 

gas system, 

cooling, and 

heating 

systems 

Present a new reliability evaluation 

approach, in which Smart Agent 

Communication is based system 

reconfiguration is integrated into the 

reliability evaluation process. 

19 SynCity (2010) Imperial College 

London 

Urban energy 

systems 

Provide an integrated, spatially, and 

temporally diverse representation of 

urban energy use within a generalized 

framework across all the design steps 

and in a variety of problem 

environments. 

20 Resilience evaluation 

model (2017) 

Panteli and 

Pierluigi 

Electric power 

systems 

Provide a conceptual framework for 

gaining insight into the resilience of 

power systems with a focus on the 

impact of severe weather events. The 

effect of weather is quantified with a 

stochastic approach. The resilience of 

the critical power infrastructure is 

modeled and assessed within a context 

of system-of-systems that also include 

human response as a key dimension. 

21 Multi-microgrid 

reliability 

assessment 

framework (2017) 

Farzin et al. Multi-

microgrid 

distribution 

system 

Develop a general framework for 

reliability assessment of multi-

microgrid (MMG) distribution systems. 

Investigate reliability impacts of 
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Name Developer/Author Scenario Purpose/Problem Tackled 

coordinated outage management 

strategies in an MMG distribution 

network. 

22 Critical 

Infrastructures 

Interdependencies 

Integrator (2002) 

ANL Natural gas 

pipelines 

Infrastructure restoration time and/or 

cost estimation considering an 

interdependency analysis. 

23 Restore (2011) ANL Natural gas 

pipelines 

Estimate the time and cost of 

Infrastructure restoration.  

24 A framework for 

reliability/availability 

assessment (2017) 

Cadini et al. Electric power 

transmission 

networks 

Combine an extreme weather 

stochastic model with a realistic 

cascading failure simulator based on a 

direct current power flow 

approximation and a proportional re-

dispatch strategy. The dynamics of the 

network are completed by the 

introduction of a restoration model 

accounting for the operating conditions 

that a repair crew may encounter 

during an extreme weather event. 

25 Interdependent 

Energy 

Infrastructure 

Simulation System 

(2006) 

Los Alamos 

National 

Laboratory 

Electric power 

and natural 

gas 

infrastructures 

Assist individuals in analyzing and 

understanding interdependent energy 

infrastructures. 

26 Framework for 

Electricity 

Production 

Vulnerability 

Assessment (2009) 

Shih et al. Coal 

distribution 

network 

Use data warehousing and 

visualization techniques to explore the 

interdependencies between coal mines, 

rail transportation, and electric power 

plants.  

27 Critical 

Infrastructure 

Protection Modeling 

and Analysis 

(CIPMA) Program 

(2006) 

Australian 

Government - 

Attorney General's 

Department 

CI networks 

and high 

priority 

precincts  

Support business and government 

decision-making for CI protection, 

counterterrorism, and emergency 

management, especially with regard to 

prevention, preparedness, and 

planning and recovery. 

28 Petroleum Fuels 

Network Analysis 

Model (2006) 

ANL, 

Infrastructure 

Assurance Center 

Crude oil and 

petroleum 

product 

transport 

pipelines 

Perform hydraulic calculations of 

pipeline transport of crude oil and 

petroleum products. Introduction of 

pipeline component dependencies into 

critical infrastructure analyses. 

29 Critical energy 

infrastructures 

(2014) 

Erdener et al. Electricity, 

natural gas, 

and oil 

systems 

Analysis of the impacts of 

interdependencies between electricity 

and natural gas systems. Propose an 

integrated simulation model that 

reflects the dynamics of the systems in 

case of disruptions and takes the 

cascading effects of these disruptions 

into account. 

30 Fast Analysis 

Infrastructure Tool 

(2006) 

Sandia National 

Laboratory (SNL) 

Electric power, 

natural gas, 

and waterway 

systems 

Determine the significance and 

interdependencies associated with 

elements of the nation’s CI. 
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2.4.3 Modeling Approaches 

 In this section, we introduce typical modeling approaches for energy 

infrastructure resilience problems. The models collected in this work adopt a variety 

of modeling approaches including optimal operation modeling, topological network 

modeling, ABM, probabilistic modeling, system dynamics modeling, empirical 

modeling, and more.  

 Table 2.3 lists the modeling approaches and the corresponding models that were 

collected in this work. The most common four approaches will be introduced in detail 

in the following subsections. The rest of the approaches are introduced briefly in 

“other approaches”. It should be noted that since the review object of this work is 

numerical models that could conduct simulations and predict system performance in 

the real world, no surveys or qualitative studies were included. In the remaining part 

of this section, each modeling approach is introduced with exemplary models to 

address their characteristics. 

Table 2.3 Modeling approaches for energy resilience problems. 
 

Modeling Approach Model Name 

1 

Optimal Operation Modeling 

Two-stage outage management model (Arif et al. 2018) 

2 Microgrids formation scheme (Chen et al. 2016) 

3 Sequential service restoration framework (Chen et al. 2018) 

4 Multiple energy resilient operation model (Manshadi and 

Khodayar 2015) 

5 Two-stage robust optimization model (Yuan et al. 2016) 

6 A risk optimization model (Nezamoddini et al. 2017) 

7 The planner-attacker-defender model (Fang and Sansavini 

2017) 

8 

Topological Network Modeling 

Attack structural vulnerability model (Chen et al. 2010) 

9 CitInES (Page et al. 2013) 

10 An improved model for structural vulnerability analysis 

(Chen et al. 2009) 

11 Graph Model (Holmgren 2006) 
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Modeling Approach Model Name 

12 Tri-level defender-attacker-defender model (Lin and Bie 

2018) 

13 

Agent-Based Modeling 

A "proof-of-concept" model (Bollinger 2011) 

14 Electricity Market Complex Adaptive System (Pederson et 

al. 2006) 

15 Natural Gas Infrastructure Toolset (Pederson et al. 2006) 

16 Critical Infrastructure Modeling System (Dudenhoeffer et 

al. 2006) 

17 Critical Infrastructure Simulation by Interdependent 

Agents (Pederson et al. 2006) 

18 Integrated energy system reliability evaluation model (Li et 

al. 2016) 

19 SynCity (Keirstead et al. 2010) 

20 

Probabilistic Modeling 

Resilience evaluation model (Panteli and Mancarella 2017) 

21 Multi-microgrid reliability assessment framework (Farzin 

et al. 2017) 

22 Critical Infrastructures Interdependencies Integrator 

(Gillette et al. 2002) 

23 Restore (ANL 2011) 

24 A framework for reliability/availability assessment (Cadini 

et al. 2017) 

25 

Other 

Approaches 

 

Actor-Based Modeling 
Interdependent Energy Infrastructure Simulation System 

(IEISS) (Toole and McCown 2008) 

26 
Empirical Modeling 

Framework for Electricity Production Vulnerability 

Assessment (Shih et al. 2009) 

27 System Dynamics 

Modeling 

CIPMA Program (Pederson et al. 2006) 

28 
Physical Modeling 

Petroleum Fuels Network Analysis Model (Pederson et al. 

2006) 

29 Integrated Simulation 

Platform 

Critical energy infrastructures (Erdener et al. 2014) 

30 Integrated Simulation 

Platform 

Fast Analysis Infrastructure Tool (Pederson et al. 2006) 

 

 (1) Optimal Operation Modeling 

 Optimal operation modeling is one of the most widely used methods in the 

research area of energy infrastructure resilience. In this method, when the system is 

interrupted, achieving resilience can be interpreted as an optimization problem to 

restore the system within a short time while minimizing the load shedding ratio.  

 Arif et al. [106] solved the outage management problem by co-optimizing the 

repair, reconfiguration, and DG dispatch to maximize the picked-up loads and 

minimize the repair time considering reconfiguration and repair crew scheduling. 
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Chen and Ding [108, 119] proposed a microgrid formation mechanism to restore 

critical loads after major grid faults caused by natural disasters. In this scheme, a 

mixed-integer linear program was formulated to maximize the total prioritized loads 

restored while satisfying the self-adequacy and operational constraints of each 

microgrid. Similarly, Chen et al. [123] formulated a mixed-integer linear program 

model for the sequential service restoration problem. This model can generate the 

optimal restoration sequences to coordinate dispatchable DGs and switch gears to 

energize the system on a step-by-step basis. Manshadi and Khpdayar [110] proposed 

a bi-level optimization methodology that took into consideration the interdependency 

between natural gas and electricity infrastructures. Through this model, the 

identification of most vulnerable components in the system, as well as the resilient 

generation and demand scheduling could be achieved. Yuan et al. [107] proposed a 

model for resilient distribution system planning with hardening and DG based on 

two-stage optimization. In this model, a multi-stage and multi-zone-based 

uncertainty set was used to capture the uncertainty of natural disasters. 

 To summarize, existing optimal operation models share common objective 

functions such as maximizing picked-up loads, minimizing repair time, and economic 

investments. For restoration strategy development purposes, frequently considered 

measures include topology reconfiguration, DG dispatch, microgrid formulation, 

repair crew dispatch, and switch device control. The problem is usually represented 

by mathematical models with equilibrium equations and certain constraints, 

including self-adequacy and operation constraints. An emerging number of studies 
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focus on solving problems of demand scheduling and load flexibility in response to the 

adoption of building-to-grid and vehicle-to-grid technologies. 

 However, this type of model usually focuses on one single problem, either 

protection resource allocation or restoration, which are two separate stages of energy 

infrastructure resilience. On the other hand, the occurrence of the disaster is usually 

not simulated. If all of these characteristics are coupled together, the optimization 

problem might become very complicated, and the computational time problem will 

arise. Nezamoddini et al. [124] compared the computational time of different scales 

of test systems. The computational time increases from 3 seconds to 4.2 hours when 

the system upgrades from the IEEE 6-bus to the IEEE 57-bus test system. 

 Power networks have been studied as a typical example of real-world complex 

networks [125]. They can be modeled by extracting their topology. In this type of 

model, the power networks are represented by a set of vertices connected by a set of 

edges. The vertices represent buses, and the edges represent transmission lines. This 

type of model is typically applied in the structural vulnerability analysis of power 

networks. 

 (2) Topological Network Modeling 

 Topological network models are easy to analyze due to their high level of 

abstraction and simplification. Buldyrev et al. [104] used the topology of the 

interdependent power system and communication system to demonstrate the 

cascading fault evolving between the two systems. Page et al. [126] proposed a 

simplified energy network modeling approach. Based on the topology of the original 
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network, they used clusters that were aggregations of network nodes to build a less 

detailed model and calibrated it with detailed simulations. In this way, the number 

of variables was significantly reduced.  

 However, purely topological approaches fail to capture the physical properties 

and operational constraints of power systems and, therefore, can sometimes provide 

too optimistic of an analysis [115]. Hines et al. [127] compared purely topological 

network models and higher fidelity models in the vulnerability modeling of electricity 

infrastructures. They used three measures of vulnerability: characteristic path 

lengths, connectivity loss, and blackout sizes. They concluded that evaluating 

vulnerability in power networks using purely topological network models can be 

misleading. Chen et al. [128] proposed a hybrid model for structural vulnerability 

analysis of power networks. Their approach embodied the traditional topological 

methodology and took into account important characteristics of power transmission 

networks such as the power flow distribution. Consequently, their hybrid model 

better approximated real power grids compared with a traditional topological 

network model. 

 Topology modification, or known as reconfiguration, plays an important role in 

the study of electric power system resilience, as a section can be reconnected to 

another power supply when an outage happens. Lin and Bie [129] proposed a tri-level 

defender-attacker-defender model to harden the distribution system under malicious 

attacks. In this model, resilient operational measures such as topology 
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reconfiguration and DG were simulated to study their impact on distribution system 

resilience.  

 (3) Agent-based Modeling 

 Agent-based models consist of dynamically interacting, rule-based agents [130]. 

A general definition of an agent is: “an entity with a location, capabilities, and 

memory. The entity location defines where it is in a physical space… What the entity 

can perform is defined by its capabilities… the experience history (for example, overuse 

or aging) and data defining the entity state represent the entity’s memory” [131]. An 

agent-based model can exhibit complex behavior patterns [132] and provide valuable 

information about the dynamics of the simulated real-world system [131].  

 The application of ABM in this domain mainly focuses on analyzing interactions 

between interdependent systems. Casalicchio et al. [133] used ABM to model a 

system composed of a power grid and a communication network with agents 

representing the entire infrastructure, its subsystems, and the humans involved in 

the scenario. In this model, an agent is described by its attributes, the services it 

provides to other agents, and the services provided by other agents. Li et al. [114] 

modeled the integrated energy system of electricity and natural gas. A two-hierarchy 

smart agent model is built as the basis for the system reliability analysis. The lower 

hierarchy is the component smart agents including the power lines, transformers, 

and electricity loads while the higher hierarchy is the zone agents which form the 

system topology.  
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 Another important application of ABM is to simulate socio-economic activities, 

such as the electricity market and human activities within the energy infrastructure 

framework. Zhou et al. [134] simulated an electricity market with DR from 

commercial buildings. In this model, agents were used to model different market 

participants such as power generation companies, load-serving entities, commercial 

building aggregators, and an independent system operator. SynCity [113] is a tool 

developed by Imperial College London for integrated modeling of urban energy 

systems. This tool adopts agent-based micro-simulations to simulate the daily 

activities of citizens of the city. Each citizen makes stochastic decisions based on the 

pre-defined rules and according to the environment around them. Solanki et al. [135, 

136] used agents to model different operators in restoring the electric system.  

 The ABM technique has proved its advantages in the following aspects: 1) It 

can capture complicated interdependencies by simulating physical or economic flows 

among different infrastructures. 2) It enables the study of large-scale problems by 

avoiding complicated theoretical analysis. 3) It allows behavior analysis of customers 

or decision-makers by making certain rules. However, this modeling technique still 

has limitations; it is difficult to validate and not all types of interdependencies can be 

included in one single model. Most existing agent-based models can only simulate one 

type of interdependency such as the physical or logical interdependency [137]. 

 (4) Probabilistic Modeling 

 In energy infrastructure resilience modeling, the probabilistic algorithm is 

necessarily applied to capture the uncertain characteristics of the system failure. 



42 
 
Many models adopt the sequential Monte Carlo simulation method [121, 122, 138]. A 

Monte Carlo simulation uses repeated sampling to determine the properties of some 

phenomenon or behavior [139]. The essential idea is to use randomness to solve 

problems that might be deterministic in principle. It is useful for gathering 

information about random objects, estimating certain numerical quantities, and 

optimizing complicated objective functions [140]. 

 Monte Carlo simulation in the field of energy infrastructure modeling is often 

employed for the simulation of weather events due to their high stochasticity. Panteli 

and Marcarella [121] developed a time-series simulation model based on the 

sequential Monte Carlo method to assess the impact of weather events on power-

system resilience. With the knowledge of the hurricane occurrence frequency and its 

impact on power system components, Li et al. [141] developed an algorithm to 

evaluate the risks of the power system in face of hurricanes. This method can be 

expanded to systems under other stochastic natural disasters. Similarly, Cadini et al. 

Cadini et al. [122] used a sequential Monte Carlo simulation scheme to simulate 

historical failures caused by both normal and extreme weather events. The 

simulation results were then used to evaluate the reliability of the studied power 

transmission system.  

 Another common application of Monte Carlo simulation in energy 

infrastructure modeling is to simulate the restoration process of disrupted 

infrastructures. For example, the software tool Critical Infrastructures 

Interdependencies Integrator [142] developed by ANL used Monte Carlo simulation 
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to estimate the time and cost required to restore a given infrastructure component, a 

specific infrastructure system, or a set of interdependent infrastructures.  

 It should be noted that Monte Carlo simulation can be integrated into other 

modeling frameworks, such as optimization-based models, to simulate the 

performance of energy systems. For example, Farzin et al. [138] evaluated the role of 

outage management with Monte Carlo simulation while considering the optimal 

power flow problem of the electric distribution system.  

 (5) Other Approaches 

 Actor-based modeling: Similar to an agent-based model, an actor-based model 

is composed of actors that can make local decisions, create more actors, send 

messages, and determine how to respond to messages received. The Interdependent 

Energy Infrastructure Simulation System (IEISS) [143] developed by LANL is an 

actor-based infrastructure modeling, simulation, and analysis tool designed to 

understand interdependent energy infrastructures. The actors can realistically 

simulate the dynamic interactions within each of the infrastructures, with a 

specialization in simulating the interdependent electric power and natural gas 

infrastructures. 

 Empirical modeling: Empirical models are built based on historical data or 

expert experience. Shih et al. [144] adopted a data warehousing technique to conduct 

a vulnerability assessment of interdependencies between coal mines, rail 

transportation, and electric power plants. A data warehouse is a system used for 

reporting and data analysis. It has the capability of bringing various datasets 
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together and managing historical data. In this case, the data warehouse allowed an 

interactive analysis of historical and multi-dimensional data of varied granularities. 

 System dynamics modeling: System dynamics is a method for studying the 

behavior and the underlying structure of a complex system over time [145]. It is 

widely used in the analysis of CI interdependencies. For example, the CIPMA 

program [146] in Australia adopts the system dynamics model to examine the 

relationships and dependencies within and between CI systems. It also demonstrates 

how a failure in one sector can greatly affect the operations of other CI sectors. 

 Physical modeling: Petroleum Fuels Network Analysis Model (PFNAM) [112] is 

a physical model developed by ANL to perform hydraulic calculations of pipeline 

transport of crude oil and petroleum products. The main outputs of the model include 

pressure and pipeline capacity estimates along the pipeline. 

 Integrated simulation platform: Some models are implemented in a way that 

several approaches are adopted for component models and then coupled together. 

Erdener et al. [118] proposed an integrated simulation model for electricity and gas 

systems. The electricity and gas systems are first modeled separately and then linked 

by a MATLAB-based interface. The Fast Analysis Infrastructure Tool (FAIT) 

developed by SNL [112] consists of a dependency model and an economic model. The 

dependency model is an object-oriented expert system model of infrastructure 

interdependencies. The economic model utilizes the input-output method for 

estimating the economic consequences of the disruption of an asset. An input-output 

model is a quantitative economic technique that represents the interdependencies 
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between different branches of a national economy or regional economies [147]. This 

economics-based method has been applied to CIs to capture the cascading economic 

effects of a disruption across different sectors [137].  

 To conclude, the models collected in this work involve representative state-of-

the-art energy infrastructure models implemented through various approaches. The 

addressed problems include optimal resource allocation and hardening planning, 

interdependency analysis, outage management and restoration, weather impact 

study, and more. The models intervene across planning, operation, restoration, and 

adaptation phases of energy infrastructures. Based upon the review, the following 

observations are gained: The dominant stakeholder of the models are decision-

makers, including governments and regulators. Most selected models serve energy 

consumers indirectly as little attention is paid to energy consumers during the 

development stage. Most selected models focus on the operation and restoration 

phases of energy infrastructures. Long-term adaptation strategies are not integrated 

into the modeling framework by most models. Existent models tend to only consider 

the immediate effects of system disruptions. The study on the propagated effects of 

the failure among different sectors is typically neglected. Although many selected 

models involve economic impact evaluation, only a few models take into account social 

parameters or consider social impacts of disasters. Concerning other modeling 

features, physics-based models are still the trend in energy infrastructure modeling, 

rather than data-driven techniques. Among others, agent-based models tend to have 
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higher data needs than topological models and optimal operation models. The time 

horizon and time step vary from several hours to several years. 

 Based on the discussions above, future trends in the modeling and simulation 

of energy infrastructures are as follows: 

 Addressing larger temporal and spatial scale: As most existing energy 

infrastructure models focus on immediate effects of disruptions but are limited in 

capturing the dynamic behavior during longer terms, it remains to be explored how 

the models could be scaled over a larger temporal scale. Also, including the complex 

interactions across multiple CI sectors over different spatial scales would make the 

model more realistic. However, the challenge of scalability lies in the computational 

time. Employing more complexity in the model while reducing the computational time 

remains a challenge for future researchers.  

 Integrating more human and social aspects: Though existing models 

generally serve the needs of decision-makers, energy consumers’ behavior and 

potential in helping to achieve energy infrastructure resilience should be considered 

more in the future. The emerging focus on human-in-loop control and demand 

response technologies also implies this trend. Also, since the impact of disasters 

eventually takes place on the human and the society, this could draw more attention 

to integrating social characteristics in the modeling frameworks and then study the 

social impacts of CI disruptions. However, the uncertainty in human behavior and 

the quantification of social factors remain a challenge.  
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 Employing more smart resources and solutions: Smart technologies such 

as energy storage and demand response with flexible loads (e.g., electrical vehicles, 

flexible building loads) are integrated by some models to explore future possibilities 

of energy resilience. In the future, as these technologies develop and become more 

accepted, involving them in energy infrastructure models would become a trend.  

2.5 Summary 

 This chapter provides a thorough literature review of the modeling, 

decarbonization, and resilience of communities. In Section 2.2, the major modeling 

techniques for community energy modeling are reviewed; namely, physics-based 

modeling, reduced-order modeling, and data-driven modeling. The advantage of the 

object-oriented equation-based modeling language Modelica is highlighted through 

the comparison with traditional BEM tools. As a major source of uncertainties in 

BEM, approaches for selected occupant behavior are also reviewed in this section.  

 Section 2.3 first briefly describes building decarbonization measures during the 

design, retrofit, and operation phases. Subsequently, the reduction of building 

operational carbon emissions through control methods is discussed in detail. The 

rule-based carbon responsive control is compared with optimization-based control.  

 Finally, Section 2.4 reviews the concept of resilience, existing resilience models 

for energy infrastructures, and approaches for energy resilience. Based on the review, 

future trends in the resilience modeling of energy infrastructures include addressing 

larger temporal and spatial scales; integrating more human and social aspects; 

employing more smart and distributed energy resources.  
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Chapter 3. Community Emulator with Stochastic Occupant Behavior Predictions 

 

 

 

 

 

Section 3.3 is based on:  

Jing Wang, Wangda Zuo, Sen Huang, Draguna Vrabie. “Data-driven prediction of 

occupant presence and lighting power: A case study for small commercial buildings.” 

In Proceedings of the American Modelica Conference 2020. March 23-25, 2020, 

Boulder, CO, USA. 
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3.1 Introduction 

 This chapter first introduces the hierarchical modeling structure for 

communities with Modelica. An example community emulator based on a real net-

zero energy community is used to facilitate the discussion. Further, as part of the 

community emulator, the stochastic modeling of building occupancy status based on 

building lighting power data is developed. A case study on small commercial buildings 

shows that the proposed models can be used for sub-hourly power demand predictions 

within acceptable deviations of 7%. 

3.2 Hierarchical Modeling Structure 

3.2.1 System Information 

 The hierarchical community emulator in Modelica is built based on a real 

community, Historic Green Village (HGV), located in Anna Maria Island, FL, 

USA [148]. The main power source of this community consists of two parts: the power 

grid and the roof-top PV panels (Figure 3.1 (a)). Thanks to the rich solar resources on 

the island, the community reached net-zero energy in 2014. Energy submeters and 

ecobee thermostats have been installed to record the energy consumption and 

generation, indoor air temperature setpoints, and indoor air temperature 

measurements. A weather station has been installed to measure the outdoor weather 

conditions (Figure 3.1 (b)). A solar monitoring system monitors the local solar 

irradiance. 
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(a) 

 
(b) 

Figure 3.1 Photos of the roof-top PV panels (a) and the weather station (b). 

 There are five mixed-use buildings in HGV as listed in Table 3.1. Building types 

range from residential apartments to small commercial buildings such as an office, a 

bakery, and gift shops. The HVAC systems of all buildings are ground source heat 

pumps (HPs). In summer, cold water is supplied to the HPs serving the building 

thermal zones, absorbs the heat from the return air, and then is circulated back to a 

main community heat exchanger where the condensation happens. The heat is then 

dissipated to the soil through pipes buried underground and in winter vice versa. In 

total, there are nine thermal zones in the five mixed-use buildings. The HP system 

capacities are shown in Table 3.1. Different types of domestic hot water (DHW) 

systems; namely, gas heaters, electric heaters, and solar thermal water heaters, are 

installed in each building based on their hot water needs.  

Table 3.1 Information of buildings, HP systems, and DHW systems in HGV. 

Building Type 
Floor area 

(m
2
) 

HP system capacity 

(kW) 
DHW system 

1 (F) Bakery 410 19.5 Gas heater 

2 (G) Office 95 8.22 Gas heater 
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Building Type 
Floor area 

(m
2
) 

HP system capacity 

(kW) 
DHW system 

Apartment 1 95 8.22 
Solar thermal water 

heater 

3 (A) 

Gift shop 1 
88 8.22 

Electric heater 
56 11.07 

Apartment 2 94 11.07 
Solar thermal water 

heater 

4 (D) Gift shop 2 95 15.07 Electric heater 

5 (C) 

General store 

kitchen 
120 15.07 

Solar thermal water 

heater 
Ice cream shop 40 15.07 

 

3.2.2 Model Structure 

 To model the energy system (e.g., HVAC and DHW) of the community, Figure 

3.2 shows a design diagram of the community emulator at the top level. The seven 

interconnected modules represent the power grid, PV panels, HP system, DHW 

system, building loads, weather data, and schedules block, respectively. The 

interactions between each of the modules are indicated by different line types and 

colors in the diagram. For instance, the grid and the PV system supply power to the 

HP system, the DHW system, and the building loads. The buildings and the HP 

systems are connected through the air loop and a temperature sensor measures the 

indoor air temperature and sends it back to the HP controllers. The HP system and 

DHW system are connected through the water loop, where waste heat is recovered 

from the HP loop to preheat the hot water. The buildings, PV, and DHW blocks obtain 

the outdoor dry-bulb temperature and solar direct and diffuse irradiance information 

from the weather block. Lastly, the schedules block sends out the schedule 

information to the buildings, HPs, and DHW system. 
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Figure 3.2 Block diagram of the community energy system at the top level. 

 To account for the dynamics and complexity of the whole community energy 

system, we chose to use the Modelica language. It is an equation-based object-

oriented modeling language that has the advantage of hierarchical modeling 

structure, object-oriented, and acausal modeling [93, 149]. The main library used for 

the emulator development is the Modelica Buildings library developed by Laurence 

Berkley National Laboratory [150]. A Net-Zero Energy Community (NZEC) library 

was developed based on this work and has been publicly released [15]. Figure 3.3 

shows the top-level system Modelica diagram, which has a similar structure to the 

designed structure in Figure 3.2. In the remainder of this section, the details of each 

module will be introduced, including the diagram, key assumptions, and controls. 
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Figure 3.3 Modelica diagram of the community emulator at the top level. 

3.2.3 Model Implementation 

 The power grid in this emulator is modeled as a fixed-voltage power source that 

generates power at a constant voltage of 120 V and a constant frequency of 60 Hz. 

This assumption is based on that (1) we are not focusing on the system dynamics of 

the power grid in the scope of this dissertation; (2) the voltage and frequency of the 

grid power supply often fluctuate within a very small range, which can be neglected 

in this work. Figure 3.4 shows the diagram of the PV system in HGV. PV panels are 

installed on the rooftops of all five buildings as well as the community warehouse and 

the two carports. As indicated by the diagram, the power generation of all PV panels 

Grid 

PV 

Weather 

Schedules 

HPs 

DHW 

Buildings 
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is connected through a main PV breaker. The PV power and the grid power are shared 

by the five buildings together with some campus loads (e.g., irrigation pump, electric 

vehicle charger).  

 
Figure 3.4 One-line diagram of the PV system in HGV. 

 Figure 3.5 shows the Modelica diagram of the PV system model. The weather 

bus inputs the direct and diffuse irradiance information based on the measured data, 

which is then fed into the PV panel models that calculate the power generation. The 

PV panel areas and tilted angles are based on the system design data. Like the grid 

model, the PV module generates power flow at a constant voltage of 120 V and a 

constant frequency of 60 Hz. This system model has been validated against real PV 

generation data of the community [16, 151].  
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Figure 3.5 Modelica diagram of the PV system model. 

 The schedules block predicts the hot water usage profile, occupancy schedule, 

and thermostat setpoint schedule and then outputs the information to the DHW 

system, buildings, and HP system. The hot water usage is assumed to be constant for 

now but can be correlated with building occupancy and occupant hot water usage 

behavior later. Two types of occupancy schedule models are implemented in the 

emulator. The first type is a fixed schedule model that reads an external prescribed 

schedule file. The other is an occupancy prediction model that can stochastically 

predict occupant presence based on the time of day. Details of the presence models 

can be found in Section 3.3.  

Weather 

Bus 
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 We implemented occupancy-based thermostat control in the emulator. As 

shown in Figure 3.6, the generated occupancy schedule (prescribed or stochastic) is 

input into the thermostat controller (i.e., T-stat controller). It then switches between 

two output values: the indoor air setpoint is 24℃ when occupied, and 28℃ while 

unoccupied. This setpoint is then sent to the local heat pump speed proportional 

integral derivative (PID) controller. The PID controller calculates the HP speed by 

comparing the measured room air temperature with its setpoint and then sends the 

command to the variable frequency driver of the HP. 

 
Figure 3.6 Diagram of occupancy-based thermostat control. 

 The heat pump system Modelica diagram is shown in the figure below. Nine 

single heat pump models are connected in parallel. Each single heat pump has a 

corresponding controller, a performance data record, as well as a water circulating 

pump. The room temperature setpoints, outdoor dry-bulb temperature, and internal 

heat gain are obtained through the connectors to other modules.  
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Figure 3.7 Modelica diagram of the heat pump system. 

 Inside each single heat pump model, there are two major components: a variable 

speed direct expansion (DX) coil model and a resistance-capacitance (RC) room model 

(Figure 3.8). The variable speed DX coil model mimics the cooling process of the heat 

pump. Its speed is controlled by the PID controller implemented at the upper-level 

system. The RC room model simulates the thermal dynamics of the thermal zone with 

heat gain from the envelope, occupants, and internal equipment. A constant speed 

fan supplies cold supply air into the zone. 
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Figure 3.8 Modelica diagram of the single heat pump with thermal zone model. 

 As shown in Table 3.1, three types of DHW systems are installed in the 

buildings of HGV: namely, gas heaters, electric heaters, and solar thermal hot water 

systems. Like the HP system, the DHW system is implemented in a hierarchical way 

(Figure 3.9). The weather bus inputs the solar irradiance information for the solar 

thermal units. The schedule bus inputs the hot water usage schedules generated 

inside the schedule module. The terminal connects all the electricity-consuming 

components, and the fluid ports supply and return hot water. As gas usage is not 

modeled in the community emulator, we used text boxes to represent them. 
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Figure 3.9 Modelica diagram of the HGV DHW system. 

 Take the solar thermal hot water system with two tanks in Building C (General 

Store) as an example (Figure 3.10). The city water is first preheated to around 55℃ 

with solar heat and then enters a 120-gallon tank. Then, the water flows to another 

30-gallon tank in the kitchen. There, waste heat from two HPs is used to heat the 

water. The 30-gallon tank has a backup electric heater to make sure the tank water 

is kept at 50℃. 
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Figure 3.10 Solar thermal hot water system with two tanks in Building C 

(General Store).  

 Three local controllers are implemented in this model. Controller 1 controls the 

ON/OFF status of the circulating pump of the water heated by the solar collector in 

tank 1 (120 gallons). It is a differential temperature controller. When the temperature 

difference between the solar collector outlet and the tank water is greater than 5℃ 

and the tank water is lower than 55℃, the water pump is commanded on. Controller 

2 dictates the valve position of the three-way mixer that mixes the city water with 

tank 1 water. The control logic is to increase the ratio of tank 1 water if the mixed 

water temperature is lower than 50℃. Controller 3 controls the ON/OFF status of the 

electric heater in tank 2 (30 gallons). The control logic is that if the water temperature 

is lower than 50℃, the electric heater is commanded on. 

Controller 1 

Controller 2 

Controller 3 
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 The loads inside each building are modeled in an occupancy-based way. As 

shown in Figure 3.11, each building model receives the occupancy schedule 

information from the schedule bus. The output is the calculated internal heat gain 

dissipated by the occupants and the equipment into the spaces. This heat gain is then 

sent to the thermal zones modeled inside the HP system.  

 
Figure 3.11 Modelica diagram of the building loads at the community level. 

 Inside each building model, the appliances are modeled separately. For 

example, the lighting power is modeled as the occupancy (0 or 1 signal) multiplied by 

the lighting system nominal power. Similar implementation applies to other 

appliances whose operations depend on the occupancy behavior. The internal heat 

gain is calculated with the predicted appliance power demand multiplied by the 
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corresponding heat conversion factor collected in Table A.4. The rest of the appliance 

power that is not related to DR is modeled as data imported from load profile files.  

 
Figure 3.12 Modelica diagram of loads inside each building. 

 The simulated community aggregated power in July and December is shown in 

the figures below. The figures indicate that no load pattern difference exists between 

weekdays and weekends. Also, the community net power follows the “duck curve” for 

many days of the week due to the PV generation around noon.  
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(a) 

 
(b) 

Figure 3.13 Simulated aggregated community loads in July (a) and December (b). 

 

3.3 Stochastic Building Occupancy Modeling 

3.3.1 Introduction 

 The increasing penetration of renewable energy is introducing more variability 

within the power grid [152]. To better balance generation and consumption, the power 

demand side needs to become more flexible and even more controllable. Some studies 

focus on estimating building load flexibility by controlling thermostatically 

controllable loads (TCLs) such as HVAC systems and water heaters in buildings [153, 

154]. Compared to TCLs, the lighting system has the advantage of shorter response 

time which makes it more suitable for faster demand response mechanisms (e.g., 

shimmy).  

 The stochasticity of occupant behavior and its impact on power and energy 

consumption presents a challenge to the accurate real-time estimation of building 

electric loads. Traditional BEM tools use static hourly schedules both for occupant 

presence and building equipment. This leads to discrepancies between the simulated 

power shape and the actual consumed power [155, 156], especially for short-term 
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prediction scenarios such as those needed for fast demand response. Limited data 

availability is a second challenge, as due to privacy reasons, occupant sensor data is 

often unavailable. These challenges must be accounted for in theoretical and model-

based studies on occupant behavior and its related impacts on the power consumption 

and flexibility characterization of the built environment.  

 For commercial buildings, existing occupant presence prediction models have 

been developed mainly on single office rooms. Wang used exponential distribution to 

predict the vacancy intervals of single offices [44]. Small commercial buildings have 

not gained enough attention concerning occupant behavior studies.  

 Lighting prediction models have been investigated over the past 40 years, and 

the research points to a strong correlation between occupants’ presence and the 

lighting status in a zone. The first published study for occupants’ light switching 

behavior in office buildings found that switching mainly takes place when entering 

or vacating a space and the switch-on probability on arrival exhibits a strong 

correlation with minimum daylighting illuminance in the working area [48]. The 

manual switch-off probability of lights is strongly correlated with the expected length 

of absence [53]. Later, this research was expanded by the study of correlations 

between intermediate switch-on/-off behavior and illuminance levels [54].  

 In this section, we propose a methodology for occupant presence and lighting 

power prediction based on minute-level power meter data. We apply the methodology 

for two small commercial building use cases (one bakery and one ice cream shop) and 

validate the prediction performance with real data collected from building sites. Here 
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we present only the prediction of occupant presence and lighting power. In future 

work, we will extend the methodology to other loads driven by occupant behavior. 

 The innovation of this work lies in: (1) The proposed method can be applied to 

occupant presence prediction without occupancy sensor data, and it has been 

validated against real power meter data. (2) The method can be used for sub-hourly 

power demand prediction within acceptable deviations of 7%. (3) The method could 

be applied to other building systems and the Modelica model is extensible and 

scalable. The rest of this section is organized as follows: Section 3.3.2 presents the 

methodology. Section 3.3.3 discusses the results. Section 3.3.4 concludes this section 

with future work and limitations. 

3.3.2 Methodology 

 Our method assumes that the usage of the lighting system and its associated 

power consumption is strongly determined by the presence of the occupants in the 

building spaces. This assumption allows us to extract occupant presence schedules 

from lighting power data. We then use the extracted presence data to train logistic 

regression models that predict people’s arrival and departure times. The trained 

probability models are then implemented in Modelica language to reproduce building 

occupancy patterns. The lighting power is then predicted by multiplying the occupant 

presence value (0 or 1) with the observed nominal lighting power. We then extend the 

model to address realistic scenarios of multi-stage lighting power. To validate our 

model, we compare the simulation results with the lighting power data collected at 

two building sites and evaluate the model performance with respect to several 
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statistical metrics. The following flowchart (Figure 3.14) shows the research workflow 

for the results presented in this section. 

 

Figure 3.14 Research and modeling workflow. 

 Next, we discuss the extraction of occupant presence information from the 

lighting power data. As indicated in the literature review, occupant arrival time and 

departure time has a strong correlation with the lighting power utilization: According 

to Hunt’s work [48], the action of turning on the lights depends on the minimum 

illuminance level on the working plane upon arrival and people tend to leave the 

lights on until the space is fully empty. This is consistent with our observation of the 

lighting power data in the two studied buildings (i.e., ice cream shop and bakery). As 

plotted in Figure 3.15, once the lights are turned on, they will remain on for the whole 

day until all the people leave the space. This means that in this case, the illuminance 
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level is not a strong driver for light utilization. In our preparation work where we 

used regression of lighting power based on indoor illuminance levels, prediction 

accuracy was relatively low. In this work, we will assume that people in the two 

studied buildings are not sensitive to the illuminance levels and will turn on the lights 

once they enter the space and will keep the lights on while they are there. Based on 

this assumption, we extract the occupant presence information from the lighting 

power data and regard it as the ground truth.  

 
(a) 

 
(b) 

Figure 3.15 Lighting power and occupant presence in the ice cream shop (a) and 

bakery (b). 

 To convert the lighting power data into occupant presence information, we first 

cleaned the power meter data by removing obvious outliers such as values that are 

extremely large for lighting systems. Then, we selected the threshold for determining 

occupant presence (e.g., 0 for absent; 1 for present) to avoid oscillations in presence 

status. For instance, the threshold for the ice cream shop is selected as 50 W. Any 

power value above this threshold is converted to 1 and below this threshold into a 0. 

Because the power data has 1-minute resolutions, we will assume that presence or 
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absence of 1 minute can be neglected, and we will filter out two consecutive changes 

of occupant presence to eliminate frequent oscillations in the resulted presence data.  

 
(a) 

 
(b) 

Figure 3.16 Base lighting power and occupant presence (a); extra lighting power 

and lighting status (b) in the bakery. 

 The lighting power shapes shown in Figure 3.15 indicate the different 

characteristics of the two buildings. For the ice cream shop, only one power value 

occurs every day regardless of weekday or weekend. However, for the bakery, two 

distinct levels are observed in the power shape. Hence, for his case, we divide the 

power shape into two parts namely base lighting power and additional lighting power 

(Figure 3.16) and we model them separately. This two-stage lighting behavior is 

probably caused by the zoning of the lighting system. The expression for multi-stage 

lighting power can be described with Equation (3). 

𝑃(𝑡) = 𝑎0(𝑡)𝑃𝑏𝑎𝑠𝑒 + 𝑎1(𝑡)𝑃𝑒𝑥𝑡𝑟,1 + ⋯+ 𝑎𝑛−1(𝑡)𝑃𝑒𝑥𝑡𝑟,𝑛−1 (3) 

𝑃 is lighting power; 𝑎𝑖 is the binary variable that indicates the status of base or extra 

lighting; n is the number of stages. For example, the bakery needs a two-stage 

lighting prediction model, so 𝑛 = 2. The base power and extra power are extracted 
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from the average power value of each stage. Details are introduced in the following 

part. 

 The prediction of occupant presence could be viewed as a classification problem. 

As discussed before, the arrival and departure behavior in the two studied buildings 

follows the same pattern for weekdays and weekends regardless of the indoor 

illuminance level. Hence, the main feature for classifying occupant presence is the 

time of the day. We chose logistic regression as our model for the training because: 

(1) it is a linear classifier and is easy to train; (2) it can reach the same level of 

accuracy as non-linear classifiers; (3) it is easy to implement in Modelica. We divided 

the arrival and departure behavior into two models and trained them separately as 

they have opposite trends along time of the day.  

 To rule out the impact of seasonal change in occupant behavior, the training 

and validation datasets were selected from the summer of 2018. June and July data 

were used for the training and August data was used for the validation. During the 

model training process, the dataset was divided randomly and 10% of the points were 

used to test the accuracy of the logistic regression classifier. The accuracy is defined 

as the rate of classifying the data point into the right group. The confusion matrices 

for the test datasets of all the regression models are shown in Table 3.2. The accuracy 

of the classifier is then calculated with Equation (3.1). 

Table 3.2 Confusion matrices for classification performance. 

Model  
Predicted 

No 

Predicted 

Yes 
Model  

Predicted 

No 

Predicted 

Yes 

Ice Cream 

Shop 

Arrival 

Actual No 3693 44 Bakery 

Arrival 

Actual No 2736 132 

Actual Yes 118 1406 
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Model  
Predicted 

No 

Predicted 

Yes 
Model  

Predicted 

No 

Predicted 

Yes 

Actual Yes 31 624 Bakery 

Departure 

Actual No 1797 260 

Ice Cream 

Shop 

Departure 

Actual No 283 60 
Actual Yes 273 2062 

Bakery 

Extra On 

Actual No 16 0 

Actual Yes 4 1849 Actual Yes 3 0 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁𝑜.  𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
 (3.1) 

 For the bakery, the lighting power is divided into the base power and the extra 

power. The base part reflects occupants’ arrival and departure and is regressed in 

dependence on the time of the day. The frequency (i.e., number of total times) of extra 

lights on of the bakery in 2018 is plotted in bars (Figure 3.17). From the figure, we 

can see that the status of the extra lighting has a correlation with the day of the week. 

Hence, the feature for this part is chosen as the day of the week. Also, from the figure, 

we see that the total frequency of extra lights on in 2018 is only 8.8%.  

 
Figure 3.17 Extra lights on frequency for the day of the week in the bakery (2018). 

 To deal with the imbalance in the training dataset, we adopted the Synthetic 

Minority Over-sampling Technique (SMOTE) [157], which made the minority (extra 

lights on) class equal to the majority class (extra lights off) by creating synthetic 
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samples of the minority class. The logistic regression parameters for each model are 

listed in Table 3.3.  

Table 3.3 Logistic regression parameters. 

  
Accurac

y 
𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔 𝜷𝟕 

Ice 

Cream 

Shop 

Arrival 0.98 -27.198 0.0447 

N/A 
Departure 0.97 34.688 

-

0.0249 

Bakery 

Arrival 0.94 -11.931 0.0254 

N/A 
Departure 0.88 13.777 

-

0.0125 

Extra On 0.84 -0.831 -0.483 0.497 -0.259 0.497 -0.117 -0.483 -0.483 

 

 The probability function is expressed in Equation (3.2), where 𝑝 represents the 

probability of occupant present or extra lights on; 𝑒 is the natural log base; 𝛽 is the 

regression intercept and coefficients; 𝑚 refers to the number of logistic regression 

independent variables. The accuracy of all the models is above 84%.  

Table 3.4 lists the probability of extra lights on for the day of the week in the bakery.  

𝑝 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑚𝑥𝑚)
 (3.2) 

 

Table 3.4 Probability of extra lights on for the day of the week from logistic 

regression. 

 Mon Tue Wed Thu Fri Sat Sun 

Probability 0.21 0.42 0.25 0.42 0.28 0.21 0.21 

  

 Figure 3.18 visualize the training data points and the logistic regression models 

for arrival and departure in the ice cream shop and bakery. The time of day is in 

minutes. Based on observations, occupants will arrive before 12 PM and leave after 

12 PM. Hence, the arrival models are trained with data points before 720 min (12 PM) 
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and vice versa. For the ice cream shop departure model, people tend to leave very 

late: The probability of presence at midnight is around 0.22. To increase the 

prediction accuracy, we used data after 6 PM to train this model.  

  

  
Figure 3.18 Logistic regression models for arrival and departure in ice cream shop 

and bakery. 

 The implementation of the presence model and the extra lighting status model 

is adapted from Buildings.Occupants.Office.Lighting.Hunt1979Light in Modelica 

Buildings library [150]. The model is implemented as a stochastic simulation model. 

Every two minutes, a binary variable generator will randomly generate a binary 

number. The probability of this number being 1 equals the calculated probability of 

the occupant being present at that time of day based on the logistic regression model. 

Similarly, in the extra light status model, the probability of the random number being 

1 equals the probability of the extra light being on at the simulated day of the week.  
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 Figure 3.19 depicts the layout of the two-stage lighting power prediction model 

for the bakery. The presence models generate binary signals which will be multiplied 

with the nominal power of each stage. The nominal powers are the calculated mean 

values of the lighting power in each stage. The sum of the lighting power of all stages 

is then compared with the actual lighting power data to validate the performance of 

the stochastic simulation models. An assumption is made in this model that the extra 

light will only be on when both of the following conditions are satisfied: (1) The extra 

light should be on for that day of the week; (2) There are occupants in the building. 

The simulation was run for the whole month of August 2018 and the time step was 

set as 10 minutes. The actual time step was picked by Dymola to be 2 minutes due to 

the stochastic events. 

 
Figure 3.19 Modelica layout of the two-stage lighting power prediction model. 

3.3.3 Results and Discussions 

 We evaluate both the occupant presence prediction performance and the 

lighting power prediction performance in this section. The presence models are 
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evaluated with the root mean squared error (RMSE) and the coefficient of variation 

of RMSE (CVRMSE) of the probability distribution model. The lighting power 

prediction performance is evaluated with the relative error of the peak power and 

normalized mean bias error (NMBE). The error in the lighting power prediction is 

dependent on the presence prediction error as well as the error of nominal power 

estimation.  

 The American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE) Guideline 14-2002 has requirements for whole building energy 

calibration [158]. The smaller the time scale, the more tolerant the criteria. For 

example, the criteria for monthly NMBE are 5%, monthly CVRMSE is 15%, and the 

criteria for hourly NMBE is 10%, hourly CVRMSE is 30%. Though only the lighting 

system is calibrated in our work, the principle for different time scales should apply.  

 RMSE represents the standard deviation of the errors and CVRMSE is the ratio 

of the standard deviation to the mean of the dependent variable. They both describe 

how concentrated the data is around the line of its best fit. Large errors are especially 

noticed in these metrics. The equations for calculating the two metrics are listed 

below. 𝑥𝑜,𝑖 is the original value of the predicted variable, 𝑥𝑓,𝑖 is the forecasted value, 

N is the number of total data points.  

Table 3.5 lists the RMSE and CVRMSE of the occupant and extra lighting status 

prediction models. The CVRMSE for the occupant presence models is below 25%. The 

CVRMSE for extra lighting prediction is 125%. This is caused by the imbalance of the 

training data. The probability of the extra lights being on is much lower than the 
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probability of them being off. Hence, the mean value 𝑥𝑜̅̅ ̅ is very small and small errors 

could cause a large CVRMSE.  

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑓,𝑖 − 𝑥𝑜,𝑖)
2𝑁

𝑖=1

𝑁
 (3.3) 

𝐶𝑉𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (𝑥𝑓,𝑖 − 𝑥𝑜,𝑖)

2𝑁
𝑖=1

𝑥𝑜̅̅ ̅
 

(3.4) 

 

Table 3.5 RMSE and CVRMSE of occupant presence and lighting status prediction 

results. 

 Ice Cream Shop Bakery 

Occupant Presence Occupant Presence Extra Lights 

RMSE 0.108 0.101 0.153 

CVRMSE 20.9% 25.0% 125% 

  

 Figure 3.20 plots the regression model, simulated probability distribution, and 

the actual probability distribution of arrival and departure in the two buildings. From 

the figure, we see that the simulated probability distribution aligns with the 

regression model very well. The actual probability distribution deviates from the 

regression model especially during the transitional periods in the middle (e.g., 9 to 11 

for ice cream shop arrival, 17 to 21 for bakery departure). This could have been caused 

by the inappropriate selection of the training data. The high accuracy of the classifiers 

shown in Table 3.3 is partially because more data points are located outside the 

transitional period. The classifier can distinguish those points easier. Another reason 

could be that only one feature is used to predict occupant presence. This could have 
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limited the shape of the logistic regression model to further fit the actual curve. More 

features should be explored in the future. 

  

  

Figure 3.20 Arrival and departure time probability distribution in ice cream shop 

and bakery. 

 Table 3.6 compares the probability of extra lights on in the bakery calculated 

from the simulated results and the actual data. From the table, we see that the 

simulated and actual results deviate on Tuesday and Wednesday. For other days, the 

simulation results reproduced the actual probability well.  

Table 3.6 Comparison of the simulated and actual probability of extra lights on for 

the day of the week. 

 Mon Tue Wed Thu Fri Sat Sun 

Simulated 0 0.29 0.29 0.14 0.29 0.29 0.14 

Actual 0 0 0 0.14 0.29 0.29 0.14 
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 To evaluate the lighting power prediction performance of the models, peak 

power prediction relative error and NMBE are calculated on a monthly, weekly, and 

daily basis. In this way, the lighting power prediction performance is evaluated for 

different time scales. As the models in this work are mainly designed for shorter-time 

demand response scenarios, annual energy consumption is out of scope. Table 3.7 

summarizes the peak power prediction accuracy. For the ice cream shop, the errors 

are all below 2.36%. For the bakery, which is a two-stage prediction, the errors are 

larger, but all stay below 6.9%. Hence, the multi-stage method performs well in 

predicting peak power. 

Table 3.7 Peak power prediction accuracy. 

 Monthly Peak Power Weekly Peak Power Daily Peak Power 

Ice Cream Shop 2.36% 
2.36%~2.36% 

(Mean: 2.36%) 

0.73%~2.36% 

(Mean: 1.99%) 

Bakery 6.90% 
2.15%~6.90% 

(Mean: 5.34%) 

1.05%~6.90% 

(Mean: 2.42%) 

 

 To further evaluate the fitness of the power curve to the real power curve, the 

NMBE metric is adopted, which describes the average bias in the model. NMBE is 

determined with Equation (3.5). By definition, it is the sum of error over the sum of 

the actual values. This metric evaluates the fitness of the model over the whole 

simulation horizon.  

𝑁𝑀𝐵𝐸 =
∑ (𝑥𝑓,𝑖 − 𝑥𝑜,𝑖)

𝑁
𝑖=1

𝑁 × 𝑥𝑜̅̅ ̅
 (3.5) 

 Table 3.8 summarizes the daily, weekly, and monthly NMBE of the lighting 

power. The lighting power obtained by multiplying the ground truth occupancy data 
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with nominal power is set as the baseline for better comparison. From the table, the 

two-stage prediction generally has larger errors than the single-stage model. For the 

single-stage lighting power in the ice cream shop, the monthly, weekly, and daily 

NMBE are all within 5%, which indicates a high accuracy for power demand 

predictions. For the two-stage lighting power in the bakery, the monthly and weekly 

average errors are within 10%, which is still acceptable. However, we see a big 

deviation in the daily NMBE, and this leads to a high average value for daily NMBE. 

This high deviation could have been caused by an uncommon data record on Aug. 19 

(see Figure 3.21) when the lights are only on for a short period, but the model 

simulated it just as usual.  

Table 3.8 NMBE of lighting power prediction. 

 Baseline Model 

Monthly 

NMBE 

Ice Cream 

Shop 
0.061% 3.92% 

Bakery -0.55% 8.28% 

Weekly NMBE 

Ice Cream 

Shop 

-0.27%~0.44% 

(Mean: 0.060%) 

-0.25%~9.84% 

(Mean: 4.07%) 

Bakery 
-2.84%~1.30% 

(Mean: -0.68) 

0.33%~20.4% 

(Mean: 7.92%) 

Daily NMBE 

Ice Cream 

Shop 

-0.56%~0.72% 

(Mean: 0.057%) 

-2.59%~23.72% 

(Mean: 4.03%) 

Bakery 
-12.9%~50.9% 

(Mean: 0.39%) 

-21.6%~807% 

(Mean: 44.1%) 

 

 Additionally, as the models are simulated in a stochastic manner and the 

occupant presence was determined every 2 minutes, we see an obvious oscillation in 

lighting power in Figure 3.21. This feature of the model leads to that the longer the 
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simulation time, the closer the expectation of the simulation results will be to the 

actual data. This explains why the model shows a better performance concerning 

monthly NMBE. However, the short-term accuracy of the model still needs some 

improvement. 

 
Figure 3.21 Monthly predicted and actual lighting power in the bakery. 

3.3.4 Conclusion 

 This section proposed a methodology for occupant presence learning and 

reproducing based on lighting power metering data. The method was validated 

against real data. The results show that the proposed multi-stage lighting power 

prediction method can predict daily peak power with a 2.42% relative error. The 

monthly and weekly NMBEs of lighting power are on average below 8.28%.  

 Through the training and validation process of this work, we found that logistic 

regression models are sensitive to the quality of the training data. Ideally, the dataset 

should be more focused on the transitional region of the model and the two classes 

should be well balanced. Further, increasing the number of independent features 

should help improve the fitness of the probability model. The stochastic simulation 

results show that stochastic models can be very accurate for long-term predictions. 
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However, they cannot predict uncommon events, and this can lead to large short-term 

prediction errors.  

 This work has the limitation of not having the ground truth data for occupant 

presence. The presence generated from lighting power can be delayed when people 

arrived and did not turn the lights on. This can be cross-validated with other 

appliance usage data in the future. In the best-case scenario, occupant surveys should 

be conducted to know their preferences and habits, and occupant sensors should be 

installed.  

3.4 Summary 

 This chapter introduces the hierarchical modeling structure of a community 

emulator with stochastic occupancy prediction in Modelica. Section 3.2 first gives an 

overview of the community energy system and then discusses the modeling details 

(i.e., implementation, assumptions, control) of each subsystem (i.e., grid, PV, 

schedule, HP system, DHW system, and building loads). The proposed hierarchical 

structure is generic and thus can be applied to other community modeling work with 

appropriate adaptions of the system parameters. Further, it is easily scalable given 

that the subsystem models are packaged in individual component models, which can 

be grouped into a larger system through vectorized system modules. The NZEC 

library can be downloaded from reference [15]. 

 Section 3.3 proposes a methodology for occupant presence learning and 

prediction based on lighting power metering data. Through a case study with two 

small commercial buildings, it is found that based on the predicted occupancy status, 
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the daily lighting peak power can be predicted with 2.42% relative error. Additionally, 

we found that due to the short-term behavior stochasticity, the model performs better 

in terms of monthly NMBE than daily NMBE. 
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Chapter 4. Community Decarbonization Through Carbon Emission Responsive 

Control 

 

 

 

 

 

This chapter is based on:  

Jing Wang, Prateek Munankarmi, Jeff Maguire, Chengnan Shi, Wangda Zuo, David 

Roberts, Xin Jin. “Carbon emission responsive building control: A case study with an 

all-electric residential community in a cold climate.” Under review by Applied 

Energy. 
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4.1 Introduction 

 In the United States, buildings account for 35% of total energy-related carbon 

dioxide emissions, making them important contributors to decarbonization. Carbon 

intensities in the power grid are time-varying and can fluctuate significantly within 

hours, so shifting building loads in response to the carbon intensities can reduce a 

building’s operational carbon emissions. This chapter presents a rule-based carbon 

responsive control framework that controls the setpoints of thermostatically 

controlled loads responding to the grid’s carbon emission signals in real-time. Based 

on this framework, four controllers are proposed with different combinations of 

carbon accounting methods and control rules. To evaluate their performance, we 

performed simulation studies using models of a 27-home, all-electric, net-zero energy 

residential community located in Basalt, Colorado, United States. To reduce the 

operational carbon emissions, the controllers modulate the setpoints of mini-split 

heat pumps for pre-heating or pre-cooling, and heat pump water heaters for pre-

heating when there is excessive PV generation from the rooftop PV systems or when 

the grid electricity is relatively “clean” (i.e., with low carbon intensities). The carbon 

intensity data of four future years from the Cambium data set are adopted to account 

for the evolving resource mix in the power grid. Various performance metrics, 

including energy consumption, carbon emission, energy cost, and thermal discomfort, 

were used to evaluate the performance of the controllers. Sensitivity analysis was 

also conducted to determine how the control thresholds and intervals affect the 

controllers’ performance. Simulation results indicate that the carbon responsive 
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controllers can reduce the homes’ annual carbon emissions by 6.0% to 20.5%. 

However, the energy consumption increased by 0.9% to 6.7%, except in one scenario 

where it decreased by 2.2%. Compared to the baseline, the change in energy cost was 

between -2.9% and 3.4%, and thermal discomfort was also maintained within an 

acceptable range. The little impact on energy cost and thermal discomfort indicates 

there are no potential roadblocks for customer acceptance when rolling out the 

controllers in utility programs. 

4.2 Methodology 

4.2.1 Overview of the Research Methodology 

 Rule-based carbon emission responsive control, by definition, is to make control 

decisions in response to real-time carbon emission signals following certain 

predetermined rules. The control objective is to reduce the carbon emission induced 

by the power usage of the controlled objects, which are thermostatically controlled 

loads in this work. The thermostat setpoint is controlled to increase or decrease the 

load depending on the carbon intensities, predetermined rules, and operation modes. 

 During the design of the carbon responsive control rule, a fundamental step is 

to determine how the setpoints change with the emission signal. A common method 

is to divide the carbon emission data range into several regions, where each region 

correlates with one setpoint [89]. Evolved from this logic, the ultimate rule form is to 

establish a function (most likely linear) that maps emissions to a set of setpoints. In 

this work, we adopt a three-region design of the control rule, which means dividing 

the carbon emission data range into three regions with two thresholds. Between the 
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lower threshold (LT) and the higher threshold (HT) is the default zone where the 

default setpoints 𝑇𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡  (Table 4.1) will be implemented. Below the LT will be the 

clean zone and the 𝑇𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛  will be implemented, and vice versa. We designed the 

𝑇𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛  and 𝑇𝑠𝑒𝑡,𝑢𝑛𝑐𝑙𝑒𝑎𝑛  to be 0.8ºC (1.5ºF) around 𝑇𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡  for space heating and 

cooling, and 8.3 ºC (15ºF) for the water heater. Here we note that the default setpoints 

should be dependent on the region and user preferences. 

Table 4.1 Control setpoints for heating, cooling, and water heating. 

Controlled object 𝑇𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 (ºC) 𝑇𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛 (ºC) 𝑇𝑠𝑒𝑡,𝑢𝑛𝑐𝑙𝑒𝑎𝑛 (ºC) 

Space heating 21.1 21.9 20.3 

Space cooling 23.9 23.1 24.7 

Water heater 51.7 60.0 43.4 

 

 Unlike energy net-metering, which has been extensively studied in building-to-

grid related control studies, the inclusion of carbon net-metering is relatively rare. To 

address this research gap, we consider different controller designs with and without 

carbon net-metering to investigate its impact on the control performance. 

 For electricity prosumers who both consume and produce electricity, carbon net-

metering means metering the net carbon emission caused by their electricity 

consumption and production [159]. In other words, exporting electricity back to the 

grid will offset carbon emissions from their total emissions. On the contrary, when 

carbon net-metering is not included, it is more advantageous to use the locally 

generated electricity from PV systems instead of exporting due to the lack of emission 

benefits. For controllers considering carbon net-metering, it makes no difference 

whether to use the clean PV energy locally or to export it to the grid. Both options 

would bring in the same amount of carbon emission reduction. 
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 According to the information used for making control decisions, rule-based 

control can be categorized into momentary and predictive control. The momentary 

rule-based control adopts the current value of the boundary condition (e.g., carbon 

emission signal) and decides the setpoints for the current control interval [160]. 

Nevertheless, the predictive rule-based control makes decisions based on both current 

and future predictions of the boundary condition [89]. Compared to optimization-

based controllers such as MPC, predictive rule-based control is simpler but still 

effective. It is therefore a promising alternative to MPC given that the rules are well 

designed [161]. 

 In this work, we propose both momentary and predictive carbon responsive 

controllers. For the predictive controller, the carbon emission information of one 

future timestep is adopted to facilitate the determination of setpoints for the current 

timestep. The detailed control algorithms of the four proposed controllers are 

discussed in the following subsection. 

4.2.2 Implementation of Control Algorithms 

 Figure 4.1 to Figure 4.4 present the flow charts of the four proposed carbon 

responsive controllers. Here, the LT and HT are predetermined thresholds that are 

held constant throughout the whole simulation period. In the momentary controller 

with carbon net-metering (Figure 4.1), the current carbon emission value 𝐶𝑂2
𝑡  is 

compared with the LT and HT sequentially to determine which range it belongs to. If 

𝐶𝑂2
𝑡  is below the LT, the current timestep will be categorized as clean and the 

setpoints 𝑇𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛 in Table 4.1 will thus be implemented. As a result, the loads 𝑃ℎ𝑣𝑎𝑐
𝑡  
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and 𝑃𝑤ℎ

𝑡  will be increased and vice versa. If 𝐶𝑂2
𝑡 is between the LT and HT, the default 

setpoints 𝑇𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡  will be implemented, which is the same as the baseline setpoints. 

 

Figure 4.1 Flow chart of momentary control with carbon net-metering. 

 

Figure 4.2 Flow chart of momentary control without carbon net-metering. 
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Figure 4.3 Flow chart of predictive control with carbon net-metering. 

 

Figure 4.4 Flow chart of predictive control without carbon net-metering. 
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 The momentary controller without net-metering (Figure 4.2) is developed based 

on the one with net-metering with one more step to increase the PV self-consumption 

rate. Prior to comparing 𝐶𝑂2
𝑡 with the thresholds, the current house net load 𝑃𝑛𝑒𝑡

𝑡  is 

first evaluated. If it is negative, which means the house has surplus PV generation, 

the setpoints 𝑇𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛 will be adopted to increase the loads 𝑃ℎ𝑣𝑎𝑐
𝑡  and 𝑃𝑤ℎ

𝑡 . In this way, 

the clean energy can be consumed locally instead of being exported to the grid without 

any carbon offsetting benefit.  

 The predictive controllers (Figure 4.3 and Figure 4.4) with and without carbon 

net-metering are similar to the corresponding momentary controllers in the initial 

steps. However, the predictive controllers utilize the emission data from the next 

timestep to further facilitate the control decisions. Essentially, when the emission 

level of the current timestep falls into the default range, the carbon emission of the 

next timestep 𝐶𝑂2
𝑡+1 is then compared with the LT and HT. If the next timestep is 

categorized as clean, the loads for the current timestep will be decreased to save for 

later, and vice versa. This algorithm enables more frequent setpoint adjustments and 

therefore leads to more shifting of loads to cleaner hours. 

4.2.3 Co-simulation Platform 

 A co-simulation platform is used for testing and validating the performance of 

the proposed control algorithms. The co-simulation platform is built on the 

hierarchical engine for large-scale co-simulation (HELICS) tool [162]. Key 

capabilities such as high scalability, cross-platform operability, and modularity make 

HELICS suitable for developing co-simulation platforms. The co-simulation platform 



90 
 
manages the data communication between different components of the closed-loop co-

simulation. It is scalable and creates multiple agents depending on the number of 

houses in the simulated community.  

 Figure 4.5 depicts the components of the co-simulation platform and the data 

exchange flow between different components. Two types of agents are developed in 

this platform: (1) a building energy simulator (i.e., house agent) and (2) a carbon 

responsive controller agent. At the beginning of the simulation, an agent for the 

building simulation and an agent for the controller are instantiated simultaneously 

for each house.  

 

Figure 4.5 Architecture of the co-simulation platform. 

 Inside each house agent, we used the Operational, Controllable, High-

resolution Residential Energy (OCHRE) model [163] for modeling the buildings in 

this study. OCHRE is capable of implementing the control signals for HVAC, WH, 
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PV, and battery, and it is designed to be easily integrated into the co-simulation 

platform. More details about the community modeling are discussed in Section 4.3.2.  

 The data exchange between the house agent and the controller agent happens 

in the following order. At the beginning of timestep 𝑡, OCHRE computes the net house 

load (𝑃𝑛𝑒𝑡
𝑡 ), and the house agent sends 𝑃𝑛𝑒𝑡

𝑡  to the controller. At the same time, the 

controller agent receives the 𝑃𝑛𝑒𝑡
𝑡  together with the current carbon emission data from 

the Cambium database [164]. For predictive controllers, the future carbon emission 

data are also received for computing the control actions with the assumption of 

perfect forecasts. The controller then computes the control setpoints based on the 

predetermined rules and sends them back to the house agent. After receiving the 

control action for each device from the controller agent, OCHRE implements the 

control action and proceeds to the next timestep 𝑡 + 1. 

4.3 Case Study 

4.3.1 Overview of the Community 

 The Basalt Vista community, located in Basalt, Colorado, is modeled for the 

case study. This community is intended to provide affordable housing to 

schoolteachers in town while also being highly efficient all-electric homes with 

enough PV to make the community approximately net-zero, as well as batteries for 

load shifting and resilience. Located at an elevation of 2,015 meters, it is in climate 

zone 7B, which is very cold and dry [165]. The community consists of 12 multifamily 

buildings, either duplexes or triplexes, with a total of 27 homes. The homes consist of 

2- , 3-, and 4-bedroom units, ranging from 107 to 156 square meters [166]. 
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 The HVAC systems of all the units are mini-split heat pump (MSHP) systems. 

The domestic hot water systems use heat pump water heaters (HPWH). Each unit is 

installed with rooftop PV systems, except for three units that do not have enough roof 

space for PV panels. The PV system sizes range from 7.6 to 11.85 kW. Among all the 

households, six homes are assumed to own electric vehicles and are equipped with 

Level 1 or Level 2 chargers. Four homes are equipped with home battery systems 

with capacities of 12 kWh. 

4.3.2 Community Modeling 

 The community is modeled in OCHRE [163], a control-oriented residential 

building modeling tool. Each building type (i.e., 2-, 3-, and 4-bedroom) shares the 

same model formation with variant configuration parameters. The building envelope 

and the controllable loads (i.e., MSHP and HPWH) are described in this section. 

Models of PV, batteries, electric vehicles, and other electric loads can be found in 

reference [163].  

 The RC model is adopted for modeling the building envelope. R represents the 

thermal resistance between thermal masses, which involves both conduction and 

convection effects. C represents the thermal mass of different building components 

such as the air inside a room, exterior and interior walls, furniture, etc. The equation 

of a node 𝑖 in the RC network is: 

𝐶𝑖

𝑑𝑇𝑖
𝑡

𝑑𝑡
= ∑

𝑇𝑗
𝑡 − 𝑇𝑖

𝑡

𝑅𝑖𝑗

𝑀

𝑗=1

+ 𝐻𝑖
𝑡 , (4.1) 
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where 𝐶𝑖 is the thermal mass of the node 𝑖, Ti

t is the temperature of node 𝑖, Tj
t is the 

temperature of node 𝑗 adjacent to node 𝑖, Rij is the thermal resistance between nodes 

𝑖 and 𝑗, Hi
t is the sensible heat injected to node 𝑖, and 𝑀 is the total number of nodes 

in a house. For each house, approximately 13 Rs and 4 Cs were used to simulate the 

thermal dynamics. The detailed structure of the RC network model can be found in 

reference [163]. 

 The MSHP in this work has a variable frequency drive that can modulate to 

maintain the setpoint of the conditioned space. A local PID controller adjusts the 

variable frequency drive’s speed ratio according to the measured room temperature 

and the setpoint. For this community, the MSHPs are sized to be larger than might 

typically be sized according to standard sizing guidance such as the ACCA Manual 

J [167]. This is to ensure that the heat pump can fully meet the load even during the 

coldest hours of the year. With the oversized heat pumps, backup heaters are not 

installed, which makes these homes more energy efficient at the expense of a higher 

capital cost.  

 Further, each home has a highly efficient HPWH with a backup electric 

resistance element installed. The heat pump itself is able to heat the tank more 

efficiently by removing heat from the ambient air and adding it to the tank. In 

contrast, the backup electric element is less efficient but can heat the tank more 

quickly. When there is a demand for water heating, the heat pump turns on first. If 

there is a sufficiently large draw of hot water that the heat pump is unable to keep 

up, the backup electric element will then turn on. This will partially recover the tank 
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temperature before switching back to the heat pump mode to maintain a high level 

of energy efficiency. The exact control sequence was derived from the detailed 

laboratory testing of this HPWH unit in response to different typical residential hot 

water draw profiles [168]. 

4.3.3 Inputs 

 The carbon emission data in this work are adopted from the Cambium data 

set [164]. Based on modeled futures of the U.S. electricity sector, Cambium assembles 

structured data sets of energy-related metrics (e.g., carbon emissions) to facilitate 

long-term decision-making. Specifically, the hourly short-run marginal carbon 

emission data from the Standard Scenarios 2020 Mid-case were adopted in the control 

development of this work. Though Cambium provides various scenario settings such 

as high vs. low renewable energy cost, we note that the simulated data are based on 

certain assumptions about the future projected U.S. electric sector. These 

assumptions are subject to many uncertainties, such as climate change and policy 

impacts, which could affect the results and analysis of this work.  

 Figure 4.6 visualizes the emissions data for the four selected simulation years 

from Cambium. We selected these four years because only even years are available 

in Cambium, and we needed to avoid leap years as they are not yet supported in 

OCHRE. From the figure, we notice that as time goes by, more hours with zero or low 

carbon emissions emerge. This aligns with the increasing adoption rate of renewable 

energy and decarbonization measures of the electric sector. Regardless, we still 

observe some hours of high emission rate in the year 2046, which represent the 



95 
 
operation of coal-fired power plants. Because the emission data for the four years are 

different, we conducted a sensitivity analysis to determine the control thresholds 

(Section 4.4.5). As a result, we adopted the absolute values of the 30% and 70% of the 

emission range in 2022 as the LT and HT for all scenarios. 

 

Figure 4.6 Emission data comparison across simulated years. 

 Similarly, the same weather data were used across all four simulation years to 

eliminate the impact of weather on building loads so that the results can be directly 

compared. Actual Meteorological Year (AMY) data of the year 2012 for Pitkin County, 

Colorado, where the community is located, was used to be consistent with the 

Cambium weather data file. Here we note that forecasting future weather is an active 

research topic and is beyond the scope of this work. The occupancy, lighting, and 

appliance usage schedules for each house were generated from ResStockTM [169]. The 

time-of-use rate for the local electric utility Holy Cross Energy [170] was used for the 
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energy cost calculation, where the on-peak (4–9 PM) price is $0.24/kWh and the off-

peak (rest of the hours) price is $0.06/kWh. 

4.4 Results and Discussions 

 Based on the case study settings proposed in Section 4.3, we designed five 

simulation scenarios to evaluate the controller performances. As seen in Table 4.2, 

the baseline scenario involves no carbon responsive building controller. The 

remaining four scenarios each adopt one carbon responsive controller proposed in 

Section 4.2.2, namely momentary or predictive rule-based controller with or without 

carbon net-metering. Annual energy simulations of the four selected years (2022, 

2030, 2038, and 2046) were run with the default setpoints listed in Table 4.1. The 

house models were run with a timestep of 1 minute, and the control setpoints were 

updated with a 15-minute interval to avoid excessive cycling of the appliances. 

Table 4.2 Description of simulation scenarios in the case study. 

Scenario Carbon accounting method Rule type Year 

Baseline N/A N/A 2022-2046 

MO-0 Non-net-metering 
Momentary 2022-2046 

MO-1 Net-metering 

PR-0 Non-net-metering 
Predictive 2022-2046 

PR-1 Net-metering 

 

 Next, we present the annual simulation results with four performance metrics: 

energy consumption, carbon emission, energy cost, and thermal discomfort. Through 

the comparison of the four proposed controllers, we discuss the impact of carbon net-

metering, as well as the effect of prediction in rule-based control. Additionally, we 

also investigate the evolution of results over the years.  
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4.4.1 Energy Consumption 

 Figure 4.7 visualizes the community average annual energy consumption of the 

controlled loads (HVAC and WH) for different controllers. Compared to the baseline, 

the annual space heating energy consumption slightly decreases while both the space 

cooling and water heating energy increases. The divergent heating and cooling energy 

changes can be attributed to the higher emission levels in the heating season than 

those in the cooling season (see Figure 4.6), which leads to lower heating energy 

consumption. In general, carbon responsive building control increases the total 

household annual energy consumption.  

 

Figure 4.7 Community average annual energy consumption of controlled loads for 

different controllers across simulated years. 

 Table 4.3 lists the community average annual energy per household. In the 

table, the baseline energy consumption is shown in absolute values, whereas the 

other scenarios are in relative changes compared to the baseline. From the table, the 

average annual energy increase for the studied community is within 6.7%. For 

controllers accounting for carbon net-metering, the energy increase is about 2.5% to 

3.0% lower compared to scenarios without carbon net-metering. This indicates the 

incentivizing impact of adopting carbon net-metering, as it encourages the exporting 
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of power back to the grid. For controllers without carbon net-metering, the energy 

usage is increased when PV generation is excessive to increase the self-consumption 

rate, which has led to a higher annual energy consumption. 

Table 4.3 Community average annual energy consumption per household for 

different controllers across simulated years (percentage values are changes relative 

to the corresponding baseline). 

Year 
Baseline 

(kWh/yr.) 
MO-0 MO-1 PR-0 PR-1 

2022 4,124 3.8% 1.3% 1.1% -2.2% 

2030 4,120 6.6% 3.7% 4.5% 0.9% 

2038 4,108 6.7% 4.2% 4.7% 1.6% 

2046 4,103 5.8% 3.7% 4.2% 1.6% 

 

 Another observation from Table 4.3 is that all predictive controllers perform 

better than the momentary controllers in terms of energy consumption. This is 

because the predictive controllers adjust the setpoints based on both current and 

future emission values. When the current carbon emission falls in the default zone 

but the future emission falls in the clean zone, it will reduce the current power, and 

vice versa. Because there are more time instances classified as clean than carbon-

intensive over the whole year (as shown in Figure 4.8), the predictive controllers, 

therefore, reduce energy consumption more often than increase it and save more 

energy compared to the momentary controllers. 
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Figure 4.8 Histogram of carbon emission data for the simulated years. 

4.4.2 Carbon Emissions 

 Based on the method of carbon accounting, two ways to calculate the annual 

carbon emission are adopted. The first method is carbon net-metered, where the 

power exported to the grid can offset the total carbon emission. The second method 

does not take account of the exported power back to the grid. The equations for the 

two methods are as follows: 

𝐸𝑛𝑒𝑡 = ∑𝑒𝑡

𝑁

𝑡=1

𝑃𝑛𝑒𝑡
𝑡 ∆𝑡, (4.2) 

𝐸𝑛𝑜𝑛−𝑛𝑒𝑡 = ∑𝑒𝑡

𝑁

𝑡=1

𝑃𝑛𝑒𝑡
𝑡 ∆𝑡, ∀𝑃𝑛𝑒𝑡

𝑡 > 0, (4.3) 

where Enet  and Enon−net are the annual emission with and without carbon net-

metering. 𝑡  is the timestep, and 𝑁  is the total number of timesteps in a year. 𝑒𝑡 

represents the real-time carbon emissions of the grid power. 𝑃𝑛𝑒𝑡
𝑡  is the net load of the 
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house (i.e., total load subtracted by PV and battery power). ∆𝑡 is the interval length 

of each timestep.  

 Figure 4.9 illustrates the community average annual carbon emission of the 

controlled loads (HVAC and WH). From the figure, it can be seen that in all scenarios, 

the emissions caused by space heating are reduced through the carbon responsive 

control. In some scenarios, the emissions produced by cooling and water heating 

increased due to the corresponding energy increase. This is attributed to the fact that 

when there are consecutive clean hours, the controllers might pre-cool or pre-heat the 

space/water tank more than necessary, which leads to an increase in the total 

operational emissions. Overall, the annual household carbon emissions decreased 

compared to the baseline. 

 

Figure 4.9 Community average annual carbon emission of controlled loads for 

different controllers across simulated years. 

 Table 4.4 lists the community average emission per household for different 

scenarios. In order to eliminate the impact of different carbon accounting methods 

and focus on the performance variance of the controllers, the carbon emission values 

listed in Table 4.4 are all net-metered (Equation (4.2)). The emissions results 

calculated without carbon net-metering are presented in Table A.1 of Appendix A.  
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Table 4.4 Community average annual carbon emission per household for different 

controllers across simulated years (net-metered; percentage values are changes 

relative to the corresponding baseline). 

Year 
Baseline 

(kWh/yr.) 
MO-0 MO-1 PR-0 PR-1 

2022 3,854 -6.0% -11.0% -6.8% -12.1% 

2030 2,158 -6.3% -18.7% -7.8% -20.5% 

2038 2,650 -6.5% -15.2% -7.7% -16.5% 

2046 3,453 -6.3% -11.6% -7.1% -12.6% 

 

 Based on Table 4.4, we can see that the controllers that consider carbon net-

metering perform better than those that did not. This can be attributed to the logic 

of the controllers, where the non-net-metered controller increases the loads to do 

more pre-cooling/pre-heating when the house net-load is negative. This has led to a 

rise in energy as discussed in former sections, which hinders them from decreasing 

more carbon emissions. 

 Similar to the annual energy performance, the emission performance of the 

predictive controllers is better than the momentary ones. The reason is that 

predictive controllers make decisions informed by the emissions at the next timestep. 

This enables a better shifting effect of loads to cleaner periods than the momentary 

controllers. Cumulatively over a year, more emission is thus reduced by predictive 

controllers. 

 Overall, 6% to 20.5% annual carbon emissions reduction is seen by the proposed 

rule-based controllers compared to the baseline. In terms of the yearly change of 

emissions, it is interesting that year 2046 is not the one with the lowest emissions. 

According to Figure 4.8, though the year 2046 has the most hours of zero emission, 

depending on the power profile of the houses, the zero emission hours might not align 
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with the high-load hours. Figure 4.10 plots the heat map of a typical house’s net load 

in the year 2046. We see that the high-load hours are mostly in winter and during 

the nighttime, which aligns with the carbon-intensive hours in Figure 4.6. Therefore, 

it is safe to infer that the more the high-load hours align with the low-carbon hours, 

the lower the annual emissions will be. 

 

Figure 4.10 Annual house net load heat map (year 2046, house b5). 

4.4.3 Energy Cost 

 Figure 4.11 plots the community average annual energy on-and off-peak costs 

of the controlled loads in 2022. Similar plots for the other simulation years can be 

found in Appendix A. From Figure 4.11, we can see that the on-peak energy costs all 

decreased, and the off-peak costs all increased compared to the baseline. Figure 4.12 

plots the house net load in response to the real-time emission signal on a sample 

winter day of a sample house. The figure shows that when the carbon emission of the 

on-peak hours exceeds the higher threshold at around 6 PM, the house net load drops 

below the baseline as all controllers lower the heating and WH setpoints to reduce 

the loads. However, a certain level of the rebound effect is seen later, where the 
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controllers consume slightly more energy than the baseline due to the lower setpoints 

earlier. Overall, during the on-peak hours, more energy is saved due to the high 

emissions level. Over the whole year of simulation time, the on-peak hours are 

relatively more carbon-intensive and off-peak hours cleaner, which has led to the 

reduction of on-peak cost and increase of off-peak cost in Figure 4.11. 

 

Figure 4.11 Community average annual energy on- and off-peak costs of controlled 

loads for different controllers in 2022. 

 
Figure 4.12 House net load in response to the emission signal (winter 2022, house 

b5). 
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 Table 4.5 summarizes the community average annual energy cost per household 

for each simulation year. Based on the table, all controllers that do not consider 

carbon net-metering perform better in terms of the total cost. This can be attributed 

to the fact that controllers without net-metering tend to use more energy around noon 

(e.g., 11 AM to 3 PM in Figure 4.12) when the house net load is negative. Because of 

the rebound effect, they will consume less energy later when PV generation decreases, 

and the net load is positive. This enables shifting the load from on-peak hours to off-

peak hours, which leads to more energy cost savings by the non-net-metered 

controllers. Additionally, all predictive controllers have more cost savings than the 

momentary ones. The reason is similar to the energy savings discussion in Section 

4.4.1. 

Table 4.5 Community average annual energy cost per household for different 

controllers across simulated years (percentage values are changes relative to the 

corresponding baseline). 

Year 
Baseline 

(kWh/yr.) 
MO-0 MO-1 PR-0 PR-1 

2022 718 -2.7% -1.1% -4.1% -2.9% 

2030 719 1.3% 3.4% 0.1% 1.7% 

2038 717 0.5% 2.9% -0.6% 1.3% 

2046 715 -1.0% 1.2% -1.8% 0.0% 

 

 Generally, we see an annual energy cost change of -4.1% to 3.4% on top of the 

baseline. In terms of the yearly trend of cost savings, we notice that the cleaner the 

year, the less cost reduction potential. Here, clean means more hours of carbon 

emission under the lower threshold in Figure 4.8. More specifically, years 2030 and 

2038 have more hours under the lower threshold, and the energy cost increased in all 

scenarios except one. 
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4.4.4 Thermal Discomfort 

 Thermal discomfort is quantified by the discomfort degree hours for the HVAC 

system. For HVAC heating scenarios, when the room temperature is below the 

heating setpoint, it is considered an uncomfortable period, and vice versa. The 

switching between heating and cooling is dependent on the outdoor temperature. 

Note that in this work we consider a setpoint not met as uncomfortable as the actual 

room temperature deviates from the predetermined setpoint. We did not adopt the 

ASHRAE recommended comfort range (i.e., 20–28ºC) [171] because it is relatively 

wide compared to our setpoints, which leads to almost the same level of discomfort in 

all scenarios. A list of the discomfort values according to the ASHRAE Standard is 

provided in Table A.2 in Appendix A. The discomfort degree hours in this work can 

be defined by the following equation: 

𝑈ℎ𝑣𝑎𝑐 = ∑ |𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑡 − 𝑇𝑠𝑒𝑡

𝑡 |

𝑁

𝑡=1

∆𝑡, 

∀𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑡 < 𝑇𝑠𝑒𝑡

𝑡 (ℎ𝑒𝑎𝑡𝑖𝑛𝑔) 𝑎𝑛𝑑 𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑡 > 𝑇𝑠𝑒𝑡

𝑡 (𝑐𝑜𝑜𝑙𝑖𝑛𝑔), 

(4.4) 

where Tindoor
t  and Tset

t  are the actual indoor temperature and setpoint, and ∆𝑡 is the 

simulation interval of the house model (i.e.,1 minute).  

 The thermal discomfort for WH is only considered for the shower in this 

work [172]. It is measured by the unmet thermal energy for any shower draws below 

43.3ºC (110ºF), which is calculated by:  

𝑈𝑤ℎ = ∑𝑚𝑤𝑎𝑡𝑒𝑟
𝑡 𝑐𝑝|𝑇𝑤𝑎𝑡𝑒𝑟

𝑡 − 43.3|

𝑁

𝑡=1

∆𝑡, ∀𝑇𝑤𝑎𝑡𝑒𝑟
𝑡 < 43.3, (4.5) 
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where mwater

t  represents the hot water mass flow rate and Twater
t  is the hot water 

temperature.  

 Table 4.6 lists the heating, cooling, and water heating discomfort values for all 

scenarios across the simulation years. From the table, we see that carbon responsive 

control brings in a higher level of discomfort in space heating and cooling compared 

to the baseline, where constant setpoints were implemented annually. However, the 

hot water discomfort has been slightly improved, which is validated through a higher 

annual average hot water temperature. Generally, the annual discomfort levels in all 

the carbon responsive scenarios are maintained within an acceptable range. 

Table 4.6 Community average heating, cooling, and water heating discomfort metric 

values for each simulation scenario. 

Year 

Heating (ºC-hrs./yr.) Cooling (ºC-hrs./yr.) Hot water (kWh/yr.)  

Baselin

e 

MO

-0 

MO

-1 

PR

-0 

PR

-1 

Baselin

e 

MO

-0 

MO

-1 

PR

-0 

PR

-1 

Baselin

e 

MO

-0 

MO

-1 

PR-

0 

PR-

1 

2022 8 24 27 30 33 0 2.2 1.9 3.4 3.4 1.3 0.15 0.23 
0.1

9 

0.2

5 

2030 8 34 40 31 36 0 4.4 1.0 3.5 3.5 1.3 0.26 0.40 
0.2

6 

0.3

7 

2038 8 69 79 64 73 0 7.5 1.5 6.0 6.0 1.3 0.37 0.57 
0.3

9 

0.5

8 

2046 8 55 66 51 59 0 6.8 2.4 5.6 5.6 1.3 0.37 0.64 
0.3

1 

0.5

6 

 

 When carbon net-metering is considered in the control, the discomfort level 

increases compared to scenarios without net-metering.  This is because when power 

exporting does not bring emission benefits, the controller tries to increase the self-

consumption rate of the surplus PV generation by consuming more energy. This has 

led to a relatively higher indoor temperature in the heating season and a relatively 

lower temperature in the cooling season, which means a more comfortable indoor 

environment for the occupants. 
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 Comparing scenarios with and without predictive control, we notice that 

predictive control can lead to either an increase or decrease of the discomfort level. 

There is no direct correlation between the two. Though predictive controllers look 

ahead for one timestep, the decision to increase or decrease the setpoints is dependent 

on the emission level at the next timestep, which is rather stochastic in the time 

frame of one year of simulation time. 

4.4.5 Sensitivity Analysis 

 Control thresholds. The choice of the lower and upper thresholds in rule-

based control is essential. To investigate how the thresholds affect the control 

performance, we conducted a sensitivity analysis. The original lower and upper 

thresholds were adjusted based on the simulation scenario MO-1 2022. A list of the 

control performance metrics can be found in Table 4.7. The percentages (e.g., 10&90) 

here represent the LT and HT, which are based on the emission data range of 2022. 

The same absolute values of the LT and HT were used across different years. 

Table 4.7 Comparison of average performance metric values per household with 

various control thresholds. 

 
Lower & upper threshold percentages 

10&90 20&80 30&70 40&60 

Emission (kg/yr.) 3,852 3,819 3,429 3,088 

Energy (kWh/yr.) 4,123 4,106 4,177 4,046 

Total energy cost ($/yr.) 718 715 711 706 

On-peak cost ($/yr.) 627 625 613 617 

Off-peak cost ($/yr.) 91 90 97 88 

Discomfort 

Heating (ºC-hrs./yr.) 8 11 27 238 

Cooling (ºC-hrs./yr.) 0 0.1 4 21 

Hot water (kWh/yr.) 1.3 1.2 0.2 0.9 

 

 From the table, carbon emissions decrease while the control threshold range 

gets narrower. Specifically, the emission drops drastically from thresholds 20&80 to 
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30&70 because the latter is more sensitive to emission changes, which leads to more 

frequent carbon responsive setpoint adjustments.  

 The relationship between energy consumption and the thresholds is less 

explicit. Given the same emission signal input, the closer the thresholds, the more 

hours that fall out of the default zone. Hence, the energy consumption variation 

depends on the distribution of the emission data. For instance, when the thresholds 

change from 20&80 to 30&70, more hours are becoming clean compared to hours that 

are becoming carbon-intensive. This leads to more energy consumed over the whole 

year. 

 The annual energy cost sinks with the narrowing threshold range, making the 

40&60 thresholds the most cost-effective range. However, the zone thermal 

discomfort level also reaches the highest in the 40&60 range. This is because the 

frequent thermostat changes cause the room temperature to swing so that it is more 

likely to fall outside the comfort zone. The hot water temperature depends not only 

on the setpoint but also on the water draw profile. There is therefore no explicit 

correlation between the hot water discomfort level and the thresholds. 

 To summarize, the 30&70 lower and upper control thresholds chosen in this 

work best balance the benefits of emissions reduction and energy cost, as well as 

thermal comfort for the homeowners. 

 Control interval. The impact of the control interval is studied through varied 

intervals based on scenario MO-1 2022. From Table 4.8, we observe that the 

performance of the 15-minute and 30-minute control intervals is very similar to each 
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other. The 15-minute interval performs better at energy and comfort, whereas the 30-

minute is better at emissions and cost. When the interval becomes larger than 30 

minutes (e.g., 60 minutes and 120 minutes), then the larger the interval, the worse 

the control performance. This is probably because in these cases, the controller 

changes the setpoints too infrequently, which hinders the benefits of carbon 

responsive control. Considering the balance between control performance and the 

building thermal dynamics, we chose the control interval to be 15 minutes. 

Table 4.8 Comparison of average performance metric values per household with 

various control intervals. 

 
Control interval (minute) 

15 30 60 120 

Emission (kg/yr.) 3,429 3,387 3,480 3,740 

Energy (kWh/yr.) 4,177 4,184 4,240 4,329 

Total energy cost ($/yr.) 711 710 714 724 

On-peak cost ($/yr.) 613 612 613 619 

Off-peak cost ($/yr.) 97 98 101 105 

Discomfort 

Heating (ºC-hrs./yr.) 27 31 38 49 

Cooling (ºC-hrs./yr.) 4 5 6 12 

Hot water (kWh/yr.) 0.2 0.2 0.2 0.3 

 

4.5 Conclusion 

 In this chapter, we propose a carbon emission responsive control framework for 

thermostatically controlled loads. Within this framework, the four various controllers 

adjust thermostat setpoints according to projected carbon emission signals. The 

impact of carbon net-metering in both momentary and predictive rule-based 

controllers is investigated through the controller design and a case study. Sensitivity 

analysis is conducted to evaluate the role of control thresholds and control intervals 

in the controller design. 
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 Based on the simulation results, the average annual household carbon 

emissions are decreased by 6.0% to 20.5% compared to the baseline. The average 

annual energy consumption is increased by less than 6.7% due to more clean hours 

over the year. The annual energy cost change lies between -4.1% and 3.4% on top of 

the baseline. All on-peak energy costs decreased while all off-peak costs increased, 

indicating that the carbon intensities during on-peak hours are higher than those 

during off-peak hours. Generally, the annual discomfort levels in all the carbon 

responsive scenarios are maintained within an acceptable range. 

 Evaluating the impact of carbon net-metering, we found that controllers with 

carbon net-metering show 2.5% to 3.0% less energy consumption and 5% to 12.7% 

less emission than controllers without carbon net-metering. This indicates the 

incentivizing impact of adopting carbon net-metering, as it encourages the exporting 

of power back to the grid. For controllers without carbon net-metering, higher annual 

energy consumption and carbon emissions result from attempting to increase the PV 

self-consumption rate. However, all controllers that do not consider carbon net-

metering perform better in terms of the total cost. Due to the rebound effect, they 

tend to be shifting loads from on-peak hours to off-peak hours, causing the total cost 

to sink. Further, because more energy is consumed, non-net-metering controllers tend 

to create a more comfortable indoor environment for the occupants. 

 All predictive controllers perform better than the momentary controllers in 

terms of energy consumption, carbon emission, and energy cost. This is attributed to 

the enhanced load shifting effect by the predictive controller design. Also, this finding 
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verifies the claim made by Fischer [161] that predictive rule-based controllers are 

promising alternatives to optimization-based controllers because they are simpler 

and still effective.  

 We notice in some scenarios the emissions produced by space cooling and water 

heating are higher compared to the baseline due to the increased energy consumption 

from load shifting. This indicates rule-based control solely informed by carbon 

emission signals may end up with higher emissions, which could be overcome by using 

optimization-based control methods such as MPC. Additionally, we note that another 

limitation of this work, which is also a general limitation of rule-based control, is that 

the rule thresholds might be case-dependent and thus need to be carefully selected 

for the specific use case. Future work includes: 

• Investigating better designs of the control rules to achieve synergetic emission, 

energy, and cost reductions. 

• Incorporating other types of controllable devices such as battery and 

schedulable loads into the carbon emission responsive control framework to 

enable more emission reductions. 

• Comparing the performance of the developed rule-based control to optimization-

based control. 

• Incorporating real-time electricity pricing rates for the cost analysis to better 

reflect the relationship between carbon intensity and electricity price (i.e., 

lower intensity, lower price). 
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• Conducting lifecycle cost analysis for the controlled equipment to account for 

the impact of equipment short cycling on equipment life and replacement cost. 

• Discussing the trade-off between the reduction of operational carbon emissions 

and the potential sacrificing of equipment energy efficiency. 
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 This chapter presents a methodology for enhancing community resilience 

through optimal renewable resource allocation and load scheduling in order to 

minimize unserved load and thermal discomfort. The proposed control architecture 

distributes the computational effort and is easier to be scaled up than traditional 

centralized control. The decentralized control architecture consists of two layers: The 

community operator layer (COL) allocates the limited amount of renewable energy 

resources according to the power flexibility of each building. The building agent layer 

(BAL) addresses the optimal load scheduling problem for each building with the 

allowable load determined by the COL. Both layers are formulated as an MPC-based 

optimization. Simulation scenarios are designed to compare different combinations of 

building weighting methods and objective functions to provide guidance for real-

world deployment by community and microgrid operators. The results indicate that 

the impact of power flexibility is more prominent than the weighting factor to the 

resource allocation process. Allocation based purely on occupancy status could lead to 

an increase in PV curtailment. Further, it is necessary for the building agent to have 

multi-objective optimization to minimize the unserved load ratio and maximize 

comfort simultaneously. 

5.1 Introduction 

 In the past several decades, the degrading power grid infrastructure has been 

faced with higher stress. On one hand, the frequency of human-made disasters as 

well as extreme weather events is increasing, causing more frequent power 

outages [152]. On the other hand, the rapid technological advancement and 
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increasing adoption of renewable energy is bringing more uncertainty and variability, 

posing new challenges to the grid. These factors impact the resilience of the power 

supply and, thus, require the demand side to become actively involved in grid 

resilience management.  

 In 2017, Hurricane Maria left 1.5 million customers across Puerto Rico without 

electricity and it took 11 months to fully restore the power system [5]. In such extreme 

cases, outages not only cause inconvenience to occupants’ daily life but also 

compromise their health or even lives. The power loss of the HVAC system in a 

nursing home located in Florida caused 12 patients’ deaths after Hurricane Irma in 

2017 [173]. This has motivated the research towards more resilient communities. 

 Studies have proven that communities with on-site PV power and batteries 

have the potential to sustain power outages for a certain period if the energy 

resources are properly managed and the controllable loads are well scheduled [174]. 

Some research efforts focus on microgrid operation with selected distributed 

generation technologies and energy storage systems. Marnay et al. [175] illustrated 

that the adoption of combined heat and power together with heat and electrical 

storage in a hypothetical San Francisco hotel can lead to 11% cost savings and 8% 

carbon emission reductions. Similarly, Bozchalui et al. [176] developed mathematical 

models of combined cooling, heating, and power system for a commercial building 

microgrid, together with PV generation, thermal energy storage, and battery storage 

devices. Results in [174–176] show that adopting the above technologies can reduce 

total costs and help achieve efficiency and emission reduction targets. 
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 Some research focuses on restoring the power generation, transmission, and 

distribution promptly after power outages [152]. Arif et al. [106] co-optimized the 

topology reconfiguration, repair crew scheduling, and distributed generator (DG) 

dispatching to maximize the picked-up loads while minimizing the repair time. 

Chen [119] and Ding [108] proposed a mechanism for microgrid formation to restore 

critical loads after major disruptions in the power grid. In their scheme, a mixed-

integer linear program (MILP) was formulated to maximize the total restored critical 

loads. The problem was constrained by each microgrid’s self-adequacy and operation 

constraints. Similarly, Chen et al. [123] proposed a MILP model for the optimal 

sequential service restoration, which coordinates dispatchable DGs and switch gears 

to restore the power system service step by step. 

 Other studies consider flexible load scheduling as an important avenue to 

enhance resilience. In this case, the power demand from buildings can be ramped up 

or down in response to exterior signals, such as available PV power and occupancy 

prediction. Hussain et al. [177] classify proactive scheduling, such as revising 

schedules of dispatchable generators, flexible loads, and energy storages, as the first 

step for enhancing grid resilience. Kallel et al. [178] proposed a demand-side 

management control strategy through the modification of the household load profile 

to satisfy the demand and reduce the size of system components in a stand-alone 

hybrid PV system. Results show that the proposed strategy led to minimum loss of 

power supply probability and system cost, as well as extended battery life.  
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 Among the optimal load scheduling studies, some researchers approach load 

management through a rule-based methodology. Ayodele et al. [179] proposed a rule-

based load management scheme for a stand-alone PV battery system, where 

residential loads are classified into critical and non-critical loads. The critical loads 

are given higher priority and therefore can operate at their scheduled time while the 

uncritical loads can be shifted to other times. However, this type of method is not 

suitable for problems with a large number of variables (i.e., controllable appliances), 

where manually defining the algorithms becomes difficult. 

 Many other studies formulate load scheduling as an optimization problem. 

Garifi et al. [180] adopted a stochastic MPC-based algorithm for demand response in 

a home energy management system (HEMS). The HEMS optimally schedules 

controllable appliances given user preferences and available residentially owned 

power sources such as PV and battery. Zhao et al. [181] applied a genetic 

algorithm (GA) in a HEMS controller where the optimal power scheduling schemes 

under various electricity pricing models are compared. Pathak et al. [182] developed 

a scheduling strategy for demand response management of residential loads using a 

particle swarm optimization algorithm. Additionally, machine learning techniques 

have been emerging in the optimal load scheduling field. Zhang et al. [183] proposed 

a learning-based HEMS, where neural network and regression-based learning are 

adopted to predict the energy consumption of the HVAC system. Mazzeo et al. [184] 

applied an energy reliability-constrained method for the multi-objective optimization 
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of hybrid photovoltaic-wind-battery systems. The proposed method permits choosing 

the most proper indicator combination to be constrained or optimized.  

 Noticeably, occupants’ preferences are widely considered in the problem 

formulation of load scheduling as either constraints or objectives. Jin et al. [87] 

presented a user-centric HEMS that is built on a multi-objective MPC framework, 

wherein the objectives consist of thermal comfort and user convenience. In Zhao’s 

work [181], the delay time rate of home appliances, i.e., the deviation between an 

appliance’s actual operation time and its scheduled time, is minimized to increase the 

satisfaction of user preferences.  

 Optimal load scheduling in single buildings, especially residential buildings, 

has been studied extensively [87, 180–183]. Quantifying load flexibility and optimal 

load scheduling in other building types, however, needs further exploration. Larger-

scale studies, such as those for microgrids, often focus on identifying enabling energy 

technologies or operating energy resources from a higher level. The scheduling of each 

controllable load in every building of a community can be computationally 

challenging due to the increased number of variables. However, this also provides 

more possibilities for load scheduling due to the heterogeneity of different building 

load shapes in the community. If building loads in the same community are scheduled 

simultaneously by a single operator, power-sharing is possible. Further, under 

certain circumstances, buildings of lower priority could reduce their loads to satisfy 

the demand of higher priority building loads.  



119 
 
 Therefore, this chapter proposes a new methodology for optimal renewable 

resource allocation and load scheduling in resilient communities. The methodology 

adopts a hierarchical architecture consisting of a COL and a BAL. The COL enables 

dynamic renewable resource sharing among buildings in the same community 

according to various weighting methods. The BAL then achieves the locally optimal 

operation solution by controlling its HVAC system, loads and battery storage with 

the allowable load decided by the COL. The innovation of this work is that it proposes 

an easy-to-deploy optimization scheme for large-scale communities, which embraces 

both high-level resource allocation and low-level high-fidelity BEM. The hierarchical 

control architecture distributes the computational effort and is easier to be scaled up 

than traditional centralized control, which is not robust for large-scale deployment. 

The hierarchical structure also helps hide the complexity of the whole scheduling 

system through the separated layers. In the case study, different building types are 

considered, including residential and small commercial buildings.  

 The remainder of the chapter is organized as follows: Section 5.2 introduces the 

concept and architecture developed for community resource allocation and load 

scheduling. Section 5.3 provides the mathematical formulation of the optimization 

problem. Section 5.4 demonstrates the proposed methodology through a case study 

based on a real community. Finally, concluding remarks and future work are 

provided in Section 5.5. 
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5.2 Methodology 

 In this work, we consider an islanded community during a power outage. The 

only energy resource accessible to the community is the on-site PV generator and the 

batteries. Under this problem setting, the research question is how to optimally 

allocate the limited PV generation among different buildings and schedule the loads 

to meet occupants’ essential needs for a certain period. Here, we confine occupants’ 

essential needs to be physiological (i.e., food and shelter) and safety needs (i.e., 

lighting at night), which align with the two bottom levels of Maslow’s Hierarchy of 

Needs [185].  

 To address this problem, we propose a hierarchical control architecture that 

consists of two layers. The top layer is the COL which mimics the perspective of the 

community operator and seeks the optimal solution for allocating the limited PV 

power among buildings. The bottom layer is the BAL which satisfies its occupants’ 

needs through optimal load scheduling. In this way, the cooperation among buildings 

is achieved through their individual but simultaneous communication with the 

operator, and the global optimum of the whole community is also achieved through 

decentralized control. The operation in both layers is formulated as MPC problems. 

The proposed architecture with data exchange flow is visualized in Figure 5.1. 
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Figure 5.1 Proposed architecture with data exchange flow. 

 As can be seen from the figure, the COL determines the allowable load based 

on the forecast of the total PV power generation and the load flexibility of each 

building. The determined allowable load of each building is then passed down to the 

building smart controllers in BAL. Other inputs of the BAL consist of the outdoor 

temperature and solar irradiance forecasts. This decentralized control architecture 

distributes the computational efforts to local controllers. Compared with centralized 

control, this structure is more robust, scales up easily, and allows the use of 

inexpensive and simple agents at the BAL [186]. The data exchange between the COL 

and the BAL can be implemented through a multi-agent communication system [187]. 

The detailed mechanisms of the two layers are introduced in the remainder of this 

section. 

 The COL allocates the limited amount of available generation from a renewable 

energy resource; namely, PV power, according to the load flexibility of each building, 

within which range the building’s power demand can fluctuate. The operator decides 
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the optimal way to allocate the current PV power to avoid PV curtailment and 

building load shedding. We assume that the operator does not take into account the 

detailed building equipment information, extra building-owned energy resources (i.e., 

battery), or building thermal dynamics in its allocation process. This assures the 

scalability of the control framework. The allocated PV power to building 𝑖 is defined 

as the allowable load:  

𝑃𝑎𝑙𝑙𝑜𝑤,𝑖
𝑡 = α𝑖

𝑡 ∗ 𝑃𝑝𝑣
𝑡 , (5.1) 

where α𝑖
𝑡  is the ratio of the allowable load of building 𝑖  to the current total PV 

generation 𝑃𝑝𝑣
𝑡 . Since it is directly related to the allocated PV power, α𝑖

𝑡 is referred to 

as the allocation factor in the rest of the chapter. 

 To investigate a logical way to allocate the PV power besides the baseline, where 

the allocation is done only with information of building load flexibility, we introduce 

weighting factors into the problem. The weighting factor reflects the priority of each 

building. Two types of weighting factors are considered: constant versus dynamic. 

The constant weighting factor is adopted when a building is naturally more important 

than other buildings. For example, health facilities are naturally prioritized over 

other types of buildings during emergencies. The dynamic weighting factor is time-

varying based on occupancy, e.g., when a building is occupied, it has a higher 

weighting factor. 

 Therefore, the COL decides the allowable load of each building through three 

methods: (1) equally weighted, (2) weighted based on priority, (3) weighted based on 

occupancy. The determined allowable load is then passed to the smart controllers in 
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BAL, where each building performs its local detailed optimization to achieve its own 

objectives.  

 The BAL addresses the optimal load scheduling problem with the 

predetermined allowable load. Each building is simulated as an agent that has 

various electrical loads, an HVAC system, and a battery. The HVAC system is 

modeled with a linear regression model trained from data. The battery is modeled 

with a linear convex model. By adopting linear room temperature models and battery 

models, the optimization problem becomes linear. This method has the advantage of 

shorter computational time. However, compared to high-fidelity nonlinear models, it 

may lose some model fidelity and the ability to simulate certain system dynamics by 

making simplifications. In this work, linear models are accurate enough for our 

application scenario. 

 In this work, following methods found in the literature [178, 179, 181, 183, 188], 

the building’s electrical loads are categorized into four types: sheddable, modulatable, 

shiftable, and critical. The primary classification criteria include the assumed 

occupants’ preference during emergency circumstances and the electrical 

characteristics of different appliances. Only loads that are related to safety (e.g., 

lighting at night) or food preservation (e.g., refrigerator) are considered critical. 

Sheddable loads are those that can be fully disconnected without impacting the 

occupant’s essential needs during the studied period, such as coffee makers. 

Modulatable loads are those categorized by varying power amplitudes such as the 

HVAC system. Shiftable loads are those that need to be operated but are flexible with 
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respect to the time of day that they are scheduled. Examples are washers and driers. 

From a practical point of view, categorizing building loads can help avoid dealing with 

thousands of individual load models especially when the problem scales up. It can 

significantly reduce the computational effort. Figure 5.2 visualizes the logic we 

followed to categorize the loads. 

 

Figure 5.2 Flow chart of the load categorization logic. 

 Additionally, at this layer, different optimization objective functions are 

compared to evaluate their performance in satisfying selected key performance 

indices (KPIs); namely, unserved load ratio, thermal comfort, PV curtailment, and 

required battery installation size. Two objectives are considered: (1) minimizing 

unserved load ratio, and (2) maximizing thermal comfort.  

 It is to mention that we included uncertainty in the weather-related parameter 

forecasts to account for prediction errors. Chance constraints for the indoor 

temperature range are, thus, implemented to ensure thermal comfort is maintained 
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with high probability. The following section presents the detailed mathematical 

formulation of the two-layered control architecture with equations.  

5.3 Formulation of the Optimization Problem 

5.3.1 Community Operator Layer 

 The COL determines the allowable load of each building through MPC-based 

optimization that takes into account forecasted PV generation, building load 

flexibility, priority, and occupancy of each building. The flexibility of building loads 

depends on the power demand of the controllable loads, i.e., the sum of sheddable, 

modulatable, and shiftable loads. Note that the HVAC load flexibility is reflected in 

the temperature range constraints and is not summed here. The mathematical 

formulation of the load flexibility for each building 𝑖 is given by: 

𝑃𝑙𝑜𝑎𝑑,𝑓𝑙𝑒𝑥,𝑖
𝑡 = ∑ 𝑃̂𝑠ℎ𝑒𝑑,𝑖,𝑗

𝑡

𝑁𝑠ℎ𝑒𝑑,𝑖

j=1

+ ∑ 𝑃̂𝑚𝑜𝑑𝑢,𝑖,𝑗
𝑡

𝑁𝑚𝑜𝑑𝑢,𝑖

j=1

+ ∑ 𝑃̂𝑠ℎ𝑖𝑓,𝑖,𝑗
𝑡

𝑁𝑠ℎ𝑖𝑓,𝑖

j=1

, (5.2) 

where 𝑃̂𝑠ℎ𝑒𝑑,𝑖,𝑗
𝑡 , 𝑃̂𝑚𝑜𝑑𝑢,𝑖,𝑗

𝑡 , and  𝑃̂𝑠ℎ𝑖𝑓,𝑖,𝑗
𝑡  denote the prediction data of each sheddable, 

modulatable, and shiftable load in building 𝑖, respectively. The 𝑁𝑠ℎ𝑒𝑑,𝑖, 𝑁𝑚𝑜𝑑𝑢,𝑖, and 

𝑁𝑠ℎ𝑖𝑓,𝑖 represent the number of appliances under each category. The constraints of the 

flexible load are defined as: 

𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡 = ∑ 𝑃̂𝑐𝑟𝑖𝑡,𝑖,𝑗

𝑡

𝑁𝑐𝑟𝑖𝑡,𝑖

𝑗=1

, (5.3) 

𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡
= 𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡 + 𝑃𝑙𝑜𝑎𝑑,𝑓𝑙𝑒𝑥,𝑖
𝑡 , (5.4) 

𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡 ≤ 𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡 ≤ 𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡
, (5.5) 
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where 𝑃̂𝑐𝑟𝑖𝑡,𝑖,𝑗

𝑡  stands for the prediction data of each critical load in building 𝑖. 𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡  is 

an optimization variable that represents the actual consumed power at each 

timestep, which is bounded by the critical load 𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡  and the total desired load 𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡
. 

Equations (5.6)-(5.10) define the power balance and its constraints at the community 

level: 

𝛼𝑖
𝑡 ∗ 𝑃𝑝𝑣

𝑡 − 𝑃𝑐𝑢𝑟𝑡,𝑖
𝑡 = 𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡 − 𝑃𝑠ℎ𝑒𝑑,𝑖
𝑡 , (5.6) 

s.t. 0 ≤ 𝑃𝑐𝑢𝑟𝑡,𝑖
𝑡 ≤ 𝛼𝑖

𝑡 ∗ 𝑃𝑝𝑣
𝑡 , (5.7) 

0 ≤ 𝑃𝑠ℎ𝑒𝑑,𝑖
𝑡 ≤ 𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡 , (5.8) 

0 ≤ 𝛼𝑖
𝑡 ≤ 1, (5.9) 

∑ 𝛼𝑖
𝑡

𝐼

𝑖=1

= 1, (5.10) 

where 𝛼𝑖
𝑡 ∗ 𝑃𝑝𝑣

𝑡  is the PV power allocated to building 𝑖 at timestep 𝑡. Equation (5.7) 

defines the range of the PV curtailment, where the variable 𝑃𝑐𝑢𝑟𝑡,𝑖
𝑡  denotes the 

curtailment of allocated PV power in the case that allocated PV power exceeds the 

upper bound of 𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡 . Similarly, 𝑃𝑠ℎ𝑒𝑑,𝑖

𝑡  is the variable of load shedding for situations 

when the available PV power is less than the lower bound of 𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡 . Equation (5.8) 

enforces that the value of load shedding cannot exceed the lower bound of 𝑃𝑙𝑜𝑎𝑑,𝑖
𝑡 . 

Equations (5.9) and (5.10) define the range of the PV allocation factor 𝛼𝑖
𝑡 and the sum 

of all allocation factors at any timestep must equal 1. The total number of buildings 

in the community is given by parameter 𝐼. 



127 
 
 The objective of the COL is to minimize the total PV curtailment and load 

shedding over the whole MPC prediction horizon at the community level. The 

mathematical formulation of the objective function is defined as: 

𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥
𝑡}𝑡=1

𝐻 ) = ∑∑(𝑃𝑐𝑢𝑟𝑡,𝑖
𝑡 + 𝑃𝑠ℎ𝑒𝑑,𝑖

𝑡 )

𝐻

𝑡=1

I

𝑖=1

, (5.11) 

min
{𝑥𝑡}𝑡=1

𝐻
𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥

𝑡}𝑡=1
𝐻 ), (5.12) 

where 𝐻  denotes the prediction horizon. Let 𝑥𝑡  be the vector of all optimization 

variables of the COL: 

𝑥𝑡 = [{𝑃𝑐𝑢𝑟𝑡,𝑖
𝑡 }

𝑡=1

𝐻
, {𝑃𝑠ℎ𝑒𝑑,𝑖

𝑡 }
𝑡=1

𝐻
, {𝑃𝑙𝑜𝑎𝑑,𝑖

𝑡 }
𝑡=1

𝐻
, {𝛼𝑖

𝑡}𝑡=1
𝐻 ] , 𝑖 ∈ {1, 2,… , I}, t ∈ {1, 2,… ,H}. (5.13) 

 For scenarios where a certain building is prioritized over other buildings, a 

weighting factor 𝑤𝑖
𝑡 > 1is introduced into the cost function shown in Equation (5.11) 

to obtain:  

𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥
𝑡}𝑡=1

𝐻 ) = ∑ ∑(𝑃𝑐𝑢𝑟𝑡,𝑖
𝑡 + 𝑤𝑖

𝑡 ∗ 𝑃𝑠ℎ𝑒𝑑,𝑖
𝑡 )

𝐻

𝑡=1

𝐼

𝑖=1

. (5.14) 

This will ensure that a prioritized building will experience less load shed 𝑃𝑠ℎ𝑒𝑑,𝑖
𝑡 . For 

constant weighting scenarios, 𝑤𝑖
𝑡 of the prioritized building is twice as large as the 

rest of the buildings over the whole simulation. For occupancy-based time-varying 

weighting scenarios, 𝑤𝑖
𝑡 of any building is doubled when that building is occupied. 

5.3.2 Building Agent Layer 

 The BAL performs MPC-based optimal load scheduling with detailed device 

models. The overall optimization problem is a MILP since our device models include 

binary variables. Each building agent coordinates the electricity usage of an HVAC 
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model, four types of building loads, and a battery. Since all the equations in this 

section apply for every individual building 𝑖, to avoid redundancy, we have removed 

the notation of building index 𝑖 in the following discussion. For each of the studied 

buildings, the power balance that must be satisfied at each timestep is given by: 

𝑃𝑝𝑣
𝑡 − 𝑃𝑐𝑢𝑟𝑡

𝑡 = 𝑃𝑐ℎ
𝑡 − 𝑃𝑑𝑖𝑠

𝑡 + 𝑃𝑙𝑜𝑎𝑑
𝑡 + 𝑃ℎ𝑣𝑎𝑐

𝑡 , (5.15) 

where PV curtailment is limited by how much PV generation is available: 

s.t. 0 ≤ 𝑃𝑐𝑢𝑟𝑡
𝑡 ≤ 𝑃𝑝𝑣

𝑡 . (5.16) 

Two different cost functions are designed to be compared: (1) to minimize unserved 

load ratio: 

𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥
𝑡}𝑡=1

𝐻 ) = ∑(𝑃𝑙𝑜𝑎𝑑

𝑡
− 𝑃𝑙𝑜𝑎𝑑

𝑡 )

𝐻

𝑡=1

+ ∑𝛾𝑃𝑐ℎ
𝑡

𝐻

𝑡=1

+ ∑𝛾′𝑃𝑐𝑢𝑟𝑡
𝑡

𝐻

𝑡=1

, (5.17) 

𝑚𝑖𝑛
{𝑥𝑡}𝑡=1

𝐻
𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥

𝑡}𝑡=1
𝐻 ), (5.18) 

and (2) to maximize thermal comfort: 

𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥
𝑡}𝑡=1

𝐻 ) = ∑ (𝑇𝑟𝑜𝑜𝑚
𝑡 −

𝑇𝑟𝑜𝑜𝑚 + 𝑇𝑟𝑜𝑜𝑚

2
)

2𝐻

𝑡=1

+ ∑𝛾𝑃𝑐ℎ
𝑡

𝐻

𝑡=1

+ ∑𝛾′𝑃𝑐𝑢𝑟𝑡
𝑡

𝐻

𝑡=1

, (5.19) 

𝑚𝑖𝑛
{𝑥𝑡}𝑡=1

𝐻
𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥

𝑡}𝑡=1
𝐻 ). (5.20) 

 In Equation (5.17), 𝑃𝑙𝑜𝑎𝑑

𝑡
 is the same predicted load upper bound discussed in 

Section 5.3.1 in Equation (5.4). The difference between this upper bound and the 

actual operated loads 𝑃𝑙𝑜𝑎𝑑
𝑡  is minimized to achieve maximum served load. In 

Equation (5.19), the first term penalizes when the indoor air temperature 𝑇𝑟𝑜𝑜𝑚
𝑡  

deviates from the desired temperature range given by 𝑇𝑟𝑜𝑜𝑚 and 𝑇𝑟𝑜𝑜𝑚, which are the 
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lower and upper bounds of the indoor air temperature. To avoid simultaneous 

charging and discharging of the battery as well as PV curtailment, the objective 

function also includes small penalizations of charging 𝛾𝑃𝑐ℎ
𝑡  and curtailment 

𝛾′𝑃𝑐𝑢𝑟𝑡
𝑡  [189].  

 The room temperature is predicted with a linear regression model shown in 

Equations (5.21)-(5.23). The independent variables include the ambient temperature 

𝑇𝑎𝑚𝑏
𝑡 , indoor room temperature 𝑇𝑟𝑜𝑜𝑚

𝑡 , and solar irradiance 𝑄𝑠𝑜𝑙
𝑡  of the past two 

timesteps, and the speed of the HVAC equipment of the past one timestep 𝑟ℎ𝑣𝑎𝑐
𝑡 . The 

normalized speed ranges from 0 to 1. The resulted HVAC system power is thus the 

product of the speed ratio 𝑟ℎ𝑣𝑎𝑐
𝑡  and the nominal power 𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚 . The choice of 

regression over two past terms is to reflect the impact of building thermal mass on 

indoor temperature evolution while balancing prediction accuracy and computational 

time [190]. In this model, the internal heat gain was not included as it is calculated 

from the actual operated devices (i.e., optimization variables). Having it in the 

temperature prediction model will further couple the temperature calculation and the 

load scheduling, causing the computational effort to be greater. Additionally, 

compared to the solar heat gain, the internal heat gain accounts for less than 10% of 

the total heat gain in our case. Due to the above reasons, we did not include the 

internal heat gain in this model. 

𝑇𝑟𝑜𝑜𝑚
𝑡+1 = 𝛽1𝑇𝑎𝑚𝑏

𝑡 + 𝛽2𝑇𝑎𝑚𝑏
𝑡−1 + 𝛽3𝑇𝑟𝑜𝑜𝑚

𝑡 + 𝛽4𝑇𝑟𝑜𝑜𝑚
𝑡−1 − 𝛽5𝑟ℎ𝑣𝑎𝑐

𝑡 + 𝛽6𝑄𝑠𝑜𝑙
𝑡 + 𝛽7𝑄𝑠𝑜𝑙

𝑡−1 (5.21) 

0 ≤ 𝑟ℎ𝑣𝑎𝑐
𝑡 ≤ 1 (5.22) 
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𝑃ℎ𝑣𝑎𝑐
𝑡 = 𝑟ℎ𝑣𝑎𝑐

𝑡 ∗ 𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚 (5.23) 

 To account for the uncertainty in the outdoor air temperature and solar 

irradiance forecasts, we use chance constraints to ensure that thermal comfort is 

maintained with a high probability [191]. The chance constraints are given by: 

𝑃𝑟(𝑇𝑟𝑜𝑜𝑚 ≤ 𝑇𝑟𝑜𝑜𝑚
𝑡 ) ≥ 1 − 𝜀𝑇, (5.24) 

𝑃𝑟(𝑇𝑟𝑜𝑜𝑚
𝑡 ≤ 𝑇𝑟𝑜𝑜𝑚) ≥ 1 − 𝜀𝑇 , (5.25) 

where 𝜀𝑇 is the maximum violation probability of the chance constraint. We assume 

that the forecasting errors for all timesteps follow the same normal distribution and 

are independent for each timestep:  

𝑇𝑎𝑚𝑏,𝑒
𝑡 ~𝒩(𝜇𝑇

𝑡 , (𝜎𝑇
𝑡)2), (5.26) 

𝑄𝑠𝑜𝑙,𝑒
𝑡 ~𝒩(𝜇𝑄

𝑡 , (𝜎𝑄
𝑡 )2). (5.27) 

The outdoor temperature and solar irradiance predictions can, thus, be represented 

as: 

𝑇𝑎𝑚𝑏
𝑡 = 𝑇𝑎𝑚𝑏,𝑓

𝑡 + 𝑇𝑎𝑚𝑏,𝑒
𝑡 , (5.28) 

𝑄𝑠𝑜𝑙
𝑡 = 𝑄𝑠𝑜𝑙,𝑓

𝑡 + 𝑄𝑠𝑜𝑙,𝑒
𝑡 , (5.29) 

where 𝑇𝑎𝑚𝑏,𝑓
𝑡  and 𝑄𝑠𝑜𝑙,𝑓

𝑡  are the forecasts of ambient temperature and solar irradiance 

while 𝑇𝑎𝑚𝑏,𝑒
𝑡  and 𝑄𝑠𝑜𝑙,𝑒

𝑡  are the forecast errors. The chance constraint shown in 

Equation (5.25) can be rewritten as: 
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𝑃𝑟(𝜒𝑇
𝑡+1 ≤ 0) ≥ 1 − 𝜀𝑇, (5.30) 

where:  

𝜒𝑇
𝑡+1 = 𝑇𝑟𝑜𝑜𝑚

𝑡+1 − 𝑇𝑟𝑜𝑜𝑚. (5.31) 

Then, by substituting Equations (5.21), (5.28), and (5.29) for 𝑇𝑟𝑜𝑜𝑚
𝑡+1 , the above equation 

becomes: 

𝜒𝑇
𝑡+1 = 𝛽1(𝑇𝑎𝑚𝑏,𝑓

𝑡 + 𝑇𝑎𝑚𝑏,𝑒
𝑡 ) + 𝛽2(𝑇𝑎𝑚𝑏

𝑡−1 + 𝑇𝑎𝑚𝑏,𝑒
𝑡−1 ) + 𝛽3𝑇𝑟𝑜𝑜𝑚

𝑡 + 𝛽4𝑇𝑟𝑜𝑜𝑚
𝑡−1 − 𝛽5𝑟ℎ𝑣𝑎𝑐

𝑡

+ 𝛽6(𝑄𝑠𝑜𝑙,𝑓
𝑡 + 𝑄𝑠𝑜𝑙,𝑒

𝑡 ) + 𝛽7(𝑄𝑠𝑜𝑙
𝑡−1 + 𝑄𝑠𝑜𝑙,𝑒

𝑡−1 ) − 𝑇𝑟𝑜𝑜𝑚 . 

(5.32) 

 Since 𝑇𝑎𝑚𝑏,𝑒
𝑡  and 𝑄𝑠𝑜𝑙,𝑒

𝑡  are normally distributed, 𝜒𝑇
𝑡+1 is also normally 

distributed with the following mean 𝜇𝑡 and standard deviation 𝜎𝑡: 

𝜇𝑡 = 𝛽1(𝑇𝑎𝑚𝑏,𝑓
𝑡 + 𝜇𝑇

𝑡 ) + 𝛽2(𝑇𝑎𝑚𝑏
𝑡−1 + 𝜇𝑇

𝑡 ) + 𝛽3𝑇𝑟𝑜𝑜𝑚
𝑡 + 𝛽4𝑇𝑟𝑜𝑜𝑚

𝑡−1 − 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡

+ 𝛽6(𝑄𝑠𝑜𝑙,𝑓
𝑡 + 𝜇𝑄

𝑡 ) + 𝛽7(𝑄𝑠𝑜𝑙
𝑡−1 + 𝜇𝑄

𝑡 ) − 𝑇𝑟𝑜𝑜𝑚 , 

(5.33) 

𝜎𝑡 = √(𝛽1𝜎𝑇
𝑡)2 + (𝛽2𝜎𝑇

𝑡)2 + (𝛽6𝜎𝑄
𝑡)2 + (𝛽7𝜎𝑄

𝑡)2. (5.34) 

Hence, the chance constraint in Equation (5.30) can be reformulated as: 

𝑃𝑟(𝜒𝑇
𝑡+1 ≤ 0) = Φ(

0 − 𝜇𝑡

𝜎𝑡
) ≥ 1 − 𝜀𝑇 , (5.35) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal 

distribution 𝒩(0, 1) . Finally, by taking the inverse CDF of both sides in 

Equation (5.35), we obtain the chance constraint for ensuring the indoor temperature 

not exceeding the upper bound of 𝑇𝑟𝑜𝑜𝑚 with the probability of (1 − 𝜀𝑇) as follows: 
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𝑇𝑟𝑜𝑜𝑚 − 𝛽1(𝑇𝑎𝑚𝑏,𝑓
𝑡 + 𝜇𝑇

𝑡 ) − 𝛽2(𝑇𝑎𝑚𝑏
𝑡−1 + 𝜇𝑇

𝑡 ) − 𝛽3𝑇𝑟𝑜𝑜𝑚
𝑡 − 𝛽4𝑇𝑟𝑜𝑜𝑚

𝑡−1 + 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡

− 𝛽6(𝑄𝑠𝑜𝑙,𝑓
𝑡 + 𝜇𝑄

𝑡 ) − 𝛽7(𝑄𝑠𝑜𝑙
𝑡−1 + 𝜇𝑄

𝑡 )

≥ Φ−1(1 − 𝜀𝑇)√(𝛽1𝜎𝑇
𝑡)2 + (𝛽2𝜎𝑇

𝑡)2 + (𝛽6𝜎𝑄
𝑡)

2
+ (𝛽7𝜎𝑄

𝑡)
2
. 

(5.36) 

 Taking a similar derivation process for Equation (5.24), we obtain the chance 

constraint for the temperature lower bound: 

𝛽1(𝑇𝑎𝑚𝑏,𝑓
𝑡 + 𝜇𝑇

𝑡 ) + 𝛽2(𝑇𝑎𝑚𝑏
𝑡−1 + 𝜇𝑇

𝑡 ) + 𝛽3𝑇𝑟𝑜𝑜𝑚
𝑡 + 𝛽4𝑇𝑟𝑜𝑜𝑚

𝑡−1 − 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡 + 𝛽6(𝑄𝑠𝑜𝑙,𝑓

𝑡 + 𝜇𝑄
𝑡 )

+ 𝛽7(𝑄𝑠𝑜𝑙
𝑡−1 + 𝜇𝑄

𝑡 ) − 𝑇𝑟𝑜𝑜𝑚

≥ Φ−1(1 − 𝜀𝑇)√(𝛽1𝜎𝑇
𝑡)2 + (𝛽2𝜎𝑇

𝑡)2 + (𝛽6𝜎𝑄
𝑡)

2
+ (𝛽7𝜎𝑄

𝑡)
2
. 

(5.37) 

 As mentioned above, the electrical loads consist of four types: sheddable, 

modulatable, shiftable, and critical, which are summed in the following equation: 

𝑃𝑙𝑜𝑎𝑑
𝑡 = ∑ 𝑃𝑠ℎ𝑒𝑑,𝑗

𝑡

𝑁𝑠ℎ𝑒𝑑

𝑗=1

+ ∑ 𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡

𝑁𝑚𝑜𝑑𝑢

𝑗=1

+ ∑ 𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡

𝑁𝑠ℎ𝑖𝑓

𝑗=1

+ ∑ 𝑃𝑐𝑟𝑖𝑡,𝑗
𝑡

𝑁𝑐𝑟𝑖𝑡

𝑗=1

. (5.38) 

where 𝑃𝑠ℎ𝑒𝑑,𝑗
𝑡 , 𝑃𝑚𝑜𝑑𝑢,𝑗

𝑡 , 𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡 , and 𝑃𝑐𝑟𝑖𝑡,𝑗

𝑡  are the optimization variables for individual 

loads in each category. The mathematical formulation of the sheddable load is shown 

in Equation (39), where 𝑢𝑠ℎ𝑒𝑑,𝑗
𝑡  is a binary optimization variable and 𝑃̂𝑠ℎ𝑒𝑑,𝑗

𝑡  is the 

original sheddable load power demand data. The actual sheddable load after 

optimization 𝑃𝑠ℎ𝑒𝑑,𝑗
𝑡  is determined by the ON/OFF status represented by the binary 

variable.  

𝑃𝑠ℎ𝑒𝑑,𝑗
𝑡 = 𝑢𝑠ℎ𝑒𝑑,𝑗

𝑡 ∗ 𝑃̂𝑠ℎ𝑒𝑑,𝑗
𝑡 , 𝑗 ∈ {1,… ,𝑁𝑠ℎ𝑒𝑑} (5.39) 
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 Equation (5.40) sets the lower and upper bound of the optimization variable 

𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡 , which represents the modulatable load power demand. The actual demand is 

modulated between zero and the original demand data 𝑃̂𝑚𝑜𝑑𝑢,𝑗
𝑡 .  

0 ≤ 𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡 ≤ 𝑃̂𝑚𝑜𝑑𝑢,𝑗

𝑡 , 𝑗 ∈ {1,… , 𝑁𝑚𝑜𝑑𝑢} (5.40) 

 Equation (5.41) states that the actual critical load 𝑃𝑐𝑟𝑖𝑡,𝑗
𝑡  must be exactly equal 

to the critical power demand data 𝑃̂𝑐𝑟𝑖𝑡,𝑗
𝑡 . 

𝑃𝑐𝑟𝑖𝑡,𝑗
𝑡 = 𝑃̂𝑐𝑟𝑖𝑡,𝑗

𝑡 , 𝑗 ∈ {1,… , 𝑁𝑐𝑟𝑖𝑡} (5.41) 

 The shiftable loads are scheduled through scheduling matrices [181]. First, 

using the power data [192], we extracted the average cycle time 𝑛𝑠ℎ𝑖𝑓,𝑗  and the 

average power demand 𝑃𝑠ℎ𝑖𝑓,𝑗,𝑎𝑣𝑔  of each shiftable load. The starting time of a 

shiftable load 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠 is optimized over the MPC horizon. At the scheduled starting 

time, the binary variable 𝑣𝑠ℎ𝑒𝑑,𝑗
𝑡  equals 1 and is 0 otherwise:  

𝑣𝑠ℎ𝑖𝑓,𝑗
𝑡 = {

1, 𝑡 = 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠  

0, 𝑡 ≠ 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠 
, 

∀𝑡 ∈ {1, … ,𝐻 − 𝑛𝑠ℎ𝑖𝑓,𝑗 + 1}, 𝑗 ∈ {1, … , 𝑁𝑠ℎ𝑖𝑓}. 

(5.42) 

Once the starting time of a load is selected, the power demand of the load is then fixed 

until it finishes its cycle. The appliance must finish its cycle before the horizon ends 

(𝑡 ∈ {1,… , 𝐻 − 𝑛𝑠ℎ𝑖𝑓,𝑗 + 1}). Here, we assume that each shiftable load operates once and 

only once in each horizon, which is enforced by: 

∑ 𝑣𝑠ℎ𝑖𝑓,𝑗
𝑡

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1

𝑡=1

= 1. (5.43) 
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Next, a scheduling matrix 𝑺𝑠ℎ𝑖𝑓,𝑗 of shape 𝐻 × (𝐻 − 𝑛𝑠ℎ𝑖𝑓,𝑗 + 1) is generated for each 

shiftable load. The actual power shape of the load, denoted 𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡 , is calculated by: 

𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡 = 𝑺𝑠ℎ𝑖𝑓,𝑗 × [

𝑣𝑠ℎ𝑖𝑓,𝑗
1

⋮

𝑣
𝑠ℎ𝑖𝑓,𝑗

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1
] × 𝑃𝑠ℎ𝑖𝑓,𝑗,𝑎𝑣𝑔 . (5.44) 

For instance, when 𝐻 = 12,𝑛𝑠ℎ𝑖𝑓,𝑗 = 3, an appliance scheduling matrix of shape 12 × 

10 is generated as follows: 

𝑺𝑠ℎ𝑖𝑓,𝑗 =

[
 
 
 
 
 
 
 
 
 
1 0 0 0
1 1 0 0
1 1 0 0
0 1 0 0
⋮ 0 ⋯ ⋮ 0
0 ⋮ 0 ⋮
0 0 1 0
0 0 1 1
0 0 1 1
0 0 0 1]

 
 
 
 
 
 
 
 
 

 (5.45) 

 The linear battery model adopted in this work is shown in Equations (5.46)-

(5.48). The battery state of charge (SOC) 𝐸𝑏𝑎𝑡
𝑡+1 depends on the SOC of the previous 

timestep 𝐸𝑏𝑎𝑡
𝑡 , as well as the battery charging or discharging during each step and the 

battery charging/discharging efficiencies 𝜂𝑐ℎ  and 𝜂𝑑𝑖𝑠 . Constraints in Equations 

(5.47)-(5.48) enforce the acceptable limits for charging/discharging power and battery 

SOC: 

𝐸𝑏𝑎𝑡
𝑡+1 = 𝐸𝑏𝑎𝑡

𝑡 + 𝜂𝑐ℎ𝑃𝑐ℎ
𝑡 ∆𝑡 −

1

𝜂𝑑𝑖𝑠
𝑃𝑑𝑖𝑠

𝑡 ∆𝑡  (5.46) 

0 ≤ 𝑃𝑐ℎ
𝑡 , 𝑃𝑑𝑖𝑠

𝑡 ≤ 𝑃𝑏𝑎𝑡 (5.47) 

0 ≤ 𝐸𝑏𝑎𝑡
𝑡 ≤ 𝐸𝑏𝑎𝑡 (5.48) 
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The optimization variables in each building agent are collected in vector 𝑥𝑡: 

𝑥𝑡 = [
{𝑃𝑐𝑢𝑟𝑡

𝑡 }𝑡=1
𝐻 , {𝑃𝑐ℎ

𝑡 }𝑡=1
𝐻 , {𝑃𝑑𝑖𝑠

𝑡 }𝑡=1
𝐻 , {𝑟ℎ𝑣𝑎𝑐

𝑡 }𝑡=1
𝐻 , {𝑢𝑠ℎ𝑒𝑑,𝑗

𝑡 }
𝑡=1

𝐻
,

{𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡 }

𝑡=1

𝐻
, {𝑣𝑠ℎ𝑖𝑓,𝑗

𝑡 }
𝑡=1

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1
, {𝑇𝑟𝑜𝑜𝑚

𝑡 }𝑡=1
𝐻 , {𝐸𝑏𝑎𝑡

𝑡 } 𝑡=1
𝐻

]. (5.49) 

5.4 Case Study 

 The proposed architecture has been tested with a case study based on a real-

world community located in Anna Maria Island, FL [148]. It is a net-zero energy 

community made up of residential units and small commercial buildings with on-site 

PV panels. To demonstrate the idea of dynamic power-sharing among buildings, the 

data for three buildings of different types are used in the case study [192]. The 

selected buildings are one residential building (area: 93.8 m2), one ice cream shop 

(area: 160.5 m2), and one bakery (area: 410 m2). All buildings use heat pumps as 

HVAC equipment. All data for the case study have been exported from a validated 

physics-based model of the studied community [151]. The weather file embedded in 

the model is typical meteorological year (TMY) data for the weather station at Tampa 

International Airport [193]. The load data consists of power submetering data 

provided by the community [192]. The solar irradiance data are collected through a 

local solar station. The indoor temperature data are simulation results generated by 

the physics-based room models [15]. The simulations are run in Python 2.7 with 

Gurobi 9.0 [194] as the optimization engine. The average simulation time of each 

scenario is about 20 s in Windows 7 operating system on a DELL T5810 workstation 

with 32 GB RAM and a 3.50 GHz Intel Xeon CPU (E5-1620 v4) processor. 
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5.4.1 Simulation Scenario Design 

 The optimal resource allocation and load scheduling MPC algorithm for the 

community when disconnected from the grid was simulated for 48 h within Florida’s 

hurricane season on August 4 and 5. The timestep ∆𝑡 for both COL and BAL is 1 h 

and the MPC horizon 𝐻 = 12 h to balance the trade-off between forecast information 

and computational time. Table 5.1 lists the 10 scenarios covering various weighting 

methods at the operator layer and two different objectives at the building layer. In 

the following discussion, R stands for Residential, I stands for Ice Cream Shop, and 

B stands for Bakery. Each scenario was run for all three buildings. In total, 30 

simulations were run and analyzed. 

Table 5.1 Designed simulation scenarios with varied weighting factors and objective 

functions. 

 

Community Operator Layer 

Equal 

Weighting 

Priority-Based Weighting 
Occupancy-

Based 

Weighting 

Prioritize 

Residential 

Prioritize 

Ice Cream 

Shop 

Prioritize 

Bakery 

Building 

Agent 

Layer 

Minimize 

unserved 

load ratio 

S11 S21_R S21_I S21_B S31 

Maximize 

thermal 

comfort 

S12 S22_R S22_I S22_B S32 

  

 In the room temperature constraints, the lower and upper temperature limits 

𝑇𝑟𝑜𝑜𝑚  and 𝑇𝑟𝑜𝑜𝑚  are governed by ASHRAE Standard 55–2017 [171], which 

recommends the temperature range for thermal comfort to be approximately between 

67℉ and 82℉ (20–28℃). Thus, 𝑇𝑟𝑜𝑜𝑚 is 20℃ and 𝑇𝑟𝑜𝑜𝑚 is 28℃. Table 5.2 summarizes 

the coefficients of the HVAC linear regression models. The prediction accuracy is 
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measured with the RMSE. The nominal power of each heat pump is listed in the last 

row of Table 5.2.  

Table 5.2 Coefficients, accuracy, and nominal power of HVAC linear regression 

models. 

 Regression Variables Residential 
Ice Cream 

Shop 
Bakery 

Coefficients 

𝑇𝑟𝑜𝑜𝑚
𝑡−1  1.527 1.579 1.530 

𝑇𝑟𝑜𝑜𝑚
𝑡−2  −0.532 −0.586 −0.536 

𝑇𝑎𝑚𝑏
𝑡−1  0.037 0.044 0.050 

𝑇𝑎𝑚𝑏
𝑡−2  −0.032 −0.036 −0.044 

𝑟𝐻𝑉𝐴𝐶
𝑡−1  −0.324 −0.688 −0.393 

𝑄𝑠𝑜𝑙
𝑡−1 0.350 0.486 0.206 

𝑄𝑠𝑜𝑙
𝑡−2 −0.072 −0.219 0.098 

RMSE (°C) 0.196 0.230 0.295 

Nominal Power (kW) 4.0 5.5 6.8 

  

 Table 5.3 summarizes the load categorization results following the classification 

proposed in Section 5.2. In this study, we determine whether a load is sheddable from 

the building owner’s perspective. For instance, the coffee maker and the soda 

dispenser in the ice cream shop are classified as sheddable during the outage. Mixers 

with variable speed options, as well as the HVAC system, are classified as 

modulatable loads due to their varying power amplitudes. Since some plug loads in 

the dataset are unspecified, we sum those loads into one modulatable load. The 

washer, dryer, and stovetop range are considered shiftable loads in this work as their 

operation schedules can be flexible if needed. Lights, coolers, and display cases are 

classified as critical because they are related to occupants’ need for safety and food 

preservation. Due to the islanded circumstances, some loads commonly categorized 

as critical are considered to be sheddable (e.g., computer) in this work.  
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Table 5.3 Summary of load types in studied buildings. 

Load Type Residential Ice Cream Shop Bakery 

Sheddable Computer 

Coffee maker, soda 

dispenser, outdoor ice 

storage 

Microwave 

Modulatable HVAC HVAC 
Mixer, unspecified 

room plugs, HVAC 

Shiftable 
Range, washer, 

dryer 
None 

Range, oven, 

dishwasher 

Critical 
Lights, 

refrigerator 

Lights, cooler, display 

case 

Lights, cooler, 

display case 

  

 Parameters related to battery configuration and penalty coefficients are 

summarized in Table 5.4. We assumed the maximum charging/discharging power 

𝑃𝑏𝑎𝑡 to be 40% of the battery energy bound 𝐸𝑏𝑎𝑡. Further, the initial battery SOC is 

assumed to be 50% of 𝐸𝑏𝑎𝑡. The charging/discharging efficiencies are 𝜂𝑐ℎ = 𝜂𝑑𝑖𝑠 = 0.9.  

Table 5.4 Parameters of battery configuration and penalty coefficients. 

Parameter Residential Ice Cream Shop Bakery 

Battery energy upper bound 𝐸𝑏𝑎𝑡 (kWh) 70 270 280 

Maximum charging power 𝑃𝑏𝑎𝑡 (kW) 28 108 112 

Penalty of charging 𝛾 1.00 × 10−3 1.00 × 10−6 1.00 × 10−4 

Penalty of curtailment 𝛾′ 5.00 × 10−3 1.00 × 10−5 1.00 × 10−3 

 

5.4.2 Validation of the Chance Constraint 

 Before further evaluating the simulation results, we first need to validate the 

chance constraints. The normally distributed error we introduced into the outdoor 

temperature forecast is assumed to be 𝑇𝑎𝑚𝑏,𝑒
𝑡 ~𝒩(0, (0.2)2) and the solar irradiance 

forecast error is assumed to be 𝑄𝑠𝑜𝑙,𝑒
𝑡 ~𝒩(0, (0.01)2). The tolerance 𝜀𝑇 is 0.05, meaning 
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that with the given error distribution of forecast, the temperature range can be 

violated 5% of the time in the independent experiments.  

 Monte Carlo simulations were adopted for the constraint validation. For each 

timestep of the simulation, normally distributed errors were generated randomly 

1000 times and then added into the temperature prediction model in Equation (5.21) 

with the optimal HVAC operation decisions. Results showed that all temperature 

predictions of 10 scenarios in all three buildings are within the range of 20–28℃. As 

an example, Figure 5.3 compares the temperature predictions with and without 

uncertainty using the simulation results for scenario S11. We see that, with the 

accumulation of prediction errors (both positive and negative), the absolute difference 

between the temperature trajectories with and without forecast error lies within the 

0–0.5℃ range.  

 

Figure 5.3 Comparison of predicted indoor air temperature with and without the 

inclusion of uncertainty in Scenario S11. 
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5.4.3 Impact of Weighting Factor 

 This section first discusses the allocation factors 𝛼𝑖
𝑡 generated by the operator 

layer, which later serves as the input for the smart controllers at the building layer. 

Then, we compare the scheduled load shapes, battery behavior, and indoor 

temperature of each building in different scenarios to further discuss the impact of 

weighting factors on the KPIs. 

 Figure 5.4 compares the allocation factors for equally weighted buildings 

(baseline) with weightings that prioritize each building over the others. Qualitatively, 

when all buildings are equally weighted in the allocation process (second plot from 

top), we see a rather random behavior for the PV allocation during the night time 

when no PV power is available. All three buildings take turn to get full PV power 

(𝛼𝑖
𝑡 = 1) because they have the same objective function value. On the contrary, for the 

scenarios when a single building is prioritized, the prioritized building gets full PV 

power alone during the nighttime (bottom three plots). During the daytime, when 

more PV generation is available, the allocation results follow similar trends for all 

scenarios regardless of the weighting method. Although generally, we see less load 

shedding in the prioritized building, as well as a higher value of the allocation factor, 

the allocation process is mostly constrained by the building load flexibility ranges. 

More specifically, buildings with a higher load flexibility lower bound (i.e., ice cream 

shop) tend to get more allowable load than other buildings.  
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Figure 5.4 Allocation factors for each COL PV allocation scenario. 

 Figure 5.5 plots the allocation factors for the occupancy-based weighting 

method against building occupancy. Here, occupancy indicates whether the building 

is occupied. In this work, we do not consider the number of people in the building as 

we don’t have access to this level of data. From the middle plot, we see that the 

residential building is mostly occupied during the night from about 7 PM to 8 AM Ice 

cream shop and bakery are occupied during the day from 10 AM–11 PM and 6 AM–7 

PM, respectively. From the bottom plot, we see that similar to single building 

prioritized scenarios, when at night the only residential building is occupied, it gets 

full PV allocation. However, when the time reaches 5 AM, the allocation factor of the 

residential building starts to decrease and during the day only a few hours will it get 
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PV power due to its unoccupied status. During the daytime, when both the bakery 

and ice cream shop are occupied, the allocation follows the buildings’ power flexibility 

lower bounds as discussed before. 

 

Figure 5.5 Allocation factors for occupancy-based weighting against building 

occupancy. 

 To further quantify the impact of different weighting methods, the mean values 

of the allocation factors 𝛼𝑖
𝑡̅̅ ̅, as well as the total allocated PV energy are listed in Table 

5.5. Due to the highly stochastic allocation during nighttime when no PV power is 

available, we only counted hours when PV generation is greater than zero in the 

calculation of 𝛼𝑖
𝑡̅̅ ̅. From the table, we noticed that having a lower mean allocation 

factor does not necessarily mean less PV energy allocation. For example, in the 

scenario where the residential building is prioritized, its 𝛼𝑖
𝑡̅̅ ̅ is less than 22% while for 

the bakery it is almost 33%. However, the total PV energy allocated to the residential 
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building is 33.42% more than that allocated to the bakery. This is because the 

residential building has higher 𝛼𝑖
𝑡 values during hours with the most PV generation 

(i.e., around noon). This indicates that having a higher allocation factor when more 

PV power is generated is more crucial. When looking at the occupancy-based 

weighting scenario, the residential building PV energy exceeds that of the equal 

weighting scenario since the shortly occupied hours during the day (e.g., hours 34–

36) bring more allocation. Overall, no matter which weighting method is adopted, the 

ice cream shop is always allocated the most PV energy due to its large refrigeration 

loads, while the residential building is always allocated the least amount of PV energy 

(except when it is prioritized in scenarios S21_R and S22_R). This indicates that the 

impact of power flexibility is more prominent than the weighting factors during the 

resource allocation. 

Table 5.5 Mean values of allocation factors and PV energy allocation for different 

weighting methods. 

Building 

Equal 

Weighting 

Priority-Based Weighting 
Occupancy-

Based 

Weighting 

Prioritize 

Residential 

Prioritize 

Ice Cream 

Shop 

Prioritize 

Bakery 

𝛼𝑖
𝑡̅̅ ̅ 𝐸𝑝𝑣(𝑘𝑊ℎ) 𝛼𝑖

𝑡̅̅ ̅ 𝐸𝑝𝑣(𝑘𝑊ℎ]) 𝛼𝑖
𝑡̅̅ ̅ 𝐸𝑝𝑣(𝑘𝑊ℎ]) 𝛼𝑖

𝑡̅̅ ̅ 𝐸𝑝𝑣(𝑘𝑊ℎ]) 𝛼𝑖
𝑡̅̅ ̅ 𝐸𝑝𝑣(𝑘𝑊ℎ]) 

Residential 0.099 59.52 0.218 153.85 0.075 67.18 0.054 58.67 0.163 108.61 

Ice Cream 

Shop 
0.499 350.07 0.455 309.51 0.669 356.00 0.454 346.20 0.581 308.51 

Bakery 0.402 169.08 0.326 115.31 0.256 155.50 0.492 173.80 0.255 161.56 

  

 Next, the simulation results will be discussed for the various PV allocation 

methods. In the following discussion, we highlight a subset of the results; however, 

the complete set of results are available in Appendix A and quantitative results for 

all 30 simulations are summarized in Table A.3. In the following simulation results, 
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the baseline power is the original load shape from the data. The positive battery 

power means charging and the negative means discharging. The scheduled 

sheddable, modulatable, shiftable, and critical loads are represented by color blocks. 

When evaluating the thermal comfort results, the baseline temperature is the 

original indoor temperature with a setpoint of 24°C without optimization. For clarity, 

the label S21 in the temperature plots represents the scenario of the discussed 

building being prioritized, as described in Table 5.1.  

 The residential building operation is compared in the scenario where all 

buildings are equally weighted and where the residential building is prioritized in 

Figure 5.6 and Figure 5.7, respectively. In both scenarios, we see that shiftable loads 

are scheduled during the day when more PV power is available. All sheddable and 

modulatable loads are satisfied in both cases (see Table A.3 for details). When the 

allocated PV power is more than doubled in the residential building due to it being 

prioritized, we see more battery charging and discharging in Figure 5.7. However, 

more than enough PV power is allocated to the residential building in this case due 

to its high priority, resulting in 31.25% of the allocated PV power being curtailed. 

Additionally, more power is allocated to the HVAC system in Figure 5.7, causing the 

indoor temperature to be closer to the lower bound (Figure 5.8). Comparing S11, S21, 

S31 with various weighting factors in Figure 5.8, we see that scenarios with more 

allocated PV power results in a lower indoor temperature since more power is 

available for the HVAC load. In Figure 5.8, all temperatures are within the comfort 
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bounds. It is noted that in Figure 5.8, S12, S22, and S32 temperature curves have 

almost the same trend that cannot be differentiated from the plot.  

 

Figure 5.6 Residential building load shape, battery behavior, and PV power (S11: 

equal weighting, minimizing unserved load ratio). 

 

Figure 5.7 Residential building load shape, battery behavior, and PV power (S21_R: 

prioritizing residential, minimizing unserved load ratio). 
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Figure 5.8 Residential building indoor and outdoor temperature for all scenarios. 

 Figure 5.9 depicts the results for the ice cream shop with equal weighting while 

Figure 5.10 shows the results with occupancy-based weighting. Since the total 

allocated PV energy in Figure 5.10 is reduced by about 12% compared to Figure 5.9, 

we see much less battery charging and a slight reduction of HVAC power in Figure 

5.10. All sheddable loads are satisfied in both cases (see Table A.3 for details). In 

Figure 5.11, the indoor temperature trajectories of S11 and S21 overlap with each 

other as almost the same amount of PV power is allocated to the ice cream shop in 

these two scenarios. The indoor temperature in simulation scenario S31 first drops 

below those of scenarios S11 and S21 in the morning due to a precooling between 6 to 

9 AM, and then exceeds them in the afternoon due to less power available to operate 

the HVAC system. A similar trend is also seen in the following simulation day. As in 

the residential building, Figure 5.11 shows that the indoor thermal comfort of the ice 

cream shop was maintained within the given temperature bounds. It is noted that in 

Figure 5.11, S12, S22, and S32 temperature curves have almost the same trend that 

cannot be differentiated from the plot. 
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Figure 5.9 Ice cream shop load shape, battery behavior, and PV power (S11: equal 

weighting, minimizing unserved load ratio). 

 

Figure 5.10 Ice cream shop load shape, battery behavior, and PV power (S31: 

occupancy-based weighting, minimizing unserved load ratio). 

 

Figure 5.11 Ice cream shop indoor and outdoor temperature for all scenarios. 
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 Figure 5.12 plots the results for bakery with equal weighting while Figure 5.13 

with occupancy-based weighting. Due to a reduction of PV power in Figure 5.13, much 

less power is allocated to the HVAC system, especially during the late afternoon (e.g., 

hours 16 and 40). The battery discharging is almost the same in the two scenarios, 

both to satisfy the four types of loads present in this building. All sheddable and 

modulatable loads are satisfied in both cases (see Table A.3 for details). However, 

battery charging only happens about once a day in scenario S31 given the focused 

allocated PV power shape. In Figure 5.14, the indoor temperature for S31 is higher 

than S11 due to less power available to operate the HVAC system. All temperatures 

are within the comfort temperature bounds. It is noted that in Figure 5.14, S12, S22, 

and S32 temperature curves have almost the same trend that cannot be differentiated 

from the plot. 

 

Figure 5.12 Bakery load shape, battery behavior, and PV power (S11: equal 

weighting, minimizing unserved load ratio). 
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Figure 5.13 Bakery load shape, battery behavior, and PV power (S31: occupancy-

based weighting, minimizing unserved load ratio). 

 

Figure 5.14 Bakery indoor and outdoor temperature for all scenarios. 

 To summarize, in this section, we discussed the PV resource allocation results 

under different weighting methods. The resulted load shape, battery behavior, and 

indoor temperatures are also discussed qualitatively. From the discussion, we found 

that the weighting method of the operator layer directly affects the mean allocation 

factor of each building. When one building is prioritized, we see an obvious increase 

of 𝛼𝑖
𝑡̅̅ ̅. However, a higher 𝛼𝑖

𝑡̅̅ ̅ does not necessarily mean more PV energy allocation. A 

higher allocation factor during periods with more PV generation (e.g., around noon) 

is more crucial than a higher mean value of the allocation factor overall. Additionally, 

we noticed that the allocation process is mostly constrained by the building load 
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flexibility ranges. More specifically, buildings with a higher load flexibility lower 

bound (i.e., ice cream shop with large critical loads) tend to get more allowable load 

than other buildings. Additionally, when prioritizing buildings according to 

occupancy status, the building with a longer occupant presence gets more PV power, 

which is not necessarily a fair allocation method. For instance, in S31, 5.5% of the PV 

energy allocated to the residential building was curtailed. Since the allocation process 

was according to building occupancy time, more than enough power is allocated to 

the residential building in this case. Lastly, the resulting load schedule, battery 

behavior, and indoor temperature are directly correlated with the available PV power 

when other system settings are the same (e.g., battery charging constraints and 

penalty coefficients). 

5.4.4 Impact of Objective Function 

 This section discusses the impact of different objective functions on the 

scheduled load shapes, battery behavior, and indoor temperature. Similar to the last 

section, qualitative discussions will first be provided.  

 Figure 5.15 plots the results of the residential building with equal weighting 

and the objective is to maximize thermal comfort. Compared with Figure 5.6, we see 

that when the objective switches from minimizing unserved load to maximizing 

comfort, there is an obvious increase of HVAC power, and the temperature gets closer 

to the temperature setpoint of 24℃ (Figure 5.8). When comparing Figure 5.16 with 

Figure 5.7, we see a decrease in HVAC power usage because before (S21 in Figure 

5.8), the indoor temperature was below 24℃; when the objective is to minimize the 
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temperature deviation from 24℃, the required cooling power is actually less. The 

HVAC power is saved to get the indoor temperature closer to the temperature 

setpoint. 

 

Figure 5.15 Residential building load shape, battery behavior, and PV power (S12: 

equal weighting, maximizing thermal comfort). 

 

Figure 5.16 Residential building load shape, battery behavior, and PV power 

(S22_R: prioritizing residential, maximizing thermal comfort). 

 Comparing Figure 5.17 with Figure 5.9, we see a decrease of serving in 

sheddable load when the objective switches from minimizing unserved load to 

maximizing comfort. As a result, 63.72% of the sheddable load is unserved in this 

scenario (Table A.3). However, the HVAC power also decreases in order to increase 
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the indoor temperature to the temperature setpoint. The saved PV power is charged 

into the battery as we see an increase in battery charging in Figure 5.17. A similar 

observation can be found if we compare Figure 5.18 with Figure 5.12, where the 

unserved ratio of sheddable load increases to 99.03% and modulatable to 68.89% due 

to the change of the objective function (Table A.3). 

 

Figure 5.17 Ice cream shop load shape, battery behavior, and PV power (S12: equal 

weighting, maximizing thermal comfort). 

 

Figure 5.18 Bakery load shape, battery behavior, and PV power (S12: equal 

weighting, maximizing thermal comfort). 

 To further quantify the impact of the weighting factor and objective function, 

we summarized the community overall KPIs in Table 5.6 and Table 5.7. The KPIs 
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include PV curtailment ratio, unserved load ratio, temperature deviation from 

setpoint, and required battery size. The definition of the PV curtailment ratio is the 

total curtailed PV energy over the generated energy during the simulation horizon. 

The unserved load ratio is calculated by dividing the total unserved load by the total 

original load over the simulation horizon. The definition of the temperature deviation 

from the setpoint is adapted from the root mean square deviation (RMSD), which is 

the root mean of the square of the deviation between the indoor temperature and the 

temperature setpoint over the 48-h simulation denoted by: 

𝑅𝑀𝑆𝐷 =
√∑ (𝑇𝑟𝑜𝑜𝑚

𝑡 −
𝑇𝑟𝑜𝑜𝑚 + 𝑇𝑟𝑜𝑜𝑚

2 )

2

𝐻
𝑡=1

𝑁
, 

(5.50) 

where 𝑁 = 48 is the simulation horizon. Here, the temperature setpoint is selected to 

be the middle of the comfort temperature range: 24℃. Lastly, the required battery 

size is obtained by subtracting the minimum battery SOC from the maximum value. 

This gives us a sense of how much of the battery capacity has been utilized under 

different scenarios. Further, this could help to guide the battery sizing to enhance 

community resilience. 

Table 5.6 Community overall PV curtailment and unserved load ratio of each 

scenario. 

Scenario 

PV 

Curtailment 

Ratio 

Unserved Load Ratio 

Sheddable Shiftable Modulatable Critical Overall 

S11 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 

S21_R 8.31% 0.00% 10.94% 0.00% 0.00% 0.27% 

S21_I 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 

S21_B 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 

S31 1.03% 0.00% 10.94% 0.00% 0.00% 0.27% 

S12 0.00% 64.14% 10.94% 68.89% 0.00% 9.25% 

S22_R 13.18% 65.06% 10.94% 77.00% 0.00% 9.54% 

S22_I 0.00% 64.13% 10.94% 72.83% 0.00% 9.34% 



154 
 

Scenario 

PV 

Curtailment 

Ratio 

Unserved Load Ratio 

Sheddable Shiftable Modulatable Critical Overall 

S22_B 0.00% 64.14% 10.94% 69.23% 0.00% 9.26% 

S32 5.43% 65.49% 10.94% 73.64% 0.00% 9.51% 

  

 From Table 5.6, we see that PV curtailment only happens when the residential 

building is prioritized (S21_R and S22_R) or when occupancy-based weighting is 

implemented (S31 and S32). This is because the residential building has a relatively 

small power demand compared to the other two commercial buildings. When it is 

prioritized by the operator layer, more PV generation is allocated than needed, 

resulting in PV curtailment. This also echoes our discussions above that allocating 

purely based on building occupancy status could lead to unfair allocation situations. 

In the table, the shiftable load unserved load ratio is the same for all scenarios. This 

is because of our assumption that each shiftable load operates once and only once 

every day. However, in the original data, some loads might have operated more than 

once, causing “unserved load” for shiftable loads. Given this, we can consider that all 

loads are satisfied for the scenarios to minimize unserved load (S11 to S31 in Table 

5.6). When looking at scenarios S12–S32 in Table 5.6, we see an increase of unserved 

load as the objective switches to maximizing comfort. The largest unserved load ratio 

appears in the scenario where the residential building is prioritized. From Table 5.6, 

the scenarios that perform the best would be S11, S21_I, and S21_B if we only 

consider PV curtailment and unserved load ratio. In these scenarios, the PV 

allocation is either equally weighting all buildings or prioritizing those with larger 

power demand while minimizing the unserved load ratio. 
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Table 5.7 Community overall room temperature deviation and required battery size 

of each scenario. 

Scenario 
Temperature 

Deviation (℃) 
Battery Size 

(kWh) 

S11 3.04 199.8 

S21_R 4.05 215.55 

S21_I 2.78 209.64 

S21_B 3.10 194.61 

S31 3.48 182.91 

S12 0.53 218.07 

S22_R 0.53 242.05 

S22_I 0.53 237.91 

S22_B 0.53 210.19 

S32 0.53 199.52 

 

 Next, we analyze the temperature deviation and necessary battery size shown 

in Table 5.7. We see that all scenarios with the thermal comfort objective experience 

the fewest temperature deviations. This means that the indoor temperature is well 

controlled to stay near the temperature setpoint. In the remaining scenarios with the 

unserved load objective, large deviations in temperature can be seen. For many 

scenarios, this is due to lower indoor temperatures than the temperature setpoint. 

Hence, setting the temperature setpoint appropriately can save HVAC energy. 

However, in our case, the saved energy was either curtailed or charged into the 

battery instead of satisfying the other loads. This also leads to larger battery sizes in 

scenarios to maximize comfort (average size: 221.5 kWh) than scenarios to minimize 

unserved load (average size: 200.5 kWh). Therefore, a co-optimization of thermal 

comfort and unserved load is necessary with the benefit of less curtailment, smaller 

unserved load ratio, assured thermal comfort, as well as smaller battery size.  

 The above simulation results highlight the impact of the objective function on 

KPI outcomes. From the above discussions, we identified that if only PV curtailment 
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and unserved load ratio are considered, the best option is to allocate the PV resource 

either equally weighting or prioritizing buildings with larger power demand while 

minimizing the unserved load ratio. After further looking at other indices, we noticed 

that choosing the optimization objective to track an appropriately selected indoor 

room temperature setpoint will save HVAC energy. However, this will not lead to a 

lower unserved ratio for other load types. Instead, the PV curtailment could increase. 

The two objectives have a competitive relationship: serving more HVAC power to 

increase thermal comfort will decrease the other served load.  

5.5 Conclusion 

 We proposed a novel decentralized control architecture for renewable resource 

allocation and load scheduling of resilient communities. This MPC-based 

optimization architecture consists of a community operator layer that allocates the 

daily PV power generation to achieve the community-wide optimum and a building 

agent layer that schedules building loads to achieve its local optimum in each 

building. Three allocation methods were tested for the operator layer: equally 

weighted, weighted based on building priority, and weighted based on building 

occupancy. At the building level, two objective functions were compared: minimizing 

unserved load ratio versus maximizing thermal comfort. The proposed framework 

has the advantage of distributed computational effort and is easier to be scaled up 

than traditional centralized control, which is not robust for large-scale deployment. 

Additionally, the comparison between different combinations of allocation methods 
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and objective functions provides guidance for real-world deployment by community 

and microgrid operators. 

 Through a case study for an islanded community in FL for 48 h, we evaluated 

the proposed architecture with respect to user-centric performance metrics. We found 

that the allocation process is mostly constrained by the building load flexibility. More 

specifically, buildings with less load flexibility (i.e., ice cream shop with large critical 

loads) tend to be allocated more PV generation than other buildings. Additionally, 

when prioritizing buildings according to occupancy status, the building with a longer 

occupancy duration is allocated more PV power, which may not result in a fair 

allocation method and could lead to more PV curtailment.  

 Additionally, through the analysis of different objective functions, we found that 

setting the objective to target at an appropriately selected indoor temperature 

setpoint will result in increased HVAC energy savings. However, in our case study, 

this did not lead to a lower unserved ratio for other load types. Instead, the PV 

curtailment increased. The two objectives have a competitive relationship: serving 

more HVAC power to increase thermal comfort will decrease the other served load. 

Therefore, it is necessary for the building agent to have multi-objective optimization 

to minimize the unserved load ratio and maximize comfort simultaneously. This will 

bring the benefit of less curtailment, a smaller unserved load ratio, assured thermal 

comfort, as well as smaller battery size. However, the weighting between the two 

objectives needs to be carefully selected as their scales are quite different. 
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 Limitations of this work lie in that all load models (e.g., HVAC system) have 

been linearized for the reduction of the computational effort, which can be improved 

in the future. Further, the decentralized MPC problem was not solved iteratively with 

data exchanged between the two layers. This is reasonable in this work because the 

same model was used for both prediction and evaluation. However, for more realistic 

cases, the problem should be solved iteratively with information exchanged at every 

timestep to better account for uncertainties. 

 For future work, we will conduct multi-objective optimization for the building 

agent layer to investigate the trade-off between minimizing the unserved load ratio 

and maximizing thermal comfort. Uncertainty of PV generation should also be 

included to reflect the impact of different weather conditions. Nonlinear models for 

controllable devices could be incorporated into the framework to better reflect the 

system dynamics in the future. 
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 The load scheduling of resilient communities in the islanded mode is subject to 

many uncertainties such as weather forecast errors and occupant behavior 

stochasticity. To date, it remains unclear how occupant preferences affect the 

effectiveness of the load scheduling of resilient communities. This chapter proposes 

an occupant preference-aware load scheduler for resilient communities operating in 

the islanded mode. The load scheduling framework is formulated as a model 

predictive control problem. Based on this framework, a deterministic load scheduler 

is adopted as the baseline. Then, a chance-constrained scheduler is proposed to 

address the occupant-induced uncertainty in room temperature setpoints. Key 

resilience indicators are selected to quantify the impacts of the uncertainties on 

community load scheduling. Finally, the proposed preference-aware scheduler is 

compared with the deterministic scheduler on a virtual testbed based on a real-world 

net-zero energy community in Florida, USA. Results show that the proposed 

scheduler performs better in terms of serving the occupants’ thermal preference and 

reducing the required battery size, given the presence of the assumed stochastic 

occupant behavior. This work indicates that it is necessary to consider the 

stochasticity of occupant behavior when designing optimal load schedulers for 

resilient communities.  

6.1 Introduction 

 Due to the increasing frequency of extreme weather events such as the 2021 

Texas Power Crisis [4], there is an emerging need for community resilience studies. 

Resilient communities refer to those that can sustain disruptions and adapt to them 
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quickly by continuing to operate without sacrificing the occupants’ essential needs 

[152, 174]. Enabling technologies for resilient communities often involve distributed 

energy resources such as PV and electrical energy storage (EES) systems. When 

disconnected from the main grid, the adoption of advanced control techniques can 

help enhance community resilience.  

 As an advanced control technique, optimal load scheduling determines the 

operation schedules of controllable devices in the community to achieve optimization 

objectives. For a resilient community, typical controllable assets include the EES, PV, 

and thermostatically controllable devices in buildings such as the HVAC system. 

Building plug loads that are sheddable, shiftable, or modulatable can also be 

considered flexible loads in islanded circumstances [195]. The objectives of the load 

scheduling for resilient communities often involve maximizing the self-consumption 

rate of locally generated PV energy, minimizing PV curtailment, and minimizing the 

unserved ratio to critical loads. 

 It is important to account for uncertainties when designing a load scheduler for 

resilient communities. Moreover, due to the limited amount of available PV 

generation during off-grid scenarios, the uncertainties need to be more carefully dealt 

with to ensure a satisfying control performance. Sources of uncertainties for a 

community load scheduling problem mainly lie in two aspects: power generation and 

consumption. For renewable energy generation, weather forecast errors play a 

prominent role in the cause of uncertainty. Whereas, for energy consumption, 

occupant behavior stochasticity is a major source of uncertainty.  
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 Much of existing load scheduling research has considered the uncertainty of 

weather forecasts [191, 196–203]. Kou et al. [196] proposed a comprehensive 

scheduling framework for residential building DR considering both day-ahead and 

real-time electricity markets. The results demonstrated the effectiveness of the 

proposed approach for large-scale residential DR applications under weather and 

consumer uncertainties. Garifi et al. [191] adopted stochastic optimization in an 

MPC-based home energy management system. The indoor thermal comfort is ensured 

at a high probability with uncertainty in the outdoor temperature and solar 

irradiance forecasts. Faraji et al. [197] proposed a hybrid learning-based method 

using an artificial neural network to precisely predict the weather data, which 

eliminated the impact of weather forecast uncertainties on the scheduling of 

microgrids. Similarly, in the authors’ previous publication [198], normally distributed 

outdoor temperature and solar irradiance forecast errors were introduced into the 

community control framework, which accounted for the uncertainties in the weather 

forecasts.  

 However, the uncertainties from the power consumption perspective, especially 

the occupant behavior uncertainty, is rarely accounted for in load scheduling 

research [204–208]. Some efforts to integrate occupant behavior modeling can be 

found in studies of building optimal control [209–212]. Aftab et al. [209] used video-

processing and machine-learning techniques to enable real-time building occupancy 

recognition and prediction. This further facilitated the HVAC system operation 

control to achieve building energy savings. Lim et al. [210] solved a joint occupancy 
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scheduling and occupancy-based HVAC control problem for the optimal room booking 

(i.e., meeting scheduling) in commercial and educational buildings. Both the 

occupancy status of each meeting room and the HVAC control variables were decision 

variables. Mixed-integer linear programming was adopted to optimally solve the 

optimization problem.  

 Notably, all of the preceding control work considered the stochasticity of 

building occupancy schedules, but the integration of other types of occupant behavior 

into building optimal control is not well studied in the existing literature. Some 

researchers integrate the occupant thermal sensation feedback into the MPC for 

buildings [213, 214]. For instance, Chen et al. [213] integrated a dynamic thermal 

sensation model into the MPC to help achieve energy savings using the HVAC 

control. For the occupant sensation model, the predictive performance of certainty-

equivalence MPC and chance-constrained MPC were compared.  

 To summarize, the literature review shows that current research mainly focuses 

on the load scheduling of single buildings under grid-connected scenarios. There is a 

lack of research on the optimal load scheduling of resilient communities informed by 

occupant behavior uncertainties in the islanded mode [215]. Given this gap, this 

chapter proposes an occupant preference-aware load scheduling framework for 

resilient communities in the islanded mode. The occupants’ thermal preference for 

indoor air temperature will be reflected in the integration of thermostat adjustment 

probabilistic models. The optimal load scheduling is formulated as an MPC problem, 
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so the stochastic thermostat-changing behavior will be regarded as the uncertainty 

in the MPC problem. 

 Different methods, such as the offset-free method and robust method, can be 

used to handle the uncertainties in MPC problems [216]. The chance-constraint 

method, also known as the stochastic MPC, was selected to deal with the uncertainty 

in occupant preference in our study. It allows the violation of certain constraints at a 

predetermined probability. It thus enables a systematic trade-off between the control 

performance and the constraint violations [180]. The advantage of addressing 

occupant preference uncertainty by using the chance-constraint method lies in the a 

priori handling of the uncertainty, which does not require the extra error-prediction 

models needed by other methods (i.e., offset free method), and thus simplifies the 

control problem [217]. Therefore, less computational effort is required after the 

control design phase. Though it requires the controller to know the estimated 

uncertainty distribution beforehand, the development of occupant behavior 

probabilistic modeling will make knowing this less challenging.  

 In this work, we consider the load scheduling of a resilient community in 

islanded mode during power outages. The goal is to study the impact of occupants’ 

thermal preference on the operation of an islanded community. The load scheduling 

problem of the community will be solved using an optimization-based hierarchical 

control framework. Occupant thermal preference will be integrated through 

thermostat changing behavioral models to inform the development of the load 

scheduler. The major contributions of this work include (1) a proposed new 
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preference-aware load scheduler for resilient communities, which assures better 

control performance related to satisfying occupants’ thermal preferences and 

reducing the battery size; (2) the quantification of the impact of occupant thermostat-

changing behavior on resilient community optimal scheduling using selected key 

resilience indicators (KRIs); and (3) the testing of the proposed scheduler on a high-

fidelity virtual testbed for resilient communities. 

 The remainder of this chapter is organized as follows: Section 6.2 details the 

research methodology. Section 6.3 describes the controllable device models used in 

this work involving the building HVAC models, load models, and battery models. 

Section 6.4 then discusses the deterministic versus stochastic scheduler formulations 

and proposes a chance-constrained controller for preference-aware load scheduling of 

resilient communities. Section 6.5 applies the theoretical work to a case study 

community and quantifies the impact of occupant preference uncertainty. Simulation 

results and discussions are presented in this section. Finally, Section 6.5 concludes 

the chapter by identifying future work. 

6.2 Methodology 

 In this section, we first introduce a hierarchical optimal control structure for 

resilient community load scheduling. Based on the structure, a deterministic 

scheduler will be implemented as the baseline. Further, we propose a research 

workflow to implement a stochastic preference-aware scheduler for addressing 

uncertainties in occupant thermostat-changing behavior. KRIs are proposed at the 

end of this section. 
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6.2.1 Hierarchical Optimal Control for Resilient Communities 

 In this study, we assume that the only energy resource accessible to the islanded 

community is on-site PV generation and the batteries for an extended period of more 

than 24 hours. In this problem setting, in order to make full use of the limited amount 

of PV generation and satisfy the occupants’ essential needs, the building loads need 

to be shifted or modulated. The battery works as a temporal arbitrage for meeting 

the demand at night. In addition, the occupant thermal preference will affect the 

energy consumption of the HVAC system through the stochastic thermostat-changing 

behavior. To optimally control such a community, considering the above factors, we 

adopted a hierarchical control structure.  

 As illustrated in Figure 6.1, two layers of control are formulated: a community 

operator layer (COL) and a building agent layer (BAL). The COL optimally allocates 

the limited amount of the on-site PV generation based on the load flexibility provided 

by each building. The calculated allowable load for each building is then passed down 

to the BAL, where each building optimally schedules its controllable devices (i.e., 

HVAC, battery, and controllable loads) to achieve its local optimization goals. Both 

layers are formulated as MPC-based optimization problems.  
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Figure 6.1 The hierarchical optimal control structure for community operation. 

 The input of the hierarchical control involves the predicted PV generation data, 

outdoor air dry-bulb temperature, and solar irradiance. The PV generation data are 

used by the COL to determine the optimal allocation among buildings. The 

temperature and irradiance data are used by the HVAC models for updating the 

indoor room temperature predictions. The occupant behavior affects the two layers 

differently. The COL uses building occupancy schedules to decide the weights of 

different buildings during the PV allocation (details can be found in Section 5.2). The 

BAL considers occupant thermal preference to be the uncertainty in the indoor room 

temperature prediction.  

6.2.2 Proposed Workflow  

 Figure 6.2 depicts the workflow of this work. A deterministic optimal load 

scheduler without the occupant thermal preference uncertainty is implemented in 

the hierarchical control structure. Further, to account for the uncertainties, we 

propose a chance-constrained controller. It is developed based on the deterministic 

controller and involves an alteration of the room temperature constraints, which 
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accounts for the uncertainties in room temperature prediction errors caused by the 

occupants’ thermostat-changing behavior. The Monte Carlo simulation method was 

adopted to cover a wide range of simulation results.  

 

Figure 6.2 Diagram of the proposed workflow. 

 Further, to reflect various styles of occupant behavior, three types of occupant 

thermostat-changing models were adopted: low, medium, and high, which represent 

three levels of frequencies of the thermostat-changing activities. Here, we assume 

that when the occupant decides to change the indoor air temperature setpoint 

according to their preference, the predetermined optimal HVAC equipment control 

setting at the current timestep will be overridden. Instead, a new control setting will 

be calculated to achieve the occupants’ setpoint at the current timestep. At the next 

timestep, the predetermined optimal setting will still be used if the occupant is not 

changing the setpoint consecutively.  

 Finally, the optimal schedules determined by the chance-constrained controller 

and the deterministic controller are tested on a high-fidelity virtual testbed [16] with 

respect to their individual performances. KRIs such as the unserved load ratio, the 
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required battery size, and the unmet thermal preference hours were adopted to 

quantify the results.  

 The unserved load ratio in this work is defined as the relative discrepancy 

between the served load 𝑃𝑙𝑜𝑎𝑑
𝑡  and the originally predicted load 𝑃𝑙𝑜𝑎𝑑

𝑡
: 

𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑙𝑜𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 =
∑ (𝑃𝑙𝑜𝑎𝑑

𝑡
− 𝑃𝑙𝑜𝑎𝑑

𝑡 )𝑁
𝑡=1

∑ 𝑃𝑙𝑜𝑎𝑑

𝑡𝑁
𝑡=1

, (6.1) 

where 𝑁  is the MPC simulation horizon of 48 hours. The required battery size is 

obtained by subtracting the minimum battery SOC from the maximum SOC. This 

gives us a sense of how much of the battery capacity has been used under different 

scenarios. Finally, we define the unmet thermal preference hours metric for the 

cumulative absolute difference between the actual and the preferred room 

temperature over the optimization horizon:  

𝑈𝑛𝑚𝑒𝑡 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ℎ𝑜𝑢𝑟𝑠 = ∑ |𝑇𝑟𝑜𝑜𝑚
𝑡 − 𝑇𝑝𝑟𝑒𝑓𝑒𝑟

𝑡 |∆𝑡.
𝑁

𝑡=1
 (6.2) 

It quantifies how well the controller performs to satisfy the occupants’ thermal 

preference and has the unit of ºC-hrs. (degree hours).  

6.2.3 Models for Controllable Devices 

 This study assumes that heating and cooling is provided by heat pumps and the 

heat pump energy consumption represents the HVAC system energy consumption. 

We adopted linear regression models for the HVAC system to predict room 

temperatures at each timestep. To precisely model the building thermal reactions, 

two types of parameters that contribute to the heat gain of the building space are 

considered. The first type is environmental parameters such as the outdoor air dry-
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bulb temperature and solar irradiance. The second type represents the internal heat 

gain due to the presence of the occupants and the operation of appliances. We 

assumed that the simulated buildings are well sealed and thus the interference from 

the infiltration can be omitted. Therefore, the HVAC model updates the indoor room 

temperature based on the room temperature at the last timestep, the abovementioned 

heat gains, and the heating/cooling provided by the heat pump system at every 

timestep. The control variable is the heat pump speed ratio, which ranges from 0 to 

1 continuously. The resulting HVAC power is equal to the speed ratio multiplied by 

the nominal heat pump power. Additionally, to better account for the effect of building 

thermal mass, for each heat gain parameter, two past terms are adopted, 

respectively [190]. The equations for the HVAC model are as follows: 

𝑇𝑟𝑜𝑜𝑚
𝑡+1 = 𝛽1𝑇𝑟𝑜𝑜𝑚

𝑡 + 𝛽2𝑇𝑟𝑜𝑜𝑚
𝑡−1 + 𝛽3𝑇𝑎𝑚𝑏

𝑡 + 𝛽4𝑇𝑎𝑚𝑏
𝑡−1 + 𝛽5𝑟ℎ𝑣𝑎𝑐

𝑡 + 𝛽6𝑄𝑠𝑜𝑙
𝑡 + 𝛽7𝑄𝑠𝑜𝑙

𝑡−1

+ 𝛽8𝑄𝑔𝑎𝑖𝑛
𝑡 + 𝛽9𝑄𝑔𝑎𝑖𝑛

𝑡−1 , 
(6.3) 

s.t. 0 ≤ 𝑟ℎ𝑣𝑎𝑐
𝑡 ≤ 1, (6.4) 

𝑃ℎ𝑣𝑎𝑐
𝑡 = 𝑟ℎ𝑣𝑎𝑐

𝑡 𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚 , (6.5) 

where 𝑇𝑟𝑜𝑜𝑚
𝑡 , 𝑇𝑎𝑚𝑏

𝑡 , 𝑄𝑠𝑜𝑙
𝑡 , and 𝑄𝑔𝑎𝑖𝑛

𝑡  represent the room temperature, ambient dry-bulb 

temperature, solar irradiance, and internal heat gain at timestep 𝑡, respectively. The 

𝑟ℎ𝑣𝑎𝑐
𝑡  and 𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚  are the heat pump speed ratio and the nominal HVAC system 

power. The linear regression coefficients are represented by 𝛽. For 𝛽5 , a negative 

value means cooling, and positive means heating.  
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 In the model, 𝑄𝑔𝑎𝑖𝑛

𝑡  and 𝑄𝑔𝑎𝑖𝑛
𝑡−1  are related to the occupant presence and the 

operation of the building appliances. When the building is occupied, 70% of the total 

heat rate of a person (i.e., 100 W) is dissipated as sensible heat into the space and the 

rest 30% is latent heat [218]. The heat gain from appliances is calculated by the power 

of the appliance multiplied by its heat gain coefficient, which reflects how much of 

the consumed electric power is dissipated into the space as heat. Table A.4 in 

Appendix A lists the heat gain coefficients adopted from the literature [219–221]. 

 Note that the controllable loads are optimization variables of the scheduling 

problem, which will be iteratively calculated at each optimization timestep. 

Therefore, to speed up the optimization, we reduced the coupling between the thermal 

models and the electric demand models. This was done by calculating the weighted 

average heat gain coefficients for each building based on the capacity of each 

appliance (Table A.4).  

 The building load models in this work are categorized into four types according 

to their power flexibility characteristics: sheddable, modulatable, shiftable, and 

critical (Figure 6.3). The load categorization process has been introduced in Section 

5.2. The critical loads account for about 20% to 90% of the total building loads 

depending on building type and time of day. The mathematical formulation of the 

loads and the battery model can be found in Section 5.3.2.  
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Figure 6.3 Power flexibility characteristics of the four load types [222]. 

6.3 Optimal Load Scheduling 

 This section first presents the mathematical formulation of the deterministic 

load scheduler. After that, we will introduce the formulation of the occupant 

preference-aware stochastic scheduler containing three parts: the thermostat-

changing model, the uncertainty introduction mechanism, and the method to address 

the uncertainty. 

6.3.1 Deterministic Scheduler  

 As introduced in Section 6.2.1, the deterministic scheduler adopts a two-layer 

structure with COL and BAL. The objective of the COL is to minimize the community-

level PV curtailment to facilitate better use of the limited PV power during the 

outage. The main constraints are the load flexibility of each building, building 

occupancy, and building priority, etc. No detailed building assets are simulated at the 

community layer. This ensures that the COL is computationally tractable, especially 

when the problem scales up and the number of controllable building assets scales up. 

The detailed mathematical formulation of the COL can be found in Section 5.3.1. 

 The objective of the BAL is to minimize the unserved load ratio of each building 

within the allowable load range allocated by the COL. This is achieved through MPC-

based optimal scheduling of the building-owned HVAC system, controllable loads, 

and battery. The optimization is a mixed-integer linear programming problem 
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because the sheddable and shiftable load models contain binary variables. Next, the 

mathematical formulation of the optimization problem is presented. Note that the 

formulation applies to every individual building in the community.  

 The cost function to minimize the unserved load ratio is formulated as: 

𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥
𝑡}𝑡=1

𝐻 ) = ∑(𝑃𝑙𝑜𝑎𝑑

𝑡
− 𝑃𝑙𝑜𝑎𝑑

𝑡 )

𝐻

𝑡=1

+ ∑𝛾𝑃𝑐ℎ
𝑡

𝐻

𝑡=1

+ ∑𝛾′𝑃𝑐𝑢𝑟𝑡
𝑡

𝐻

𝑡=1

, (6.6) 

𝑚𝑖𝑛
{𝑥𝑡}𝑡=1

𝐻
𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥

𝑡}𝑡=1
𝐻 ) , (6.7) 

where 𝑃𝑙𝑜𝑎𝑑

𝑡
 is the predicted load upper bound from data. The difference between this 

upper bound and the actual operated loads 𝑃𝑙𝑜𝑎𝑑
𝑡  is minimized to achieve a maximum 

served load to the building. To avoid simultaneous battery charging and discharging 

as well as PV curtailment, the objective function also includes small penalizations of 

charging γPch
t  and curtailment γ′Pcurt

t  [189], where 𝛾  and 𝛾′  are the penalization 

coefficients. The power balance of each building that must be satisfied at each 

timestep is given by: 

𝑃𝑝𝑣
𝑡 − 𝑃𝑐𝑢𝑟𝑡

𝑡 = 𝑃𝑐ℎ
𝑡 − 𝑃𝑑𝑖𝑠

𝑡 + 𝑃𝑙𝑜𝑎𝑑
𝑡 + 𝑃ℎ𝑣𝑎𝑐

𝑡 , (6.8) 

where PV curtailment 𝑃𝑐𝑢𝑟𝑡
𝑡  is limited by how much PV generation 𝑃𝑝𝑣

𝑡  is available: 

0 ≤ 𝑃𝑐𝑢𝑟𝑡
𝑡 ≤ 𝑃𝑝𝑣

𝑡 . (6.9) 

The left-hand side of Equation (6.8) represents power generation, whereas the right-

hand side represents consumption. The 𝑃𝑐ℎ
𝑡  and 𝑃𝑑𝑖𝑠

𝑡  stand for the battery charging 

and discharging power as in Equation (5.46). The 𝑃𝑙𝑜𝑎𝑑
𝑡  and 𝑃ℎ𝑣𝑎𝑐

𝑡  are the total 

building loads and the HVAC power calculated in Equations (5.38) and (5.23), 
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respectively. To assure thermal comfort of the indoor environment, a temperature 

constraint is given by:  

𝑇𝑟𝑜𝑜𝑚 ≤ 𝑇𝑟𝑜𝑜𝑚
𝑡 ≤ 𝑇𝑟𝑜𝑜𝑚 , (6.10) 

where 𝑇𝑟𝑜𝑜𝑚  and 𝑇𝑟𝑜𝑜𝑚  are the lower and upper room temperature bounds 

implemented as hard constraints. The optimization variables in each building agent 

are collected in vector 𝑥𝑡: 

𝑥𝑡 = [
{𝑃𝑐𝑢𝑟𝑡

𝑡 }𝑡=1
𝐻 , {𝑃𝑐ℎ

𝑡 }𝑡=1
𝐻 , {𝑃𝑑𝑖𝑠

𝑡 }𝑡=1
𝐻 , {𝑟ℎ𝑣𝑎𝑐

𝑡 }𝑡=1
𝐻 , {𝑢𝑠ℎ𝑒𝑑,𝑗

𝑡 }
𝑡=1

𝐻
,

{𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡 }

𝑡=1

𝐻
, {𝑣𝑠ℎ𝑖𝑓,𝑗

𝑡 }
𝑡=1

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1
, {𝑇𝑟𝑜𝑜𝑚

𝑡 }𝑡=1
𝐻 , {𝐸𝑏𝑎𝑡

𝑡 } 𝑡=1
𝐻

]. (6.11) 

6.3.2 Stochastic Preference-aware Scheduler 

 To address the uncertainties of occupant thermal preference in the scheduling 

problem of resilient communities, this section introduces the stochastic preference-

aware scheduler. First, we discuss the modeling of the occupant behavior 

uncertainties as a probability function. Then we show the mechanism by which this 

uncertainty might affect the optimal control of the HVAC system. After that, we 

propose using the chance-constraint method to address the uncertainty. 

 The stochastic occupant thermostat-changing model adopted in this work was 

proposed by Gunay et al. [60]. Through continuous observation of the occupants’ 

thermostat keypress actions in private office spaces, the relationship between the 

thermostat-changing behavior and the concurrent occupancy, temperature, and 

relative humidity was analyzed. It was noted that the frequency of thermostat 

interactions (i.e., increasing or decreasing) can be approximated as a univariate 

logistic regression model with the indoor temperature as the independent predictor 
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variable. Though the original data set was obtained from two office buildings, Gunay 

et al. generalized the study to understand occupants’ thermostat user behavior and 

temperature preferences. Given the universality of their work, we have adapted their 

models based on our use cases. Note that occupants might have varied (e.g., higher) 

tolerance of indoor temperature during an emergency. The exact thresholds need 

further experimental study and validation, which is out of the scope of this work. 

 The thermostat-changing behavior models determine whether the occupants 

will change the setpoint temperature based on the concurrent indoor air temperature. 

The probability of increasing and decreasing the temperature setpoint is predicted 

with a logistic regression model: 

𝑝 =
1

1 + 𝑒−(𝑎+𝑏𝑇𝑟𝑜𝑜𝑚)
, (6.12) 

where 𝑝  is the probability of the changing action, 𝑇𝑟𝑜𝑜𝑚  is the indoor room 

temperature, and 𝑎 and 𝑏 are coefficients. To investigate different uncertainty levels, 

we proposed three different active levels by revising the coefficients of the model in 

Equation (6.12). As shown in Table 6.1, the low active level adopts the original 

coefficients in [60]. Then, we proposed the medium and high active levels to represent 

various occupant thermal preference styles. The standard errors and p-values of the 

low active level coefficients are also provided in the table. As for the medium and high 

levels, we do not have measurement data for the statistical analysis since we adapted 

the coefficients from the original reference [60]. 
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Table 6.1 Coefficients in different active levels of the occupant thermostat-changing 

behavior model. 

Active Level 

Coefficients 

Increasing Decreasing 

a b a b 

Low [60] -0.179 -0.285 -17.467 0.496 

Medium 7.821 -0.485 -20.667 0.696 

High 15.821 -0.685 -23.867 0.896 

Standard Error 1.047 0.048 0.684 0.028 

p-value 0.864 0.000 0.000 0.000 

 

 Note that the adaptation of the original logistic regression models was made 

under the following assumptions to ensure the adapted models remained realistic. 

For the setpoint increasing scenario, the slope coefficient of 𝑏 is varied linearly to 

reflect a higher frequency of the changing behavior. The intercept coefficient 𝑎 is then 

calculated to make sure that all active levels have the same value of probability at 

the temperature of 40ºC. For the setpoint decreasing scenario, a similar approach is 

taken to make sure the same value of probability at 16ºC is shared by all active levels. 

At each thermostat interaction, we assume that 1ºC of setpoint change would take 

place. Figure 6.4 depicts the probabilities of the three active levels. Note that this 

figure contains a wider temperature range than 16ºC-40ºC to show a more 

comprehensive performance of the behavior models. 
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Figure 6.4 Probability of different thermostat-changing behavior. 

 Once the probability of the thermostat-changing behavior is determined using 

the above models, the increasing or decreasing action is determined by comparing the 

probabilities with a randomly generated number. At each optimization timestep, a 

random number between 0 and 1 is generated. If the number is larger than 1 −

Pr (𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒), the action will be to increase. On the contrary, if it is smaller than 

Pr (𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒), the action will be to decrease. Because the sum of the increase and 

decrease probabilities is smaller than 1 in our case, this algorithm assures at most 

one action will be taken at each timestep. 

 To introduce the occupant thermostat-changing uncertainties to the load 

scheduling problem, a stochastic simulation model representing the behavior needs 

to be incorporated into the optimization. Figure 6.5 shows the control signal flow for 

the typical indoor air temperature control, which affects the HVAC system's 

operational status and its power consumption. The occupant sets the temperature 
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setpoint according to his/her preference through the thermostat. Behind the 

thermostat, a PID controller decides the next heat pump speed to offset the difference 

between the measured room temperature and the setpoint. This heat pump speed 

signal is then fed into the heat pump system to provide cooling for the conditioned 

space. Due to the presence of dynamic environmental and behavioral disturbances, 

this process will need to be repeated until the measured room temperature reaches 

the setpoint.  

 
Figure 6.5 Diagram showing the introduction of occupant thermostat-changing 

behavior to the optimization. 

 However, in the optimal control mechanism, the optimal scheduler takes over 

the control of the heat pump speed from the PID controller. As a result, the occupants’ 

preference has thus been “disabled” to allow an optimal control determined by the 

scheduler. To mimic the overriding of the room temperature setpoint by the 

occupants, the following algorithm was implemented in the MPC problem, and the 

pseudo code is shown below. Before each round of the optimization starts (Steps 1–

2), if the occupant decided to change the setpoint (Step 3), the heat pump speed for 

the current timestep should be calculated to reach the setpoint instead of achieving 

the optimization objective (Steps 4–7). Otherwise, the optimization runs normally 

because no overriding happens (Step 7). After each optimization timestep, the flag 



179 
 
variables indicating the thermostat-changing actions need to be updated according to 

the concurrent room temperature (Step 8). It should be noted that in the optimization, 

no PID controller has been implemented, so we assumed that 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑠𝑒𝑡

𝑡  and the 

setpoint changes were directly added to the room temperature 𝑇𝑟𝑜𝑜𝑚
𝑡 .  

Step 1. Start 

Step 2. Initialization of flag variables: 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒; 

Step 3. If 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑡𝑟𝑢𝑒 or 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑡𝑟𝑢𝑒: 

             Step 4. 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑟𝑜𝑜𝑚

𝑡−1 + 1 or 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑟𝑜𝑜𝑚

𝑡−1 − 1; 

             Step 5. Calculate the corresponding 𝑟ℎ𝑣𝑎𝑐
𝑡 ; 

             Step 6. Disable 𝑟ℎ𝑣𝑎𝑐
𝑡  from the optimization variables; 

Step 7. Run MPC for timestep 𝑡; 

Step 8. Update flag variables (i.e., 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 and 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒) according to 𝑇𝑟𝑜𝑜𝑚
𝑡 ; 

Step 9. Repeat Steps 3–8 until the end of the MPC horizon of 48 hours; 

Step 10. End 

 

 As mentioned above, the uncertainties in the occupants’ thermostat-changing 

behavior are a probability function. In the scheduling optimization problem, the 

constraint directly affected by the occupants’ thermostat-changing behavior is the 

room temperature bounds. The uncertainties related to the occupants’ adjusting the 

thermostat could lead to the violation of the temperature bounds during the 

implementation of the developed control strategies. Furthermore, this could lead to 

other control-related performances being affected, including higher building load 
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unserved ratio and larger required battery size. To address this, we adopted the 

chance-constraint method.  

 By definition, the chance constraint allows the violation of a certain constraint 

with a small probability, which thus presents a systematic trade-off between control 

performance and the probability of constraint violations [223]. It can be expressed in 

general by the following equation: 

𝑃𝑟(𝑔(𝑥, 𝜉) ≤ 0) ≥ 1 − 𝜖, (6.13) 

where 𝑔(𝑥, 𝜉) ≤ 0  is the inequivalent constraint and 𝜖  is the maximum violation 

probability. Given the uncertainties in the occupants’ thermostat-changing behavior, 

we assume that the temperature bounds can be satisfied with a probability of (1 −

𝜖𝑇). For the lower temperature bounds, the chance constraint can thus be written as: 

𝑃𝑟(𝑇𝑟𝑜𝑜𝑚 ≤ 𝑇𝑟𝑜𝑜𝑚
𝑡+1 ) ≥ 1 − 𝜖𝑇 . (6.14) 

Then, we rewrite it as: 

𝑃𝑟(𝜒𝑇
𝑡+1 ≤ 0) ≥ 1 − 𝜖𝑇 , (6.15) 

where 𝜒𝑇
𝑡+1 = 𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑟𝑜𝑜𝑚

𝑡+1 . Let the indoor temperature be rewritten in terms of the 

prediction error: 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑟𝑜𝑜𝑚,𝑓

𝑡 + 𝑇𝑟𝑜𝑜𝑚,𝑒
𝑡  where 𝑇𝑟𝑜𝑜𝑚,𝑓

𝑡  is the predicted indoor room 

temperature and 𝑇𝑟𝑜𝑜𝑚,𝑒
𝑡  is the error caused by uncertainties. Similarly, 𝑇𝑟𝑜𝑜𝑚

𝑡−1 =

𝑇𝑟𝑜𝑜𝑚,𝑓
𝑡−1 + 𝑇𝑟𝑜𝑜𝑚,𝑒

𝑡−1 . For both timesteps, the room temperature distribution error follows 

the same distribution. The hypothetical error distributions can be in different forms 

and here we assume the distribution to be normal. Hence, it can be represented by: 
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𝑇𝑟𝑜𝑜𝑚,𝑒
𝑡,𝑡−1 ~𝒩(𝜇𝑇

𝑡 , (𝜎𝑇
𝑡)2). (6.16) 

Therefore, 𝜒𝑇
𝑡+1 is also normally distributed with the following mean 𝜇𝑡 and standard 

deviation 𝜎𝑡: 

𝜇𝑡 = 𝑇𝑟𝑜𝑜𝑚 − 𝛽1(𝑇𝑟𝑜𝑜𝑚
𝑡 + 𝜇𝑇

𝑡 ) − 𝛽2(𝑇𝑟𝑜𝑜𝑚
𝑡−1 + 𝜇𝑇

𝑡 ) − 𝛽3𝑇𝑎𝑚𝑏
𝑡 − 𝛽4𝑇𝑎𝑚𝑏

𝑡−1 − 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡

− 𝛽6𝑄𝑠𝑜𝑙
𝑡 − 𝛽7𝑄𝑠𝑜𝑙

𝑡−1 − 𝛽8𝑄𝑔𝑎𝑖𝑛
𝑡 − 𝛽9𝑄𝑔𝑎𝑖𝑛

𝑡−1 , 
(6.17) 

𝜎𝑡 = √(𝛽1𝜎𝑇
𝑡)2 + (𝛽2𝜎𝑇

𝑡)2. (6.18) 

The chance constraint can thus be reformulated as: 

𝑃𝑟(𝜒𝑇
𝑡+1 ≤ 0) = Φ(

0 − 𝜇𝑡

𝜎𝑡
) ≥ 1 − 𝜖𝑇 , (6.19) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal 

distribution 𝒩(0, 1). By taking the inverse CDF of both sides, we can get: 

0 − 𝜇𝑡

𝜎𝑡
≥ Φ−1(1 − 𝜖𝑇). (6.20) 

 Rearrange the above equation and substitute 𝜇𝑡 and 𝜎𝑡 with Equations (6.17) 

and (6.18). Finally, we obtain the chance constraint for ensuring the indoor 

temperature will not fall below the lower bound of 𝑇𝑟𝑜𝑜𝑚 with the probability of (1 −

𝜖𝑇) as follows: 

𝛽1(𝑇𝑟𝑜𝑜𝑚
𝑡 + 𝜇𝑇

𝑡 ) + 𝛽2(𝑇𝑟𝑜𝑜𝑚
𝑡−1 + 𝜇𝑇

𝑡 ) + 𝛽3𝑇𝑎𝑚𝑏
𝑡 + 𝛽4𝑇𝑎𝑚𝑏

𝑡−1 + 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡 + 𝛽6𝑄𝑠𝑜𝑙

𝑡 + 𝛽7𝑄𝑠𝑜𝑙
𝑡−1

+ 𝛽8𝑄𝑔𝑎𝑖𝑛
𝑡 + 𝛽9𝑄𝑔𝑎𝑖𝑛

𝑡−1 − 𝑇𝑟𝑜𝑜𝑚 ≥ Φ−1(1 − 𝜖𝑇)√(𝛽1𝜎𝑇
𝑡)2 + (𝛽2𝜎𝑇

𝑡)2. 

(6.21) 

Substituting Equation (6.3) into (6.21) and rearranging, we have: 

𝑇𝑟𝑜𝑜𝑚
𝑡+1 − 𝑇𝑟𝑜𝑜𝑚 ≥ Φ−1(1 − 𝜖𝑇)√(𝛽1𝜎𝑇

𝑡)2 + (𝛽2𝜎𝑇
𝑡)2 − (𝛽1𝜇𝑇

𝑡 + 𝛽2𝜇𝑇
𝑡 ). (6.22) 
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Similarly, we have Equation (6.23) for the upper bound,  

𝑃𝑟(𝑇𝑟𝑜𝑜𝑚 ≥ 𝑇𝑟𝑜𝑜𝑚
𝑡+1 ) ≥ 1 − 𝜖𝑇 . (6.23) 

Taking a similar derivation process as that in Equations (6.14) to (6.22), we can obtain 

the chance constraint for the temperature upper bound: 

𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑟𝑜𝑜𝑚
𝑡+1 ≥ Φ−1(1 − 𝜖𝑇)√(𝛽1𝜎𝑇

𝑡)2 + (𝛽2𝜎𝑇
𝑡)2 + (𝛽1𝜇𝑇

𝑡 + 𝛽2𝜇𝑇
𝑡 ). (6.24) 

 The updated inequivalent constraints indicate that the temperature bounds for 

the optimization should be narrower than the original temperature bounds to account 

for the setpoint behavioral uncertainty, which is consistent with the expectations. 

Note that because the uncertainty-dealing method is focused on the temperature 

constraints, one possible limitation is that the above method might have a limited 

effect on the controller design for buildings that have larger thermal masses because 

the building temperature is insensitive to temperature constraints. More discussion 

of this point follows in Section 6.4.3.  

6.4 Case Study 

6.4.1 Studied Community  

 The case study community is a net-zero energy community located in Anna 

Maria Island, Florida, USA, which is a cooling-dominated region. The community 

buildings are installed with both roof-top PV panels and solar carports, which harvest 

about 85 MWh annually for the whole community. A centralized ground source heat 

pump system provides the HVAC needs of the whole community with high efficiency. 

Other sustainable features include well-insulated building envelopes, solar thermal 
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water heating, and rainwater recycling. This community achieved net-zero energy in 

the year 2014. In the community, there are various building types such as residential, 

small office, gift shop, etc. We would like to cover both residential and commercial 

buildings in the case study. So, we selected one residential and two small commercial 

buildings based on the measurement data quality. More specifically, the selected 

three buildings consist of a residential building (area: 93.8 m2), an ice cream shop 

(area: 160.5 m2), and a bakery (area: 410 m2). The building layout of the community 

can be found in reference [151]. 

 For the given community, a virtual testbed based on the object-oriented 

modeling language Modelica [27] was built and validated [16]. In the testbed, the 

TMY 3 data for a nearby city, Tampa, was adopted for this case study. The building 

thermal models are RC network models. For the optimal control in this work, the 

HVAC models were trained using one month (i.e., August) of the simulation data 

exported from the testbed. Table 6.2 lists the coefficients for the linear regression 

HVAC models, the RMSE of the models, as well as the corresponding nominal heat 

pump power. The N/A in the table represents a coefficient that is too small and thus 

has been neglected in the model. Three effective decimal places are provided.  

Table 6.2 Coefficients and nominal power of the HVAC models. 

 Residential 
Ice Cream 

Shop 
Bakery 

Coefficients 

𝑇𝑟𝑜𝑜𝑚
𝑡  1.429 0.502 0.977 

𝑇𝑟𝑜𝑜𝑚
𝑡−1  -0.432 0.498 0.0213 

𝑇𝑎𝑚𝑏
𝑡  0.0263 0.000295 0.00405 

𝑇𝑎𝑚𝑏
𝑡−1  -0.0232 -0.000193 -0.00196 

𝑟ℎ𝑣𝑎𝑐
𝑡  -0.210 -0.0114 -0.178 

𝑄𝑠𝑜𝑙
𝑡  0.0151 0.0000345 0.0107 
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 Residential 
Ice Cream 

Shop 
Bakery 

𝑄𝑠𝑜𝑙
𝑡−1 -0.00302 0.000181 -0.00621 

𝑄𝑔𝑎𝑖𝑛
𝑡  0.00852 N/A N/A 

𝑄𝑔𝑎𝑖𝑛
𝑡−1  N/A N/A 0.0140 

RMSE (℃) 0.160 0.0205 0.114 

Nominal Power (kW) 2.140 2.830 3.770 

 

 Additionally, Table 6.3 lists the load categorization for the studied buildings 

following the principles proposed in Section 5.2. A complete list of the building load 

capacities and their heat gains can be found in Appendix A. 

Table 6.3 Building loads categorized into four types. 

 Residential 
Ice Cream 

Shop 
Bakery 

Sheddable Computer 

Coffee maker, 

soda dispenser, 

outdoor ice 

storage 

Microwave 

Modulatable HVAC HVAC 

Mixer, unspecific 

room plug loads, 

HVAC 

Shiftable 
Range, washer, 

dryer 
None 

Range, oven, 

dishwasher 

Critical 
Lights, 

refrigerator 

Lights, cooler, 

display case 

Lights, cooler, 

display case 

 

 We designed three uncertainty levels (i.e., low, medium, high) as in Table 6.1 to 

evaluate the deterministic and preference-aware schedulers in this work. They are 

compared to the baseline scenario, where the deterministic scheduler is applied 

without occupant behavior uncertainties. The following results and discussion are all 

based on these scenarios. All scenarios were run in the three buildings for 48 hours 

with a timestep of 1 hour in the islanded mode.  
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6.4.2 Settings of Chance-constrained Controllers for Different Buildings 

 The preference-aware schedulers use chance-constrained controllers, whose 

settings depend on individual building properties and uncertainty levels. Following 

the method proposed in Section 6.3.2, this section provides the details of the chance-

constrained controller settings for three individual buildings in the case study, which 

is based on the control outcome of the deterministic schedulers under three 

uncertainty levels.  

 Considering the occupant-preference-driven actions as the source of “prediction 

errors” for the room temperature, we extracted the distributions of the room 

temperature prediction errors. The Monte Carlo simulation method [224] was 

adopted, where 100 repeated simulations were run using the deterministic scheduler 

with three uncertainty levels. We used the room temperature of the deterministic 

baseline scenario as the benchmark to calculate the errors caused by the occupant 

setpoint-changing behavior. To describe the room temperature errors, three 

hypothetical distributions are proposed (i.e., fit distribution in Table 6.4). The normal 

distribution is mentioned in the derivation in Section 6.3.2. The half-normal 

distribution is a fold of a normal distribution at its mean. For the residential building 

medium uncertainty level, a half-normal distribution was adopted. This can be 

attributed to the fact that almost no temperature decrease action was observed and 

thus the errors were all above zero. Constants were used for the residential building 

and the bakery under the low uncertainty level because the frequency of the setpoint-

changing is too low (nearly zero) to follow any distributions.  
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 Chi-square goodness of fit tests [225] at a rejection level of 1% were conducted 

to evaluate whether the proposed hypothetical distributions fit well. The types of 

fitting distributions, p-values of the tests, and the distribution parameters are 

reported in Table 6.4. In the table, µ is the mean and σ is the standard deviation of 

the normal/half-normal distribution. The null hypothesis here is that the room 

temperature prediction error follows the hypothetical distribution. The p-value is the 

evidence against this null hypothesis. Since all p-values are greater than 99%, all 

error distributions failed to reject the hypothesis at the level of 1%. This means they 

all follow the corresponding hypothetical distribution.  

Table 6.4 Chi-square goodness of fit test p-values and normal distribution 

parameters. 

Building Uncertainty Fit Distribution p-value µ (ºC) σ (ºC) 

Residential 

Low Constant 1.0 -6.45E-05 N/A 

Medium Half-normal 0.999 -3.57E-01 4.35E-01 

High Normal 0.999 1.56E+00 8.17E-01 

Ice Cream 

Shop 

Low Normal 0.999 -3.48E-03 7.86E-03 

Medium Normal 0.999 -4.45E-03 8.59E-03 

High Normal 0.999 1.60E-02 1.59E-02 

Bakery 

Low Constant 1.0 -3.42E-03 N/A 

Medium Normal 0.999 3.01E-02 1.05E-01 

High Normal 0.999 5.33E-01 4.65E-01 

  

 The frequency histogram and probability density functions (PDFs) of each 

building under various uncertainty levels are plotted in Figure 6.6. In the figure, it 

can be seen that the higher the uncertainty, the wider the room temperature range. 

This is because, in scenarios with higher uncertainty, occupants change the 

thermostat more frequently, which expands the possible temperature ranges. We also 

noticed that the temperature range in the ice cream shop is relatively concentrated 
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compared to the other two buildings. This can be attributed to the large thermal mass 

of the building.  

 
Figure 6.6 Room temperature prediction error PDFs obtained from the Monte Carlo 

simulations. 

 For the scenario where the temperature prediction error follows the half-normal 

distribution, we applied the chance constraint only to the upper bound because only 

increasing actions happen in this scenario. For the two scenarios where the room 

temperature error is estimated to be a constant, we adopted the original temperature 

bounds of [20ºC, 25ºC] because the estimated errors in both scenarios are smaller 

than 0.01ºC. We choose the 𝜖𝑇 = 1% to ensure a 99% probability of abidance of the 

temperature constraints (Equation (6.14)). Table 6.5 lists the updated room 

temperature lower and upper bounds for each building under different scenarios.  
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Table 6.5 Room temperature bounds for chance-constrained optimizations. 

Building Uncertainty 𝑻𝒓𝒐𝒐𝒎 (ºC) 𝑻𝒓𝒐𝒐𝒎 (ºC) 

Residential 

Low 20.000 25.000 

Medium 20.000 24.236 

High 20.547 21.343 

Ice Cream Shop 

Low 20.024 24.983 

Medium 20.027 24.982 

High 20.025 24.943 

Bakery 

Low 20.000 25.000 

Medium 20.240 24.700 

High 20.664 23.273 

 

6.4.3 Results and Discussions 

 This section first quantifies the impact of introducing occupant behavior 

uncertainties to the optimal scheduling problem. Then, the deterministic and chance-

constrained controllers are tested on the community virtual testbed. Their control 

performance in terms of the unserved load ratio, the required battery size, and the 

unmet thermal preference hours are then compared. 

 Figure 6.7 to Figure 6.9 depict the occupant thermal preference and the 

corresponding room temperatures. In the figures, the upper plots show the simulated 

stochastic thermostat-changing actions at different uncertainty levels, where 

increase means a setpoint increase action, and vice versa. The lower plots show the 

resulting room temperatures with dashed lines.  

 The results of the low uncertainty scenario overlap with that of the baseline 

scenario (i.e., the deterministic scheduler without uncertainty) mainly due to the low 

probability of setpoint-changing actions in this scenario. With the increase in the 

probability, we see more frequent setpoint-changing actions in all three buildings. 
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Further, the increase action happens more frequently than the decrease action. This 

is because, between the temperature range of 20ºC and 24ºC, the probability of 

increase is much higher than that of decrease (see Figure 6.4). This also implies that 

the occupants’ temperature preference is closer to 24ºC than 20ºC. Additionally, for 

the residential building and the bakery, the temperature difference between 

scenarios is more noticeable than for the ice cream shop; this is attributable to the 

different building thermal masses of the three buildings. 

 
Figure 6.7 Residential building occupant thermostat changing actions (upper) and 

resulting room temperatures (lower) under three levels of uncertainty. 



190 
 

 
Figure 6.8 Ice cream shop occupant thermostat changing actions (upper) and 

resulting room temperatures (lower) under three levels of uncertainty. 

 
Figure 6.9 Bakery occupant thermostat changing actions (upper) and resulting room 

temperatures (lower) under three levels of uncertainty. 

 Table 6.6 lists the values of the KRIs in correspondence with Figure 6.7 to 

Figure 6.9. The HVAC energy and average room temperature over the optimization 

horizon are also provided to facilitate the analysis of the results.  
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Table 6.6 Key resilience indicators for studied buildings under different uncertainty 

levels. 

Building Scenario 
Unserved 

Load Ratio 

Battery 

Size [kWh] 

HVAC 

Energy 

(kWh) 

Mean Room 

Temperature 

(ºC) 

Residential 

Baseline 0.0744 47.686 32.139 20.185 

Low 0.0744 47.686 32.139 20.185 

Medium 0.0744 47.168 32.099 20.271 

High 0.0744 38.541 21.400 21.468 

Ice Cream Shop 

Baseline 0.0215 99.139 32.703 21.006 

Low 0.0215 99.139 32.703 21.006 

Medium 0.0215 99.139 32.703 21.006 

High 0.0215 93.166 10.063 21.033 

Bakery 

Baseline 0.0247 80.007 35.144 21.579 

Low 0.0247 80.007 35.144 21.579 

Medium 0.0247 73.496 27.604 21.766 

High 0.0247 76.801 11.310 21.973 

 

 From the table, we see that the unserved load ratio remains the same across all 

scenarios for each building. This can be attributed to the fact that in the controller 

design phase, the optimization objective is set to minimize the unserved load ratio. 

Hence, the unserved load ratios for each building are already minimal and are not 

affected by the occupants’ thermostat-overriding behavior uncertainties. Instead, the 

battery-charging/discharging behavior is affected, as reflected by the different 

required battery sizes in the table. Note that the unserved load ratios are minimal, 

but not zero, because of our assumption that each shiftable load operates once and 

only once per day. 

 For the rest of the metrics, note that the battery size, HVAC energy, and 

average room temperature remain the same for the baseline and low uncertainty 

scenarios in all buildings. This is because no setpoint-changing actions happened due 
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to the relatively low probabilities, as shown in the figures above. As for the medium 

uncertainty scenarios, both the residential building and the bakery show higher room 

temperatures and lower HVAC energy while the ice cream shop still has the same 

results as the baseline, given its large thermal mass. 

 In terms of the high uncertainty scenarios, due to the prominent increase in 

room temperatures, we noticed more HVAC energy savings in all buildings. Note that 

though the average room temperature increase is insignificant, the HVAC energy 

savings is large due to the cumulative effect over the many hours of setpoint increase. 

Overall, we see a positive correlation between the HVAC energy and the required 

battery size. When the PV generation and the other building loads remain the same, 

the more HVAC energy, the larger the required battery size. However, one opposite 

case was noted in the bakery high uncertainty scenario where the required battery 

size is slightly larger in the high uncertainty scenario than in the medium 

uncertainty scenario. This was caused by a setpoint decrease action at hour 28, which 

resulted in a battery discharging during the night and thus a smaller minimum SOC 

of the battery.  

 To summarize, occupant thermostat-changing behavior uncertainty needs to be 

considered when designing optimal schedulers for resilient buildings because it 

affects the indoor room temperature, the HVAC power, and thus the sizing of 

batteries. For the whole community, when considering the highest occupant behavior 

uncertainty, the consumed HVAC energy can be 57.2% less and the battery 8.08% 

smaller. Whereas the aforementioned impact depends on the uncertainty level (i.e., 
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how frequently the occupants change the setpoint), heating or cooling season, and the 

occupants’ actual preference for the indoor room temperature compared to the room 

temperature designed by the scheduler. In our case, a preferred higher indoor room 

temperature saves HVAC energy. During the heating season, the observations could 

be reversed.  

 To further evaluate the performance of the chance-constrained controller in 

comparison with the deterministic controller, tests were run on the virtual 

testbed [151] in a stochastic manner. In each of the studied buildings, both the 

deterministic controller and the chance-constrained controller were tested for two 

days (i.e., August 4 and 5) with the three levels of uncertainties. The testing method 

is similar to the method proposed in Section 6.3.2. Additionally, the precalculated 

optimal battery charging/discharging, as well as the optimized loads, are also 

implemented in the testbed. One hundred repeated Monte Carlo simulations were 

run for each scenario to better observe the controller performance. The KRIs of the 

unserved load ratio, the required battery size, and the unmet thermal preference 

hours are adopted for the performance evaluation.  

 The upper plot of Figure 6.10 depicts the predetermined optimal schedules of 

the heat pump speed ratio as the inputs of the test. The lower plot then shows the 

corresponding room temperatures predicted by the linear regression models in the 

optimization. The data for the residential building is adopted here for the analysis. 

The plots for the ice cream shop and the bakery can be found in Appendix A. From 

the figure, we see that the scheduled speed ratios in the low and medium uncertainty 
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scenarios overlap with that of the deterministic scheduler. Whereas the high 

uncertainty scenario tends to have lower speed ratios over the whole optimization 

horizon. This can be attributed to the controller settings shown in Table 6.5, where 

the temperature bounds set in the low and medium uncertainty scenarios are closer 

to the original bounds of [20ºC–25ºC]. Hence, the temperature constraints are not 

binding in these two scenarios. However, in the high uncertainty scenario, the 

temperature constraint is binding, which leads to speed ratio reductions. As a result, 

a higher room temperature can be seen in the high uncertainty scenario.   

 
Figure 6.10 Optimal schedules of the heat pump speed ratio and predicted room 

temperatures by various schedulers (residential building). 

 Figure 6.11 to Figure 6.13 depict the room temperature boxplots as the 

controller testing outputs. The lower and upper borders of the boxes represent the 

25th and 75th percentiles of the data, respectively. The longer the box, the more 

scattered the room temperature. The lines inside the boxes represent the median 

values. The lines beyond the boxes represent the minimum and maximum values 
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except for outliers, which are not shown in these figures. Note in the figures that the 

temperatures first concentrate together (shown as black lines) and then spread out 

(shown as boxes). This is because, at the beginning of the simulations, no overriding 

behavior of the setpoints happens and the heat pump operates following the 

scheduled speed ratio. Once the overriding happens at a certain timestep in some 

simulations, the room temperature trends start to deviate and become boxes. The 

occupant-preferred temperature lines are also shown as orange lines in these figures 

as a reference; they are average setpoints adjusted by the occupants in all the Monte 

Carlo tests. 

 
Figure 6.11 Residential building room temperature boxplots for control testing 

results. 
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Figure 6.12 Ice cream shop room temperature boxplots for control testing results. 

 

 
Figure 6.13 Bakery room temperature boxplots for control testing results. 

 In the figures, we see a general trend of narrower room temperature ranges 

from low uncertainty scenarios to high uncertainty scenarios. This is due to the 
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introduction of the occupant setpoint-overriding mechanism, which tends to moderate 

the extreme room temperatures. Also, there is a plant-model mismatch, which 

describes the parametric uncertainty of modeling that originates from neglected 

dynamics of the plant [216]. In our case, the mismatch exists as the simulated room 

temperatures in the testbed are slightly higher than those predicted by the reduced-

order linear HVAC models. This is understandable because the physics-based testbed 

has much higher fidelity and simulates the non-linearity of the real mechanical 

systems.  

 Because the difference in the room temperature between the two controllers is 

not depicted in these figures, Table 6.7 and Table 6.8 provide further quantitative 

evaluations of the room temperatures along with other controller performances. 

Additionally, note that the optimal schedules of some scenarios remain the same 

because of the unbinding temperature constraints, which led to the same testing 

outputs. Here we only discuss the scenarios that have different inputs and outputs. 

A full list of all testing results is available in Table A.5. 

Table 6.7 Comparison of controller performance in the residential building high 

uncertainty scenario. 

Controller 

Unmet Thermal 

Preference 

Hours (ºC·hrs) 

Mean Room 

Temperature 

(ºC) 

Unserved 

Load Ratio 

Required 

Battery Size 

(kWh) 

Deterministic 48.91 23.75 0.074 47.69 

Chance-

constrained 
46.42 23.87 0.074 44.12 

 

 In Table 6.7, we see a larger value of unmet thermal preference hours in the 

deterministic controller than the chance-constrained one. This can be attributed to 
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the higher room temperatures regulated by the chance constraints to better satisfy 

the occupants’ thermal preferences. Again, the same unserved load ratio is observed 

in both controllers because it is already minimal, which is enforced by the objective 

function. In terms of the battery size, the chance-constrained controller shows a 

smaller required battery size than the deterministic controller. This results from the 

fact that a higher room temperature has led to less consumed HVAC energy in the 

chance-constrained scenario. Thus, less discharging from the battery was happening, 

which led to smaller required battery size. For the bakery results shown in Table 6.8, 

the same trends for the battery size and the unserved load ratio as the residential 

building can be observed under each uncertainty level. Namely, smaller batteries and 

the same unserved load ratios. 

Table 6.8 Comparison of controller performances in the bakery medium and high 

uncertainty scenarios. 

Uncertainty Controller 

Unmet 

Thermal 

Preference 

Hours 

(ºC·hrs) 

Mean Room 

Temperature 

(ºC) 

Unserved 

Load 

Ratio 

Required 

Battery 

Size 

(kWh) 

Medium 

Deterministic 88.80 24.27 0.025 80.01 

Chance-

constrained 
91.28 24.50 0.025 76.89 

High 

Deterministic 102.81 23.65 0.025 80.01 

Chance-

constrained 
101.61 23.89 0.025 76.89 

 

 As for the unmet thermal preference hours, different trends are witnessed in 

the medium and high uncertainty levels. At the medium level, the deterministic 

controller shows fewer unmet preference hours than the chance-constrained 

controller. Whereas in the high uncertainty level, an opposite trend is seen. This is 
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reasonable as we see a generally higher mean room temperature regulated by the 

chance-constrained controller under different uncertainty levels. However, in the 

medium scenario, a lower preference temperature line was obtained from the Monte 

Carlo testing, which is closer to the actual room temperatures of the deterministic 

controller. When the preference temperature rises in the high uncertainty scenario, 

the chance-constrained controller outperforms the deterministic controller with a 

higher actual room temperature and thus smaller unmet thermal preference hours. 

 When we compare different uncertainty levels in the bakery, we see that the 

mean room temperature decreases with the increase in uncertainty. This is because 

the lower temperature upper bounds shown in Table 6.5 have regulated the room 

temperature to sink when the uncertainty gets higher. Additionally, as seen in Figure 

6.4, in the temperature range of 20ºC to 24ºC, the probability of increasing the 

temperature setpoint is much higher than that of decreasing it While above 24ºC, the 

probability to increase and to decrease is almost the same. This has caused the room 

temperatures to end up around 24ºC in the high uncertainty scenarios for all 

buildings (Table A.5). This reveals that with the increase in the occupant thermostat-

changing uncertainties, the room temperatures tend to get closer to the occupants’ 

preferred room temperature. 

 Though some improvement was noticed in the chance-constrained controller 

compared to the deterministic controller, the overall improvement was less than 

expected. This could be attributed to the following three factors. First, the impact of 

the uncertainty level on the controller performance improvement is prominent as we 
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observe higher performance improvement in high uncertainty scenarios. Second, the 

thermal property, especially the thermal mass, of the building itself also affects the 

results. Thermal mass serves as a thermal buffer to filter the impact of various HVAC 

supply temperatures. Hence, buildings with a larger thermal mass tend to experience 

less impact from the occupant thermal preference uncertainty. This can be 

demonstrated by the results of the ice cream shop, where the two controllers perform 

the same. Third, the plant-model mismatch also plays a significant role in the 

transition from the optimal scheduler design to its implementation. In the design 

phase, a series of control-oriented linear regression building models were used. 

However, the testing took place on a high-fidelity physics-based testbed, where the 

complex system dynamics of the whole buildings and HVAC systems were modeled 

with shorter simulation timesteps. This is a common source of uncertainty to be 

addressed for MPC design and implementation. 

 In our opinion, a joint effort from building scientists, modelers, and engineers 

is needed to facilitate implementing stochasticity in the building domain and 

ultimately better serve the occupants. For example, an open-source database focused 

on building performance-related stochasticities such as occupant behavior and 

weather forecast needs to be established. Further, readily available stochastic 

simulation tools need to be developed (e.g., Occupancy Simulator [226]). Finally, 

stochasticity needs to be incorporated into the whole process of building modeling and 

design in the form of boundary conditions or internal components. 
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6.5 Conclusion 

 In this work, we proposed a preference-aware scheduler for resilient 

communities. Stochastic occupant thermostat-changing behavior models were 

introduced into a deterministic load scheduling framework as a source of uncertainty. 

The impact of occupant behavior uncertainty on community optimal scheduling 

strategies was discussed. KRIs such as the unserved load ratio, the required battery 

size, and the unmet thermal preference hours were adopted to quantify the impacts 

of uncertainties. Generally, the proposed controller performs better in terms of the 

unmet thermal preference hours and the battery sizes compared to the deterministic 

controller. Though only tested on three buildings of the studied community, the 

methodology of introducing occupant behavior uncertainty into load scheduling and 

testing can be generalized and applied to other building and behavior types.  

 More specifically, we determined that occupant thermostat-changing behavior 

uncertainty should be considered when designing optimal schedulers for resilient 

communities. For the whole community, when considering the highest occupant 

behavior uncertainty, the consumed HVAC energy can be 57.2% less and the battery 

8.08% smaller. During the controller testing phase, the proposed chance-constrained 

controller proves its advantage over the deterministic controller by better serving the 

occupants’ thermal needs and demonstrating a savings of 6.7 kWh of battery capacity 

for the whole community. Additionally, we noticed that with the presence of occupant 

thermostat-changing uncertainties, the room temperatures tend to get closer to the 

occupants’ preferred room temperature. 
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 During the simulation experiments, we noticed some limitations of the proposed 

work. Because the proposed uncertainty method mainly deals with the uncertainty 

through the temperature constraints, it can be less effective for buildings of larger 

thermal mass due to the insensitivity to temperature constraints. Also, the plant-

model mismatch was noticed in the controller testing phase, which is a common 

parametric uncertainty that originates from neglected dynamics of the plant [216]. 

Finally, we used the thermostat changing models developed based on data from 

private office spaces in different building types, which can be debatable. We note that 

the building types that we studied in this work were not necessarily the most 

representative, because for ice cream shops and bakeries, the largest portion of load 

(e.g., refrigeration and baking) does not rely on occupant behavior. However, the 

methodology proposed in this work can be transferred to and evaluated on other 

building types. 

 Future work for this research includes extending the scope to heating scenarios 

to further generalize the findings. Additionally, real-time stochastic MPC control 

techniques with occupant behavior models could be integrated into the framework to 

overcome the lack of flexibility in a priori designed controllers.  
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Chapter 7. Conclusions, Limitations, and Future Work 

 

 

 

 

 

7.1 Conclusions 

 This dissertation aims to solve a few identified research questions surrounding 

low-carbon and resilient communities. To address the research gap of no readily 

available community modeling platforms that are capable of dynamic modeling and 

control, we built a Modelica-based community emulator and an open-source NZEC 

library. The emulator has the function of stochastic building occupant presence 

learning and reproducing based on lighting power data. Through the training and 

validation process, we noticed that logistic regression models are sensitive to the 

quality of the training data. Ideally, the training dataset should be more concentrated 

on the transitional region between the two states and the two classes should be well 

balanced. Further, increasing the number of independent features should help 

improve the fitness of the probability model. The stochastic simulation results showed 

that stochastic models can be very accurate for long-term energy predictions. 

However, they cannot predict uncommon events, and this can lead to large short-term 

power prediction errors.  
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 In terms of the low-carbon community perspective of this dissertation, a carbon 

emission responsive control framework for thermostatically controlled loads was 

proposed. Within this framework, the four various controllers adjust thermostat 

setpoints according to projected carbon emission signals. Evaluating the impact of 

carbon net-metering, we found that controllers with carbon net-metering showed 

2.5% to 3.0% less energy consumption and 5% to 12.7% less emission than controllers 

without carbon net-metering. This indicates the incentivizing impact of adopting 

carbon net-metering, as it encourages the exporting of power back to the grid. For 

controllers without carbon net-metering, higher annual energy consumption and 

carbon emissions result from attempting to increase the PV self-consumption rate. 

However, all controllers that do not consider carbon net-metering perform better in 

terms of the total cost. Due to the rebound effect, they tend to be shifting loads from 

on-peak hours to off-peak hours, causing the total cost to sink. Further, because more 

energy is consumed, non-net-metering controllers tend to create a more comfortable 

indoor environment for the occupants. All predictive controllers perform better than 

the momentary controllers in terms of energy consumption, carbon emission, and 

energy cost. This is attributed to the enhanced load shifting effect by the predictive 

controller design. Also, this finding verifies the claim made by Fischer [161] that 

predictive rule-based controllers are promising alternatives to optimization-based 

controllers because they are simpler and still effective.  

 To enhance community resilience, a novel decentralized control architecture for 

renewable resource allocation and load scheduling was proposed. This MPC-based 
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optimization architecture consists of a community operator layer that allocates the 

daily PV power generation to achieve the community-wide optimum and a building 

agent layer that schedules building loads to achieve its local optimum in each 

building. We found that the renewable resource allocation process is mostly 

constrained by the building load flexibility. More specifically, buildings with less load 

flexibility (i.e., higher critical loads) tend to be allocated more PV generation than 

other buildings. Additionally, when prioritizing buildings according to occupancy 

status, the building with a longer occupancy duration is allocated more PV power, 

which could lead to more PV curtailment. Additionally, through the analysis of 

different objective functions, we found that setting the objective to target at an 

appropriately selected indoor temperature setpoint will result in increased HVAC 

energy savings. However, in our case study, this did not lead to a lower unserved ratio 

for other load types. Instead, the PV curtailment increased. The two objectives have 

a competitive relationship: serving more HVAC power to increase thermal comfort 

will decrease the other served load. Therefore, it is necessary for the building agent 

to have multi-objective optimization to minimize the unserved load ratio and 

maximize comfort simultaneously. This will bring the benefit of less curtailment, a 

smaller unserved load ratio, assured thermal comfort, as well as smaller battery size. 

However, the weighting between the two objectives needs to be carefully selected as 

their scales are quite different. 

 Finally, the impact of occupant behavior uncertainty on community optimal 

scheduling strategies was discussed. Generally, the proposed controller performs 
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better in terms of the unmet thermal preference hours and the battery sizes compared 

to the deterministic controller. More specifically, we determined that occupant 

thermostat-changing behavior uncertainty should be considered when designing 

optimal schedulers for resilient communities. For the whole community, when 

considering the highest occupant behavior uncertainty, the consumed HVAC energy 

can be 57.2% less and the battery 8.08% smaller. During the controller testing phase, 

the proposed chance-constrained controller proves its advantage over the 

deterministic controller by better serving the occupants’ thermal needs and 

demonstrating a savings of 6.7 kWh of battery capacity for the whole community. 

Additionally, we noticed that with the presence of occupant thermostat-changing 

uncertainties, the room temperatures tend to get closer to the occupants’ preferred 

room temperature. Though only tested on three buildings of the studied community, 

the methodology of introducing occupant behavior uncertainty into load scheduling 

and testing can be generalized and applied to other building and behavior types. 

7.2 Limitations 

 This work has the limitation of not having the ground truth data for occupant 

presence in the presence modeling part. The presence generated from lighting power 

can be delayed when people arrived and did not turn the lights on. This could be cross-

validated with other appliance usage data in the future. In the best-case scenario, 

occupant surveys should be conducted to know their preferences and habits, and 

occupant sensors should be installed.  
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 In the decarbonization control studies, we noticed that in some scenarios the 

emissions produced by space cooling and water heating are higher compared to the 

baseline due to the increased energy consumption from load shifting. This indicates 

that rule-based control solely informed by carbon emission signals may end up with 

higher emissions, which could be overcome by using optimization-based control 

methods such as MPC. Additionally, we note that another limitation of this work, 

which is also a general limitation of rule-based control, is that the rule thresholds 

might be case-dependent and thus need to be carefully selected for the specific use 

case. 

 Limitations of the proposed hierarchical load scheduling framework mainly lie 

in that all load models (e.g., HVAC system) have been linearized for the reduction of 

the computational effort, which can be improved in the future. Further, the 

decentralized MPC problem was not solved iteratively with data exchanged between 

the two layers. This is reasonable in this work because the same model was used for 

both prediction and evaluation. However, for more realistic cases, the problem should 

be solved iteratively with information exchanged at every timestep to better account 

for uncertainties. The limitation of the BAL is that though different objective 

functions, such as minimizing unserved load ratio and minimizing thermal 

discomfort, were compared, multi-objective optimizations were not implemented due 

to the time limit. Further, the application of this framework to normal grid-connected 

scenarios was not investigated. 
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 In terms of the uncertainty impact studies, because the proposed uncertainty 

method mainly deals with the uncertainty through the temperature constraints, it 

can be less effective for buildings of larger thermal mass due to the insensitivity to 

temperature constraints. Also, the plant-model mismatch was noticed in the 

controller testing phase, which is a common parametric uncertainty that originates 

from neglected dynamics of the plant [216]. Finally, we used the thermostat changing 

models developed based on data from private office spaces in different building types, 

which can be debatable. We note that the building types that we studied in this work 

were not necessarily the most representative, because for ice cream shops and 

bakeries, the largest portion of load (e.g., refrigeration and baking) does not rely on 

occupant behavior. However, the methodology proposed in this work can be 

transferred to and evaluated on other building types. 

7.3 Future work 

 Future work to better facilitate community decarbonization includes: 

Investigating better designs of the decarbonization control rules to achieve synergetic 

emission, energy, and cost reductions. Incorporating other types of controllable loads 

such as schedulable loads into the carbon emission responsive control framework. 

Comparing the performance of the developed rule-based control to optimization-based 

control. Incorporating real-time electricity pricing rates for the cost analysis to better 

reflect the relationship between carbon intensity and electricity price (i.e., lower 

intensity, lower price). Conducting lifecycle cost analysis for the controlled equipment 

to account for the impact of equipment short cycling on equipment life and 
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replacement cost. Discussing the trade-off between the reduction of operational 

carbon emissions and the potential sacrificing of equipment energy efficiency. 

 For improving the hierarchical control framework, future directions involve 

conducting multi-objective optimization for the building agent layer to investigate the 

trade-off between minimizing unserved load ratio and maximizing thermal comfort. 

The inclusion of other objectives such as decarbonization and minimizing energy costs 

for normal operation scenarios is also a promising direction. Uncertainty of PV 

generation should also be included to reflect the impact of different weather 

conditions. Nonlinear models for controllable devices could be incorporated into the 

framework to better reflect the system dynamics in the future. 

 In terms of the uncertainty study of occupant behavior in scheduling, future 

work includes extending the scope to heating scenarios to further generalize the 

findings. Additionally, real-time stochastic MPC control techniques with occupant 

behavior models could be integrated into the framework to overcome the lack of 

flexibility in a priori designed controllers. 
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Table A.1 Community average annual carbon emission per household for different 

controllers across simulated years (non-net-metered; percentage values are changes 

relative to the corresponding baseline). 

Year 
Baseline 

(kg/yr.) 
MO-0 MO-1 PR-0 PR-1 

2022 8,318 -5.1% -4.0% -5.4% -4.4% 

2030 7,201 -4.6% -3.4% -4.9% -3.8% 

2038 7,476 -5.0% -3.6% -5.3% -4.0% 

2046 7,793 -5.4% -4.0% -5.8% -4.3% 

 

Figure A.1 Community average annual energy on- and off-peak costs of controlled 

loads for different controllers in 2030. 
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Figure A.2 Community average annual energy on- and off-peak costs of controlled 

loads for different controllers in 2038. 

 
 

Figure A.3 Community average annual energy on- and off-peak costs of controlled 

loads for different controllers in 2046. 

 
 

Table A.2 Community average indoor discomfort values for each simulation scenario 

based on ASHRAE Standard 55. 

Year 
Heating (ºC-hrs./yr.) 

Baseline MO-0 MO-1 PR-0 PR-1 

2022 8 24 27 30 33 

2030 8 34 40 31 36 

2038 8 69 79 64 73 

2046 8 55 66 51 59 
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Table A.3 Detailed KPIs for each building and community overall of each scenario. 

 

Temperat

ure 

Deviation 

(℃) 

PV 

Curtailm

ent Ratio 

Unserved Load Ratio 
Battery 

Size 

(kWh) 

Shedd

able 

Shiftab

le 

Modula

table 

Critica

l 
Overall 

S11 

R 1.34 0.00% 0.00% 19.92% N/A 0.00% 5.99% 34.71 

I 2.62 0.00% 0.00% N/A N/A 0.00% 0.00% 89.81 

B 0.77 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 75.28 

Commu

nity 
3.04 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 199.80 

S21_R 

R 2.76 31.25% 0.00% 19.92% N/A 0.00% 5.99% 45.57 

I 2.65 0.00% 0.00% N/A N/A 0.00% 0.00% 75.85 

B 1.34 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 94.13 

Commu

nity 
4.05 8.31% 0.00% 10.94% 0.00% 0.00% 0.27% 215.55 

S21_I 

R 0.79 0.00% 0.00% 19.92% N/A 0.00% 5.99% 35.56 

I 2.62 0.00% 0.00% N/A N/A 0.00% 0.00% 93 

B 0.50 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 81.08 

Commu

nity 
2.78 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 209.64 

S21_B 

R 1.45 0.00% 0.00% 19.92% N/A 0.00% 5.99% 35.56 

I 2.62 0.00% 0.00% N/A N/A 0.00% 0.00% 87.79 

B 0.79 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 71.26 

Commu

nity 
3.10 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 194.61 

S31 

R 2.06 5.50% 0.00% 19.92% N/A 0.00% 5.99% 38.79 

I 2.69 0.00% 0.00% N/A N/A 0.00% 0.00% 77.67 

B 0.80 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 66.45 

Commu

nity 
3.48 1.03% 0.00% 10.94% 0.00% 0.00% 0.27% 182.91 

S12 

R 0.29 0.00% 86.50% 19.92% N/A 0.00% 10.80% 28.99 

I 0.28 0.00% 63.72% N/A N/A 0.00% 12.74% 124.68 

B 0.34 0.00% 99.03% 8.18% 68.89% 0.00% 4.32% 64.4 

Commu

nity 
0.53 0.00% 64.14% 10.94% 68.89% 0.00% 9.25% 218.07 

S22_R 

R 0.29 49.57% 31.49% 19.92% N/A 0.00% 7.74% 39.81 

I 0.28 0.00% 65.17% N/A N/A 0.00% 13.03% 90.25 

B 0.34 0.00% 
100.00

% 
8.18% 77.00% 0.00% 4.77% 111.99 

Commu

nity 
0.53 13.18% 65.06% 10.94% 77.00% 0.00% 9.54% 242.05 

S22_I 

R 0.29 0.00% 85.89% 19.92% N/A 0.00% 10.77% 32.82 

I 0.28 0.00% 63.72% N/A N/A 0.00% 12.74% 127.86 

B 0.34 0.00% 99.03% 8.18% 72.83% 0.00% 4.54% 77.23 

Commu

nity 
0.53 0.00% 64.13% 10.94% 72.83% 0.00% 9.34% 237.91 

S22_B 

R 0.29 0.00% 86.50% 19.92% N/A 0.00% 10.80% 28.37 

I 0.28 0.00% 63.72% N/A N/A 0.00% 12.74% 122.66 

B 0.34 0.00% 99.03% 8.18% 69.23% 0.00% 4.34% 59.16 

Commu

nity 
0.53 0.00% 64.14% 10.94% 69.23% 0.00% 9.26% 210.19 

S32 

R 0.29 28.93% 46.01% 19.92% N/A 0.00% 8.55% 35.33 

I 0.28 0.00% 65.47% N/A N/A 0.00% 13.09% 90.88 

B 0.34 0.00% 
100.00

% 
8.18% 73.64% 0.00% 4.58% 73.31 

Commu

nity 
0.53 5.43% 65.49% 10.94% 73.64% 0.00% 9.51% 199.52 
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Figure A.4 Residential building load shape, battery behavior, and PV power (S31: 

occupancy-based weighting, minimizing unserved load ratio). 

 

Figure A.5 Residential building load shape, battery behavior, and PV power (S32: 

occupancy-based weighting, maximizing thermal comfort). 

 

Figure A.6 Ice cream shop load shape, battery behavior, and PV power (S21_I: 

prioritizing ice cream shop, minimizing unserved load ratio). 
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Figure A.7 Ice cream shop load shape, battery behavior, and PV power (S22_I: 

prioritizing ice cream shop, maximizing thermal comfort). 

 

Figure A.8 Ice cream shop load shape, battery behavior, and PV power (S32: 

occupancy-based weighting, maximizing thermal comfort). 

 

Figure A.9 Bakery load shape, battery behavior, and PV power (S21_B: prioritizing 

bakery, minimizing unserved load ratio). 
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Figure A.10 Bakery load shape, battery behavior, and PV power (S22_B: prioritizing 

bakery, maximizing thermal comfort). 

 

Figure A.11 Bakery load shape, battery behavior, and PV power (S32: occupancy-

based weighting, maximizing thermal comfort). 
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Table A.4 Complete list of building loads and heat gain coefficients [219–221]. 

Building No. Load 
Capacity 

(W) 

Heat Gain 

Coefficient 

Heat 

Gain 

(W) 

Weighted 

Average 

Coefficient 

Residential 

1 Lights 293 0.8 234.4 

0.31 

2 Refrigerator 494 0.4 197.6 

3 Computer 18 0.15 2.7 

4 Range 1775 0.34 603.5 

5 Washer 438 0.8 350.4 

6 Dryer 2795 0.15 419.25 

Ice Cream 

Shop 

1 Lights 135 0.8 108 

0.35 

2 Coolers 7394 0.4 2957.6 

3 Display case 280 0.4 112 

4 
Coffee 

maker 
2721 0.3 816.3 

5 
Soda 

dispenser 
201 0.5 100.5 

6 
Outdoor ice 

storage 
1127 0 0 

Bakery 

1 Lights 1859 0.8 1487.2 

0.38 

2 Coolers 4161 0.4 1664.4 

3 Display case 1011 0.4 404.4 

4 Range 4065 0.15 609.75 

5 Mixer 521 0.31 161.51 

6 Gas oven 761 0.2 152.2 

7 Room plugs 377 0.5 188.5 

8 Microwave 1664 0.67 1114.88 

9 Dishwasher 1552 0.15 232.8 
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Figure A.12 Optimal schedules of the heat pump speed ratio and predicted room 

temperatures by various schedulers (ice cream shop). 

 

 
Figure A.13 Optimal schedules of the heat pump speed ratio and predicted room 

temperatures by various schedulers (bakery). 
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Table A.5 Full comparison of controller performances under different uncertainty 

levels in all three buildings. 

KRIs Controller 

Residential Ice Cream Shop Bakery 

Low 
Mediu

m 

Hig

h 
Low 

Mediu

m 

Hig

h 
Low 

Mediu

m 
High 

Unmet 

Thermal 

Preference 

Hours 

(ºC·hrs) 

Deterministi

c 

33.7

0 
47.19 

48.9

1 

70.6

9 
85.61 

86.8

7 

89.0

3 
88.80 102.81 

Chance-

constrained 

33.7

0 
47.19 

46.4

2 

70.6

9 
85.61 

86.8

7 

89.0

3 
91.28 101.61 

Mean Room 

Temperatur

e (ºC) 

Deterministi

c 

24.3

8 
23.69 

23.7

5 

21.2

3 
22.87 

23.3

8 

25.3

4 
24.27 23.65 

Chance-

constrained 

24.3

8 
23.69 

23.8

7 

21.2

3 
22.87 

23.3

8 

25.3

4 
24.50 23.89 

Unserved 

Load Ratio 

Deterministi

c 
0.074 0.022 0.025 

Chance-

constrained 

0.07

4 
0.074 

0.07

4 

0.02

2 
0.022 

0.02

2 

0.02

5 
0.025 0.025 

Required 

Battery Size 

(kWh) 

Deterministi

c 
47.69 99.14 80.01 

Chance-

constrained 

47.6

9 
47.69 

44.1

2 

99.1

4 
99.14 

99.1

4 

80.0

1 
76.89 76.89 
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