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ABSTRACT 

 

Han, Xu (Ph.D., Architectural Engineering) 

Holistic Optimization of Data Center Cooling Systems and Airflow Management 

Dissertation directed by Professor Wangda Zuo 

 

Data centers are often overcooled to address the reliability concerns, which may lead to a 

lower cooling efficiency. Model-based optimization in a holistic view can be utilized to improve 

the cooling efficiency while meeting the stringent thermal requirements of data centers, which 

usually involve non-uniform thermal environment. The co-simulation of building energy simulation 

(BES) and computational fluid dynamics (CFD) is promising to fulfill the needs. However, the 

existing BES-CFD co-simulation methods are not good enough for practical use in the real world 

because of either huge computational costs with BES-CFD coupled models or accuracy issues with 

BES-ROM-CFD coupled models that integrate reduced order models (ROMs). This dissertation 

therefore intends to improve the simulation methods from the following aspects to allow a 

computationally-practical and sufficiently accurate holistic optimization of cooling systems and 

airflow management towards energy efficient data centers with reliable operation. 

First, as CFD is the bottleneck of the BES-CFD co-simulation speed, this dissertation 

develops an improved Fast Fluid Dynamics (FFD) model for fast and accurate simulation of data 

center airflow and thermal environment. FFD, which is a simplified CFD method, has been applied 

for fast airflow simulation. However, few research applied FFD for optimal design and operation 

of data center thermal management. This dissertation improves the FFD model for data centers and 

conducts a comprehensive evaluation and demonstration. The FFD model is improved by 1) 
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proposing new algorithms to solve equations for a better general quantity conservation than 

conventional FFD; and 2) adding new features and boundary conditions for data centers. The 

validation with a real data center shows that the new FFD model achieves a similar level of accuracy 

as CFD when compared to the experimental measurements, and is 61 times faster than CFD for the 

studied case.  

Then, to improve the existing BES-CFD co-simulation methods, this dissertation proposes 

a new online BES-ROM-CFD co-simulation method. Among existing models, BES-CFD is 

accurate but time consuming, and BES-ROM-CFD is fast but may have accuracy issues. The 

proposed online BES-ROM-CFD method combines the advantages of both existing models, in 

which the ROM allows online learning and automatic error control. This methodology is realized 

by implementing a Modelica-ISAT-FFD model, which will be officially released in Modelica 

Buildings library to allow a broader range of applications. The new model is then comprehensively 

evaluated with a mixed convection case. The results show that the new model can generally control 

the prediction error within user-defined tolerances compared to an existing Modelica-FFD model 

that was validated by previous research. An annual simulation shows that the new model saves up 

to 95.7% of computing time against the existing Modelica-FFD model. A space heating case is also 

studied to demonstrate the capability of the new model to handle scenarios with feedback loop 

controls. 

To further improve the online BES-ROM-CFD method, this dissertation proposes an 

adaptive online BES-ROM-CFD method, in which adaptive coupling frequencies are used to reduce 

the number of ROM-CFD calls during the co-simulation. It is further powered by distributed 

computing, which allows that BES-ROM runs on a CPU and CFD runs on a GPU in parallel during 

the co-simulation. Based on the new methods, an adaptive Modelica-ISAT-FFD model is developed, 
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which is verified against an existing Modelica-FFD model with a real middle-size data center. A 

holistic optimization platform is proposed based on the new model, which is then evaluated and 

demonstrated with optimization studies. It is found that a holistic optimization with annual co-

simulations for a middle size data center in the real world can be finished within a day, which is 

estimated to take as much as many years if using the existing Modelica-FFD model. The results 

also show that the holistic optimization saves the annual energy consumption by up to 48.1% while 

meeting the data center thermal requirements. 

In addition to the off-operation model-based optimization, this dissertation further proposes 

a novel machine learning assisted expert system (MLES) method towards a real-time optimal 

control for the studied data center cooling system. Model predictive control (MPC) has been widely 

studied for optimal control. Though it can achieve a good performance theoretically, formulating a 

precise and real-time model is often not easy especially for complex systems, such as data center 

cooling systems involving stratified airflow. To address this problem, this dissertation proposes a 

novel robust and easy-to-implement model-free MLES optimal control method. First, the 

optimization problem is simplified to allow formulating an expert system based on expert 

knowledge. Then, a machine learning model trained by more than a thousand of CFD simulations 

is used to assist the expert system for hot spots control towards reliable operation. A MPC is also 

implemented as benchmark. The case studies show that the MLES could achieve a similar 

performance as a well-designed ideal MPC, and is much faster than MPC. An annual simulation 

shows that with the MLES, the energy consumption is saved by up to 64.6% and meanwhile hot 

spots are generally well controlled. 

To conclude, this dissertation concentrates on improving the data center cooling efficiency 

while maintaining reliable operation in a holistic view. The outcomes include 1) an open source 
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model for fast simulation of data center thermal environment, 2) an open source model for fast and 

accurate co-simulation of cooling systems and airflow management, 3) a computationally-practical 

and sufficiently accurate optimization platform for holistic optimization of cooling systems and 

airflow management, 4) a novel robust and easy-to-implement optimal control method that 

simultaneously considers cooling efficiency and reliable operation. The proposed models and 

methodologies may not be limited in data center applications, which can be expanded for studying 

other cooling systems involving non-uniform thermal environment in future research. 
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Chapter 1 Introduction 

 

1.1 Background 

Data centers house a large amount of mission-critical IT equipment, such as IT servers, 

network and communication servers, and data storage devices, which effectively dissipates its 

input power as heat during operation. The data centers usually require cooling system to remove 

the heat dissipation from IT equipment to ensure the IT equipment operate reliably. It was reported 

that data centers consumed approximately 1.8% of the total U.S. electricity [1], among which 24%-

60% are consumed by the cooling system [2]. With the fast growing markets on cloud computing, 

data centers’ share on global electricity was estimated to be as high as 3-13% in 2030 [3]. As the 

IT equipment becomes increasingly more power-intensive, it imposes more challenges on the data 

center cooling system [4]. As of today, air cooling is still the dominant method of primary heat 

removal, though liquid cooling is emerging as an energy-saving alternative.  

Many data centers are significantly overcooled to ensure the reliable operation of IT 

equipment, which leads to a low cooling efficiency [5]. To improve the effectiveness and 

efficiency of data center cooling systems, simulation-based optimization [6] can be adopted. 

Different from other buildings, such as offices, hot spots are critical for reliable operation of IT 

equipment in data centers, which usually involve non-uniform airflow and temperature distribution. 

This brings a lot of challenges to conventional simulation-based optimization using a standalone 

building energy simulation (BES)  program with a multi-zone room model, such as EnergyPlus 

[7], eQuest [8], TRNSYS [9] and Modelica [10]. To improve the cooling efficiency while 

maintaining the reliable operation, a simulation-based optimization that simultaneously considers 
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cooling systems and airflow management in a holistic view is promising. The co-simulation of 

BES and computational fluid dynamics (CFD) can be used to fulfill this need. However, CFD’s 

huge computational demand makes the co-simulation very challenging to be applied in real 

applications, which usually requires hundreds of or even thousands of CFD simulations during co-

simulation. Pre-trained reduced order models (ROMs) have been proposed to replace CFD to 

couple with BES. However, the traditional ROMs face challenges when the inputs are outside of 

the training domain. In addition, the ROMs commonly need to be carefully trained and tested to 

achieve a desired prediction accuracy. Therefore, this dissertation intends to proposed new models 

and methods to allow a computationally-practical and sufficiently accurate holistic optimization 

of cooling systems and airflow management towards energy efficient data centers with reliable 

operation. 

1.2 Problem Statement 

To support realizing energy efficient data centers with reliable operation, there are four 

research problems that need to be solved: 

1) Fast and accurate prediction model for data center airflow management. CFD has 

been widely used to evaluate and improve the data center airflow management. However, 

CFD is computationally demanding, which may take several hours to simulate the airflow 

of a middle-size data center. This makes it difficult to support optimal design and operation 

of data center cooling systems. For example, a large amount of CFD simulations may be 

needed when multiple parameters are to be optimized in the early design stage. 

2) Fast and accurate co-simulation of cooling systems and airflow management. CFD’s 

huge computational demand makes the BES-CFD co-simulation very challenging to be 
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applied in real applications, which usually requires hundreds of or even thousands of CFD 

simulations during co-simulation. Pre-trained reduced order models (ROMs) have been 

proposed to replace CFD to couple with BES. However, the traditional ROMs face 

challenges when the inputs are outside of the training domain. In addition, the ROMs 

commonly need to be carefully trained and tested to achieve a desired prediction accuracy.  

3) Practical simulation-based optimization for cooling systems and airflow management 

in a holistic view. BES-CFD co-simulation can be used to support the holistic optimization. 

However, to apply such a co-simulation based optimization in real applications, the BES-

CFD co-simulation needs to be further improved to make the optimization process 

computationally-practical and sufficiently accurate. 

4) Optimal control that simultaneously optimizes cooling systems and airflow 

management in real-time. Most studies focused on optimal control of cooling systems, 

and few of them simultaneously considered cooling system and airflow management. The 

challenges lie in two aspects. One the one hand, formulating an optimal control for the 

cooling system alone is already challenging because of its nonlinearity. Taking the non-

uniform airflow into considerations will make it even harder. On the other hand, a more 

complex model may be able to capture the dynamics. However, the increasing complexity 

will make it very challenging to run the model in real-time.  

1.3 Objectives  

There are five objectives for this dissertation to solve the research problems proposed in 

Section 1.2. The five objectives are shown as follows: 
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1) Develop a fast and accurate prediction model for data center airflow management. 

This model is based on an existing Fast Fluid Dynamics (FFD), which is a simplified CFD 

model and was reported to be 50 times faster than CFD [11]. Compared to the existing FFD 

model, the improvements of this study include 1) solving the advection and diffusion 

equations together using an upwind scheme instead of a semi-Lagrangian advection solver 

in the conventional FFD to improve its performance on local mass and energy 

conservation; 2) implementing new features and boundary conditions to allow modeling 

and simulations for data center airflow, such as a pressure correction method to simulate 

plenum airflow and dynamic boundary conditions for IT racks; 3) demonstrating the 

capability of FFD on handling realistic cases with complex boundary conditions, which 

has not been fully understood based on existing research.  

2) Propose a new online BES-ROM-CFD co-simulation method to allow fast and 

accurate co-simulation of cooling systems and airflow management. This new online 

BES-ROM-CFD co-simulation method integrates an online learning ROM into BES-CFD 

co-simulation. In comparison with the conventional BES-ROM-CFD co-simulation, the 

improvements of this new method include 1) providing accurate predictions using CFD 

simulations when the inputs of the ROM are outside of the training domain; 2) 

automatically estimating the error between the ROM and CFD predictions and determines 

the training needs; 3) efficient and automatic training of the ROM during the co-simulation 

without expert knowledge and pre-training.  

3) Propose a novel co-simulation-based optimization platform for practical holistic 

optimization of data center cooling systems and airflow management. This further 
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improves the online BES-ROM-CFD co-simulation to allow its applications in the real 

world by 1) using adaptive coupling frequencies to reduce the number of ROM-CFD calls 

during the co-simulation; 2) adopting distributed computing technology to maximize the 

capacity of computing hardware of a computer, in which BES-ROM runs on CPU and CFD 

runs on GPU in parallel. A holistic optimization platform is then proposed based on the 

new model. 

4) Propose a robust and easy-to-implement machine learning assisted expert system 

(MLES) optimal control method that simultaneously optimizes cooling systems and 

airflow management in real-time. To realize such a MLES optimal control, the 

optimization problem is first simplified to allow formulating an expert system based on 

expert knowledge. Then, a machine learning model trained by more than a thousand of 

CFD simulations is used to assist the expert system to determine optimal actions in real-

time for hot spots control towards reliable operation. 

5) Publicly release models developed in this study. To allow a broader range of applications 

of models developed in this dissertation, the new FFD model for the first objective has 

been open source released, and the Modelica-ISAT-FFD model for the second objective 

will be officially released in Modelica Buildings library [12]. 

1.4 Structure of the Dissertation 

This dissertation consists of seven chapters. Chapter 1 is introduction. Chapters 2 presents 

a literature review. Chapters 3-6 introduce the work in details: Chapter 8 summarizes the 

conclusions and proposes future research. 
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1) Chapter 1: Introduction. This chapter provides a general introduction of the background, 

existing problems, research objectives, and scope of the dissertation. 

2) Chapter 2: Literature Review. This chapter reviews the overview of data center cooling 

technologies and modeling methods to improve the cooling efficiency and airflow 

management. 

3) Chapter 3: An Open Source Fast Fluid Dynamics Model for Data Center Thermal 

Management. This chapter introduces a new FFD model for fast prediction of data center 

airflow and thermal environment. It is validated and then demonstrated to support optimal 

data center thermal management with a real middle-size data center. 

4) Chapter 4: An Online BES-ROM-CFD Co-Simulation Method for Fast Simulation of 

HVAC Systems with Non-Uniform Thermal Environment. This chapter presents the 

new online BES-ROM-CFD co-simulation method. A Modelica-ISAT-FFD is 

implemented to demonstrate this new method, in which a Modelica model is for HVAC 

systems and ISAT-FFD model is used for thermal environment.  

5) Chapter 5: Towards Holistic Optimization of Data Center Cooling Systems and 

Airflow Management: Adaptive Online BES-ROM-CFD Co-Simulation Powered by 

Distributed Computing. This chapter further improves the Modelica-ISAT-FFD model 

from using adaptive coupling frequencies and distributed computing technology. An 

optimization platform is proposed based on the improved model. A real middle size data 

center is adopted to demonstrate the capability of the optimization platform. 

6) Chapter 7: Machine Learning Assisted Expert System for Optimal Control of Data 

Center Cooling Systems with Air Side Economizer. This chapter presents a MLES 
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method to achieve a real-time optimal control for data center cooling systems. A standard 

model predictive control (MPC) approach is also implemented to evaluate the performance 

of the proposed method. 

7) Chapter 8: Conclusions and Future Research. This chapter summarizes the conclusions 

and proposes future research. 
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Chapter 2 Literature Review 

 

This chapter reviews the overview of data center cooling configurations and modeling 

methods to improve the cooling efficiency and airflow management. 

2.1 Overview of Data Center Cooling Infrastructure and Airflow Pattern 

Data center thermal management is crucial for reliable operation of IT equipment and 

energy efficiency of the cooling system in the data center, which typically involves non-uniform 

and complex airflow dynamics [13]. For example, medium and large-size data centers are usually 

configured with alternating cold aisles and hot aisles to ensure the IT rack inlet temperatures are 

within a safe threshold by eliminating or reducing the mixing of the cooling system supply cold 

air and IT rack exhaust hot air. However, many data centers are over-cooled,  such as more cold 

air is supplied than needed, just to dilute a few local hot spots (locations at the intake of IT 

equipment where the measured temperature is greater than the recommended value), which leads 

to a low energy efficiency of the cooling system. Model-based methods can be adopted to improve 

the thermal management in data centers by evaluating what-if scenarios or performing a model 

based optimization. For example, in the design phase, the model can help determine the layout of 

IT racks, the open-area-ratio (ratio of open area to total area) and location of the perforated tiles, 

and the depth of the raised-floor plenum. In the operation phase, the model can help determine the 

optimal setpoints of the supply air flow rate and temperature to achieve the best energy 

performance while still meeting the thermal requirements of data centers. 
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Figure 2-1 Typical airflow configurations (a) raised-floor supply; (b) raised-floor supply/ceiling 

return; (c) raised-floor supply/ceiling supply; (d) non-raised floor/ceiling supply [14]. 

The typical configurations and intended airflow directions of data centers are shown in 

Figure 2-1. The above-floor white space (allocated for IT equipment) in the data center is 

partitioned into cold aisles and hot aisles by rows of racks. For the airflow configurations in Figure 

2-1 (a-c), the raised-floor plenum and perforated floor tiles are designed to uniformly distribute 

the cold air to the cold aisles. The cold air from the cooling system, i.e. Computer Room Air 

Handlers (CRAH) or Computer Room Air Conditioners (CRAC), is supplied to the cold aisle, then 

flows through the IT racks and carries heat dissipated from IT equipment and then exhausts to the 

CRAH
Rack Rack

CRAH
Rack Rack

CRAHRack Rack
CRAH

Rack Rack

(a) (b)

(c) (d)
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hot aisle and returns to the cooling system through the room in Figure 2-1 (a) or the ceiling plenum 

in Figure 2-1 (b-c). The cold is supplied from both the floor and the ceiling for the configuration 

in Figure 2-1 (c). The cold air is supplied form the ceiling and goes back to the cooling system 

from the side in Figure 2-1 (d). 

2.1.1 Thermal Guidelines and Performance Metrics 

 

Figure 2-2 ASHRAE guidelines for data center thermal environment [15] 

The thermal requirements of data centers are shown in Figure 2-2 [15]. The recommended 

and allowable envelopes are presented for ASHRAE Classes A1, A2, A3 and A4. It is noteworthy 

that all these envelopes pertain to air entering the IT equipment. This is different from other types 

of buildings, such as residential buildings or offices, which control the averaged room temperature. 

The recommended ranges for dry bulb temperature are from 18 oC to 27 oC. The 

recommended envelopes for humidity are from -9 oC DP (dewpoint temperature) to 15 oC DP and 
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60% RH (relative humidity). The allowable ranges are different for different classes. For example, 

the dry bulb temperature ranges from 15 oC to 32 oC and the humidity ranges from -12 oC DP and 

8% RH to 27 oC DP and 80% RH. 

2.1.2 Scope of the Dissertation 

 

Figure 2-3 A typical data center cooling system with air-side economizer 

Figure 2-3 shows a typical data center cooling system and airflow pattern. This dissertation 

focuses on the cooling systems with air-side-economizer (ASE), in which outdoor air is induced 

to the room to cool the IT equipment when the weather condition meets requirements. The cooling 

system operates on free cooling (FC), partial mechanical cooling (PMC) or fully mechanical 

cooling (FMC) according to a cooling mode controller. The airflow configuration studied in this 

dissertation is “raised-floor supply” that supplies cold air to the cold aisle through a raised floor 

plenum, though the models and methods proposed in this dissertation may also be applied for other 

configurations. 
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2.2 Modeling of Data Center Cooling Systems 

Simulation can be an effective way to assist the design and operation of data centers. Many 

tools have been developed in academia and industry to perform computer simulation of cooling 

systems in data centers. For example, eQuest [16, 8], EnergyPlus [7, 17], TRNSYS [18], and some 

customized simulation tool such as Energy Modeling Protocol [19] have been widely used to study 

the cooling systems with waterside economizers (WSEs) and airside economizers (ASEs) in data 

centers. 

The abovementioned tools utilize imperative programming languages such as FORTRAN, 

C/C++, which makes the tools less extensible. In such programs, models usually tightly couple 

physical equations, input/output routines with numerical solution methods, by making the 

numerical solution procedure part of the actual model equations [20]. This intertwinement makes 

it difficult to extend these programs to support various use cases [21], co-simulations with each 

other [22, 23] and effective optimization [24]. What’s more, some energy simulation tools are not 

suitable for evaluating the system dynamics and the semantics of their control has little in common 

of how actual control works. For example, in EnergyPlus, the commonly used PI control loop is 

assumed to be ideal, i.e.,  there will be no overshoot [25]. EnergyPlus also idealizes dead band or 

waiting time, which are frequently used in the building control process. Moreover, many 

equipment models have built-in idealized control that requests flow rates, and flow rates are ideally 

distributed within a system rather than the results of friction-based flow distribution for a given 

valve or pump control signal. This makes it impossible to model, test and verify actual control. 

One way to address these problems is that physical equations and their numerical solutions 

should be separated where possible. Instead of imperative programming language such as C/C++, 
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the equation-based language Modelica can be used to realize the objective. Details about Modelica 

and how it can benefit system modeling and optimization can be found in previous publications 

[21, 26]. 

The Modelica Buildings library (MBL) has been developed by Lawrence Berkeley 

National Laboratory (LBNL) to support various use cases regarding to HVAC systems in buildings 

[12]. MBL is an open-source, free library with component and system models for building energy 

and control systems. Besides the conventional energy analysis, this library can also provide support 

for rapid prototyping [27], modeling of arbitrary HVAC system topologies [27], evaluation of the 

stabilization of feedback control and Fault Detection and Diagnostics at the whole building system 

level [28, 20, 29]. It can also be used in the design and operation of cooling systems for data centers 

[12]. 

2.3 Modeling of Airflow Management 

To model airflow management in data centers, many available thermal management 

models have been utilized with varying levels of complexity and accuracy. CFD was used to 

predict detailed airflow and temperature fields in the data center [30, 31]. Potential flow models 

[32] and linear abstract heat flow models [33] were also employed as fast prediction techniques. 

To further accelerate the speed of predictions, artificial neural networks [34] and reduced order 

models (e.g. Proper Orthogonal Decomposition ) [35] were utilized to obtain some critical 

information of the data center thermal environment. Among these methods, CFD has been widely 

used as a more sophisticated method than others. A recent study showed that, with careful 

calibration, CFD can make reliable predictions of perforated-tile air flow rates and rack-inlet 

temperatures [36]. However, while versatile and generally accurate, CFD is computationally 
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expensive (especially when the size of the data center is large). This makes its use in optimal design 

and operation of data centers difficult, especially when multiple parameters are optimized, which 

requires a large number of simulations. 

Conventional CFD commonly employs the Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE) [37] to solve the governing equations for fluid flow. For simplicity, the 

conventional CFD is referred to as CFD in the rest of the paper. To accelerate CFD, an alternative 

CFD model called fast fluid dynamics (FFD) was proposed and applied to predict indoor 

environment. FFD solves the same set of governing equations as CFD, but with a time-split method 

and semi-Lagrangian advection solver. FFD was reported to be 50 times faster than CFD and it 

can additionally speedup 30 times by running in parallel on graphics processing unit (GPU) [38, 

11]. This level of speed improvement has great potential to significantly accelerate the process of 

model-based design and operation for data centers. FFD was first introduced and verified in 

building simulation applications by Zuo and Chen [39]. FFD was then improved to simulate 

different cases such as indoor airflow [11, 38, 40], airflow around buildings [41], cabin 

environment [42], and urban-scale airflows [43]. However, the airflow and thermal dynamics in 

data centers are quite different compared to these applications [13]. One is that the high thermal 

load and airflow rate make the airflow pattern in the data center more complex than that in regular 

indoor environment. The other is that special treatments for boundary conditions unique for data 

centers are needed, such as perforated floor tiles and IT racks with server fans inside. Some 

previous studies [44, 45, 36] tried to use FFD for data center airflow and thermal modeling and 

showed potential, but these studies lack a comprehensive evaluation of using FFD for optimal 
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design and operation of data center thermal management. In addition, the FFD programs 

implemented in those studies are proprietary.  

2.4 Holistic Optimization for Cooling Systems and Airflow Management 

2.4.1 State of the Art of Related Simulation Techniques 

Ventilation systems involving stratified airflow and temperature distributions have been 

widely used since they can achieve required thermal comfort more effectively and efficiently. The 

typical applications are stratum ventilation in large spaces, ventilation in spaces with intense heat 

generation, displacement ventilation and natural ventilation [46, 45, 47]. The data center, which is 

the focus of this dissertation, is one of the typical applications. Model-based methods can be 

employed to evaluate and improve the design of such systems. However, it can be challenging to 

study such systems with the widely used Building Energy Simulation (BES) programs, such as 

EnergyPlus [48], TRNSYS [49], ESP-r [50], IDA-ICE [51], and BSim [52], which usually adopt 

a multizone room model. The multizone model (also called nodal model) assumes the air is well 

mixed in each zone, which can be represented by a node. This assumption in the multizone model 

is not valid for large spaces or ventilation systems with stratified airflow and temperature 

distributions [46]. 

To model the stratified indoor airflow and temperature distributions, multi-node nodal 

model, zonal model, and computational fluid dynamics (CFD) were proposed with increasing 

fidelity, which can be coupled with BES [46]. The multi-node nodal model was derived from the 

conventional multizone model by adopting multiple nodes to represent the stratified temperature 

distribution in a single zone [53]. The limitations of this model are 1) requirement of priori and 

empirical knowledge of various coefficients, such as convective heat transfer coefficient [54], and 
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2) requirement of in-depth understanding and detailed descriptions of the airflow pattern [55]. The 

zonal model is an intermediate model between the nodal model and CFD model, which is capable 

of capturing detailed stratified airflow and temperature distributions by dividing a room into a 

limited number of subzones and solving the equations for mass and energy balance [56]. However, 

the applications of the zonal model might be limited for flows with significant momentum because 

it does not solve the momentum equations. Even though special treatments can be added to handle 

airflow with significant momentum, such as the jet region of an inlet, the additional complexity 

and computing demand make the zonal model show few advantages against CFD [46]. Compared 

to the nodal model and zonal model, CFD can get the most accurate simulation results as it divides 

the space into the highest resolution of control volume and solves a set of governing equations for 

each control volume. Despite requiring high computational demand, CFD has become more and 

more popular on evaluating ventilation performance because of its great capability to model 

complex airflow and temperature distributions [46]. Given the complexity for data center 

applications, e.g. predicting hot spots, coupling CFD with BES is more suitable compared to the 

nodal model and zonal model, which cannot predict the hot spots even though they can recognize 

the stratified airflow and temperature distribution to some extent. 

Many attempts have been made to couple CFD with BES for different purposes. First, CFD 

can improve the accuracy of heating or cooling load calculation by providing more accurate 

convective heat transfer coefficients [57], non-uniform airflow and temperature distributions [58, 

59], infiltration and exfiltration rates [60], and local microclimates [59]. Second, CFD was adopted 

to evaluate the performance of advanced ventilation systems involving stratified airflow, such as 

displacement ventilation [61], natural ventilation [54] and double-skin facades/roofs [62, 63]. 
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Moreover, CFD was coupled with BES to study the control dynamics of ventilation systems, such 

as control performance evaluation for a VAV system with different thermostat locations [64, 65].  

However, as pointed out in a recent review paper [66], one of the major limitations of 

coupling BES with CFD is the high computational demand. As a result, most research that 

dynamically couples BES with CFD only simulate typical days instead of a whole year. For 

example, Srebric, Chen, et al. [59] studied a house (6 m × 4 m × 2.5 m) and an atrium (7 m × 4.3 

m × 4.5 m), and found that it took about three hours to simulate the two cases for a typical day. If 

a more realistic case is studied, for example Zhang, Lam, et al. [54] coupled EnergyPlus with 

Fluent to study a naturally ventilated building, it was found that the computing time of one CFD 

simulation is 27 minutes, which results in about 11 hours to simulate the case for a day [54]. The 

application of coupling BES with CFD becomes even more challenging when studying the control 

of ventilation systems, which usually require a much shorter time interval to exchange data 

between BES and CFD than applications that target energy prediction to capture short term thermal 

dynamics. For example, Sun and Wang [67] embedded ventilation and control systems into a CFD 

program to evaluate control dynamics of a VAV system and found it took about 10 hours to 

simulate a ventilated room (3 m × 3 m × 2.5 m) for 1 hour. Even with Fast Fluid Dynamics (FFD) 

[11], which is an alternative to CFD and was reported to be 50 times faster than traditional CFD 

[ref: indoor air paper], it took 430 s to simulate a ventilated room (2.44 m × 2.44 m × 2.44 m) for 

800 s using a coupled Modelica-FFD model [47]. This is still not fast enough for a long-term 

evaluation, which provides a more comprehensive performance evaluation by considering varying 

weather conditions, schedule profiles, and partial loads compared to a typical design day.  
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To reduce the computational cost of the BES-CFD co-simulation, the BES-ROM-CFD 

approach (also called bin coupling scheme or virtual dynamic coupling [58]) was proposed to 

couple BES with a reduced order model (ROM) trained by pre-computed CFD simulation results 

[68]. The conventional BES-ROM-CFD coupled model has the similar data synchronization 

scheme as the BES-CFD coupled model on the online stage. The only difference is that the BES-

CFD coupled model calls CFD to make predictions for airflow but the conventional BES-ROM-

CFD coupled model calls a ROM pre-trained by CFD instead. Consequently, the BES-CFD 

coupled model is accurate but time-consuming and the conventional BES-ROM-CFD coupled 

model is fast but may be less accurate. This conventional BES-ROM-CFD approach can be done 

with different forms of ROMs. Chen and Van der Kooi [58] coupled BES with curve-fitted 

functions generated by CFD results to conduct building energy analysis. Kim, Braun, et al. [69] 

developed a linear time-invariant (LTI) model to predict the indoor environment information to 

support the control study of rooftop units. As a widely-used ROM of CFD, the proper orthogonal 

decomposition (POD) constructed by interpolating from a set of CFD samples was coupled with 

BES to study the load placement in an open-aisle air-cooled data center [70]. An artificial neural 

network trained by CFD results was integrated into BES to predict the energy consumption and 

thermal environment of a large-space atrium [71]. Compared to BES-CFD, these BES-ROM-CFD 

studies can reduce the simulations time from hours to seconds and are generally accurate when the 

inputs of ROMs are within the training domain. However, the major limitation of these BES-ROM-

CFD approaches is that the prediction accuracy might drastically drop when the model inputs for 

ROM are outside of the training domain. Consequently, inaccurate predictions might be returned 

from ROMs if the training domain is too small to cover all possibilities. On the other hand, the 
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ROM training process might be challenging, sometimes even impractical, due to high 

computational costs if the ROM is trained in a sufficiently large domain, especially for multivariate 

problems. Moreover, even a sufficiently large training dataset that covers the range of each variable 

is created from CFD simulations, it does not necessarily warrant the prediction accuracy of the 

ROMs. In fact, the ROMs commonly need to be carefully trained and tested to achieve a required 

prediction accuracy. For example, [72] mentioned that the representativeness of the data samples 

(i.e. training dataset) from CFD simulations is critical for the accuracy of the POD method. Even 

with the methodology proposed in [72], multiple iterations may be needed to identify sufficient 

data samples. In addition to the conventional BES-ROM-CFD approach, Zhai and Chen [68] 

mentioned a dynamic bin coupling method, which first predicted the airflow details in typical days 

by running BES-CFD co-simulation and then used those results (i.e. bins) in BES for the days with 

similar conditions. However, it is not clear what environmental and building operating conditions 

can be identified to be similar as “typical days”. Also, the simulation errors introduced by using 

bins have not been fully investigated and understood. 

2.4.2 Applications in Data Centers 

ASHRAE [15] recommends 27 oC as the maximum inlet temperature for the IT equipment. In 

reality, computer room air conditioners (CRACs) in many data centers are operated at a 

significantly lower supply temperature to avoid hot spots. While providing redundant cooling, this 

leads to reduced cooling efficiency [5]. Therefore, it has been a research topic on how to improve 

the energy efficiency while still providing enough cooling to the data center whitespace, where the 

IT equipment is placed. This can be done through a holistic optimization framework as shown in 
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Figure 2-4, in which the simulation of HVAC systems and controls are dynamically coupled with 

simulation of non-uniform thermal environment in data centers. 

 

Figure 2-4 Holistic optimization framework for the data center cooling systems and airflow 

management 

Moore, Chase, et al. [73] proposed several algorithms for workload placement to maximize 

the supply air temperature while ensuring the server inlet temperature not exceeding the threshold. 

Tang, Gupta, et al. [74] investigated several load placement strategies to minimize heat 

recirculation. Among these research, the CFD simulations were conducted to obtain the thermal 

map of the data center with regard to workload distribution, which required huge computational 

efforts to cover a large number of scenarios. 

The bottleneck of the holistic optimization of cooling systems and airflow management is 

the high computational costs of CFD simulations. To reduce the computational cost, simplified 

airflow models were proposed for fast prediction of indoor environment. Zhang, VanGilder, et al. 

[75] developed a lumped model to predict rack-inlet temperatures under various supply airflow 

and rack-load scenarios. Since only one effective aggregated rack and cooling unit were considered 

based on a well-mixed assumption, the lumped model may fail to capture local airflow pattern and 
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temperature distribution. Potential flow models were used to predict the airflow and temperature 

distribution [76]. However, the potential flow model is an approximate and simplified model, 

which may not be as accurate as CFD, particularly when simulating the jet flows from the 

perforated tiles.  

Other than physic-based models, statistics-based approaches, sometimes referred to as 

reduced order models (ROMs) were also employed. Proper orthogonal decomposition (POD) was 

used to predict the velocity and temperature distribution in an office [35] and rack-inlet 

temperature distribution in a raise-floor data center [77]. Artificial neural network (ANN) models 

were used to predict thermal map of data centers [78], perforated-tile flowrates and rack-inlet 

temperatures [34]. However, the predictions of such statistics-based models may become 

inaccurate when the queries lie beyond the training domain.  
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Chapter 3 A New Open Source Fast Fluid Dynamics Model for Data Center 

Thermal Management 

 

This chapter introduces a new FFD model for fast prediction of data center airflow and 

thermal environment. The FFD model is validated and then demonstrated to support optimal data 

center thermal management with a real middle-size data center. 

3.1 Introduction 

To support model-based design and operation for data centers, many available thermal 

management models have been utilized with varying levels of complexity and accuracy. CFD was 

used to predict detailed airflow and temperature fields in the data center [30, 31]. Potential flow 

models [32] and linear abstract heat flow models [33] were also employed as fast prediction 

techniques. To further accelerate the speed of predictions, artificial neural networks [34] and 

reduced order models (e.g. Proper Orthogonal Decomposition ) [35] were utilized to obtain some 

critical information of the data center thermal environment. Among these methods, CFD has been 

widely used as a more sophisticated method than others. A recent study showed that, with careful 

calibration, CFD can make reliable predictions of perforated-tile air flow rates and rack-inlet 

temperatures [36]. However, while versatile and generally accurate, CFD is computationally 

expensive (especially when the size of the data center is large). This makes its use in optimal design 

and operation of data centers difficult, especially when multiple parameters are optimized, which 

requires a large number of simulations. 
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Conventional CFD commonly employs the Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE) [37] to solve the governing equations for fluid flow. For simplicity, the 

conventional CFD is referred to as CFD in the rest of the paper. To accelerate CFD, an alternative 

CFD model called fast fluid dynamics (FFD) was proposed and applied to predict indoor 

environment. FFD solves the same set of governing equations as CFD, but with a time-split method 

and semi-Lagrangian advection solver. FFD was reported to be 50 times faster than CFD and it 

can additionally speedup 30 times by running in parallel on graphics processing unit (GPU) [38, 

11]. This level of speed improvement has great potential to significantly accelerate the process of 

model-based design and operation for data centers. FFD was first introduced and verified in 

building simulation applications by Zuo and Chen [39]. FFD was then improved to simulate 

different cases such as indoor airflow [11, 38, 40], airflow around buildings [41], cabin 

environment [42], and urban-scale airflows [43].  

However, the airflow and thermal dynamics in data centers are quite different compared to 

these applications [13]. One is that the high thermal load and airflow rate make the airflow pattern 

in the data center more complex than that in regular indoor environment. The other is that special 

treatments for boundary conditions unique for data centers are needed, such as perforated floor 

tiles and IT racks with server fans inside. Some previous studies [44, 45, 36] tried to use FFD for 

data center airflow and thermal modeling and showed potential, but these studies lack a 

comprehensive evaluation of using FFD for optimal design and operation of data center thermal 

management. In addition, the FFD programs implemented in those studies are proprietary. This 

research develops the necessary FFD modules for data center and conducts a comprehensive 

evaluation of FFD for that regarding prediction accuracy, computing speed and performance for 
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model-based design and operation in a real data center. The new FFD model for data center thermal 

management is implemented using OpenCL, which is a cross-platform parallel computing 

language. To enable a broader range of applications, the FFD code has been publicly released 

under a free open-source license. 

This paper is organized as follows. First, a comprehensive introduction of the new FFD 

model is provided including governing equations, methods to solve these equations, treatments of 

special boundary conditions in data centers and their implementation. The new FFD model is 

validated with two classical cases for indoor environment modeling [79] in Section 3.1 and a real 

data center case located in Massachusetts, U.S.A in Section 3.2. Subsequently, the application of 

the FFD model is demonstrated using three case studies based on the aforementioned data center.  

3.2 Methodology 

3.2.1 Data Center Airflow and Thermal Dynamics 

The configuration and intended airflow directions of a typical raised-floor data center are 

shown in Figure 3-1. The above-floor white space (i.e. allocated for IT equipment) in the data 

center is partitioned into cold aisles and hot aisles by rows of racks. The raised-floor plenum and 

perforated floor tiles are designed to uniformly distribute the cold air to the cold aisles. The cold 

air from the cooling system is supplied to the cold aisle, then flows through the IT racks and carries 

heat dissipated from IT equipment, and then exhausts to the hot aisle and returns to the cooling 

system through the ceiling plenum. ASHRAE [15] defines the requirements of the data center 

airflow and thermal management. One key parameter is to ensure the rack inlet temperatures are 

within a safe threshold (e.g. not exceeding 27 oC). The segregated cold and hot aisles help lower 
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the IT rack inlet temperature by preventing or mitigating the mixing of cold and hot air. Sometimes, 

physical containment of the hot or cold aisle is employed to avoid such mixing. 

 

Figure 3-1 Airflow pattern in a typical raised-floor data center 

CFD has been widely used to improve the data center thermal management. For example, 

CFD can be adopted to evaluate the temperature and airflow distribution for scenarios with 

different designs, such as different layouts of the cold aisle, hot aisle and IT racks. However, one 

limitation of CFD is the high computational demand, which makes its application infeasible when 

multiple parameters are studied and hundreds or even thousands of simulations are needed. Thus, 

the FFD model, which was reported to be 50 times faster than CFD [11], is evaluated in this paper 

to solve this problem. 

3.2.2 Fast Fluid Dynamics 

This section introduces conventional FFD for indoor environment modeling and the 

improved FFD model for data center thermal management. Note that here the “conventional FFD” 
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represents existing FFD [11, 80-82, 36] as opposed to the proposed FFD described later in this 

paper. The improvements include changing the solving methods for the advection equation and 

implementing boundary conditions and special treatments for data center environment. The 

implementation of the FFD model in OpenCL is also discussed.  

3.2.2.1 Governing Equations and Solution Methods 

Like CFD, the FFD model solves the same set of governing equations for flows. The 

Navier-Stokes momentum equation can be generalized and written as: 

𝜕𝑼𝑖

𝜕𝑡
=  −𝑼𝑗

𝜕𝑼𝑖

𝜕𝒙𝑗
+ 𝜈

𝜕2𝑼𝑖

𝜕𝒙𝑗𝜕𝒙𝑗
−

1

𝜌

𝜕𝑃

𝜕𝒙𝑖
+ 𝑭𝑖, (3-1) 

where 𝑼 is the velocity vector, 𝑡 is time, 𝒙 is the spatial coordinates, 𝜈 is the kinematic viscosity, 𝜌 

is the density, 𝑃 is pressure, and 𝑭𝑖 is the source term. 

The energy equation can be written as: 

𝜕𝑇

𝜕𝑡
=  −𝑼𝑗

𝜕𝑇

𝜕𝒙𝑗
+ 𝛼

𝜕2𝑇

𝜕𝒙𝑗𝜕𝒙𝑗
+ 𝑺𝑇 , (3-2) 

where 𝑇 is the temperature, 𝛼 is the thermal diffusivity, and 𝑺𝑇 is the thermal source term. 

FFD uses a time-split method. Equation 1, for example, is split into three equations in 

conventional FFD [11]: 

𝑈𝑖
(1)

−𝑈𝑖
(𝑛)

∆𝑡
= −𝑼𝑗

𝜕𝑼𝑖

𝜕𝒙𝑗
 , (3-3) 

𝑈𝑖
(2)

−𝑈𝑖
(1)

∆𝑡
= 𝜈

𝜕2𝑼𝑖

𝜕𝒙𝑗𝜕𝒙𝑗
+ 𝑭𝑖 , (3-4) 

𝑈𝑖
(𝑛+1)

−𝑈𝑖
(2)

∆𝑡
= −

1

𝜌

𝜕𝑃

𝜕𝒙𝑖
. (3-5) 
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The three equations are solved sequentially. As shown in Figure 3-2, conventional FFD 

first solves Equation 3-3, namely the advection equation, by a semi-Lagrangian (SL) scheme [83]. 

Equation 3-4, namely the diffusion equation, is solved with an implicit scheme. Finally, Equation 

3-5, namely the pressure equation, is solved together with the continuity equation: 

𝜕𝑼𝑖

𝜕𝒙𝑖
= 0, (3-6) 

based on a projection-correction method [84] to ensure mass conservation. 

The SL scheme [83] has been widely adopted to solve the advection equation in 

conventional FFD [11, 38, 40-43]. One of the major advantages of the SL scheme is the fast 

computing speed, which is achieved by tracing locations at the last time step and calculating 

velocities through interpolation without any iterative algorithm. However, a major drawback of 

the SL scheme is that it does not guarantee in-general quantity conservation [85]. In addition, the 

determination of the time step size is crucial for the stability of simulation as well as the accuracy 

of the SL scheme [86]. For example, the Courant–Friedrichs–Lewy (CFL) constraints (𝑼𝑖∆𝑡/∆𝑥 ≤

1) should be satisfied to overcome the stability concerns, which may require a small time-step size. 

Meanwhile, a smaller time step size may also reduce accuracy because of truncation error growth 

[86]. As a result, additional efforts are required to address these issues. On the other hand, an 

implicit scheme, such as the first order upwind, is stable and robust even when the CFL number is 

larger than one. However, the implicit scheme is usually more computationally expensive 

compared to the SL scheme. Thus, it will increase the computing demand by 8%-20% according 

to our tests if the SL scheme is replaced by an implicit scheme to solve the advection equation.  
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In addition to the stability and robustness, the first order upwind scheme has another 

advantage compared to the SL scheme, which is the unconditional conservation of mass and energy 

for each cell in the computational domain. With SL, one will have to enforce mass balance at the 

global level. Even by doing so, the mass balance at cell level is not perfect. This is particularly 

important in data center applications, because unlike regular buildings where the purpose is to 

create an environment with general thermal comfort, data center operators and researchers care 

more about local energy balance, which may influence the generations of local hot spots. 

 

Figure 3-2 Workflow of the convectional FFD-SL and proposed FFD-Upwind 

To take advantage of the stability, robustness and unconditional local mass and energy 

conservation of the first order upwind scheme while not sacrificing computing speed, this paper 

proposes a new FFD model to simultaneously solve diffusion and advection equations with a first 

order upwind scheme (Figure 3-2). The Equations 3-3 ~ 3-4 are solved together as: 

Advection Diffusion ProjectionEquations:

Conventional FFD-SL:

Scheme: SL Upwind

Diffusion + Advection ProjectionEquations:

Scheme: Upwind

Proposed FFD-Upwind:

Solver: GS/Jacobi GS/Jacobi

Solver: GS/Jacobi GS/Jacobi
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𝑈𝑖
(2)

−𝑈𝑖
(𝑛)

∆𝑡
= 𝜈

𝜕2𝑼𝑖

𝜕𝒙𝑗𝜕𝒙𝑗
+ 𝑭𝑖 − 𝑼𝑗

𝜕𝑼𝑖

𝜕𝒙𝑗
 , (3-7) 

For clarity, the proposed FFD model is called FFD-Upwind (or the FFD model) and the 

conventional FFD model is called FFD-SL. As shown in Figure 3-2, the FFD-Upwind first assigns 

coefficients of equation matrix for diffusion and advection sequentially and then solve the equation 

matrix with a linear Gauss-Seidel (GS) or Jacobi solver. As a result, the FFD-Upwind discards the 

SL scheme without increasing the computing demand compared to the FFD-SL. 

3.2.2.2 Boundary conditions 

In this section the general boundary conditions that are commonly used for modeling of 

indoor environment are briefly introduced. The special boundary conditions for objects in the data 

center environment are then described including perforated floor tiles and IT racks. 

General boundary conditions: 

In our study, three general types of boundaries are considered including inlets, outlets, and 

walls. A Dirichlet boundary condition is applied for the inlets as a fixed velocity. For the outlets, 

either a Neumann boundary condition with a zero-gradient velocity or a Dirichlet boundary 

condition with a fixed velocity can be imposed. For the walls, a no-slip wall boundary condition 

is applied, which assumes the air velocity at the solid wall boundary is zero.  

Perforated floor tile: 

Since the raised-floor plenum and white space are modeled separately in this paper, the 

modeling of perforated floor tiles can be done with different considerations depending on which 

space is studied [13]. The aim of modeling the raised-floor plenum is to predict the air flow rates 

at perforated tiles. The flow rates are determined by the pressure distribution in the plenum and 
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the pressure drop when the air flows through the perforated tiles. We adopt a commonly used 

approach called the porous jump method (also regarded as lumped resistance method). It simplifies 

the perforated tiles as flow resistances and specifies a step pressure loss across the perforated tiles 

[31, 13, 87]: 

∆𝑃 =
1

2
𝜌𝑓𝑉2, (3-8) 

where ∆𝑃 is the pressure drop across the tile, 𝑉 is the velocity approaching the tile, and 𝑓 is the 

dimensionless loss coefficient, which can be estimated from manufacturer data or by empirical 

formulae, for example, the one proposed by Fried and Idelchik [88]: 

𝑓 =
1

𝛽2
[1 + 0.5(1 − 𝛽)0.75 + 1.414(1 − 𝛽)0.375], (3-9) 

where 𝛽 is the open-area-ratio of the perforated tile. 

When modeling the white space, the goal is to study the airflow and temperature 

distribution within the space. The perforated tiles are just special inlet boundary conditions. As a 

result, they are often treated as prescribed uniform-velocity boundaries independent of their open-

area-ratio. The magnitude of the velocity is typically determined based on the air flow rate and the 

total area of the perforated tile. However, in reality, the airflow will be accelerated when it goes 

through the small openings of the perforated tiles, which results in higher local velocities and a 

lower-pressure region above the perforated tiles. 

Balancing the complexity and accuracy of modeling such perforated tiles should be 

considered. On one hand, modeling the perforated tiles as fully opened openings with a pressure 

loss using the porous jump model would omit the jet effect above the tiles, and therefore may lead 

to inaccurate or even incorrect results [87]. On the other hand, detailed pore-by-pore modeling, 
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although versatile and generally accurate, is impractical in practice considering the added 

complexity. Consequently, there are various attempts in this area to achieve a compromise between 

complexity and accuracy of modeling the perforated tiles. The body force model or modified body 

force model were used to specify a momentum source above the perforated tiles [89, 87]. 

Abdelmaksoud, Dang, et al. [89] also developed a quadrants method, which separates the 

perforated tile to multiple openings with the same total opening area. All these methods were 

reported to successfully capture the air acceleration through the pores of the perforated tiles. This 

research adopts the body force method [87] due to its simplicity and good accuracy. An additional 

force is added into the momentum equations to correct the under-estimated velocity for 

computational cells just above the perforated floor tiles. Suppose that a perforated tile has an open-

area-ratio of 𝛽 , surface area 𝐴 (m2) and air flow rate 𝑄  (m3/s). With the assumption that the 

momentum source is applied to a computational cell with a height ℎ (m) directly above the tile, 

we can compute the momentum source as: 

𝑭𝑖 = 
𝑄2

𝐴2ℎ
(
1

𝛽
− 1), (3-10) 

where the direction of  𝑭𝑖 is perpendicular to the surface orientation of the perforated tile. In this 

paper, we set ℎ as 0.15 m.   

IT Rack: 

There are generally two approaches to model the IT racks: the open box model and the 

black box model [90]. The major difference between the two methods is that the airflow inside the 

rack is modeled in the open box model but is excluded in the black box model. The former method 

adopts a more detailed model, which may be able to capture the temperature and velocity 
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stratification across the surfaces of the rack inlet and outlet. The latter method simplifies the rack 

as a solid box with an inlet and an outlet. The exhaust temperature at the rack outlet is calculated 

based on the temperature profile of the air flowing into the rack inlet, with an assumed temperature 

rise to model the effect of heat dissipation inside the rack. Zhang, VanGilder, et al. [91] compared 

different levels of details for modeling an IT rack including a black box rack, a detailed rack with 

crude server simulators and a detailed rack with detailed server simulators, and found that the 

different levels of rack details had little effect on the predicted temperatures for the studied case. 

Therefore, in the present study, we adopt the black box model for its simplicity and sufficient 

prediction performance. In the black-box model, individual servers or “slices” are not explicitly 

resolved. The airflow is assumed to be proportional to total rack power dissipation (𝑃, 𝑘𝑊) with 

212 m3/h (125 cfm) of airflow for each kW of power (𝜓, m3/h/kW) [92, 36]. The airflow is spread 

uniformly over the front and rear of the rack. 

𝑄𝑖𝑛 = 𝑃 × 𝜓 (3-11) 

The air temperature at the rack inlet is assigned with the temperature of its adjacent cells. 

The vertical temperature gradient at the front (inlet) of the rack is carried through to the rear 

(exhaust) of the rack with a temperature rise, which is determined by the heat dissipation of IT 

servers and flow rate of air through the rack:  

𝑇𝑒𝑥= 𝑇𝑖𝑛 +
𝑞𝑠𝑒𝑟𝑣𝑒𝑟

𝑐𝑝 × 𝑚̇
 (3-12) 

3.2.2.3 Software Implementation 

The data center can be split into two volumes: the raised-floor plenum and white space 

[13]. A previous study [93] recommended to model the raised-floor plenum separately and use the 
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results of flow rates at perforated tiles as boundary conditions in the white space model. For 

modeling convenience, our current implementation follows the procedure of modeling the raised-

floor plenum and the white space separately. This is justified when relatively low open-area-ratio 

tiles are employed. 

 

Figure 3-3 Structure of the proposed FFD model 

The structure and workflow of the FFD model is shown in Figure 3-3. The FFD model is 

implemented through hybrid programming in C and OpenCL. The host program (i.e. main routine 

of FFD) runs sequentially on the CPU and the kernels run in parallel on the GPU. The code in 

OpenCL is used to execute the kernels for assigning boundary conditions and solving the 

Solve projection by 

combining Equations 5-6

Assign rack outlet boundaries 

based on Equations 11-12

Assign rack inlet boundaries 

based on Equations 11-12

Assign rack boundaries

Initialize in CPU

START

Initialize in GPU
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governing equations. For more details of the structure of the implementation, please refer to Tian, 

Sevilla, et al. [40]. It is noted that the source codes of this FFD model have been publicly released 

in [94] , which is the first open source FFD model for data center thermal management. 

When modeling the raised-floor plenum, to ensure that the simulated airflow field and air 

flow rates at tiles simultaneously satisfy Equations 3-1 and 3-7, we adopt a pressure correction 

method proposed by VanGilder, Sheffer, et al. [95]. The FFD first assigns initial values for all air 

flow rates at tiles and computes the pressure field in the raised floor plenum based on Equations 

3-5 and 3-6. The FFD model then calculates the air flow rates at tiles according to the obtained 

pressure field and Equation 3-7 and checks the mass conservation. Subsequently, the FFD model 

shifts the pressure in the plenum by a constant value (for example, the pressure at all cells in the 

plenum will be increased by a constant value if the current pressure field is too small to provide 

enough outflows) until a converged flow field satisfying momentum and mass conservation is 

achieved.  

When modeling the white space, we adopt a black box model to assign the boundary 

conditions for the IT racks based on Equations 3-10 and 3-11 [36]. All the governing equations 

are solved based on a Jacobi method on the GPU in parallel. For the modeling of both plenum and 

white space, the simulation will be terminated when the velocity, temperature and pressure fields 

become steady state.  

3.3 Validation 

To validate the proposed FFD model, two classic cases for indoor environment modeling 

and one data center case are selected. The indoor cases are studied to evaluate the proposed FFD 

model that solves the advection and diffusion equations together, compared to conventional FFD 
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that solves them separately. The real data center case is then studied to evaluate the capability of 

the proposed FFD model with new features to simulate data center thermal environment. 

Experimental data are taken as reference for all the cases. 

3.3.1 Validation of the Improved FFD Model 

3.3.1.1 Description of the indoor environment cases 

The first case is an empty room with forced convection, which is a pure airflow case 

without heat transfer [79]. The room is 2.44 m (8 ft) long, 2.44 m (8 ft) wide and 2.44 m (8 ft) high 

with an inlet at the top of the west wall and an outlet at the bottom of the east wall. Other critical 

dimensions are shown in Figure 3-4 (a). The temperatures of the inlet flow and surfaces in the 

room are controlled to be the same. Experimental data at ten locations as shown in Figure 3-4 (b) 

are available [79]. 

     

(a)           (b) 

Figure 3-4 (a) Schematic of the forced convection in an empty room and (b) locations of 

experimental data 
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(a)           (b) 

Figure 3-5 (a) Schematic of the mixed convection in a room with a box and (b) locations of 

experimental data 

The second case increases the flow complexity by adding a heated box (1.22 m × 1.22 m 

× 1.22 m) in the center of the room, in which heat transfer occurs [79]. The size of room and 

locations of the inlet and outlet are the same with the first case. Other critical dimensions are shown 

in Figure 3-5 (a). The temperatures of the inlet flow, box surface, ceiling, flow and other walls are 

22.2 ºC., 36.7 ºC, 25.8 ºC, 26.9 ºC, and 27.4 ºC, respectively. Experimental data is available for 

ten locations shown in Figure 3-5 (b) [79]. 

3.3.1.2 Evaluation metrics 

Normalized root-mean-square deviation (NRMSD) is adopted to quantify the accuracy of 

predictions by FFD and CFD with respect to experimental data, which is defined as: 

𝑁𝑅𝑀𝑆𝐷 =
1

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

√∑ (𝑥𝑖̂−𝑥𝑖)
2𝑁

𝑖=1

𝑁
× 100%, (3-13) 
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where 𝑥𝑖̂ and 𝑥𝑖 are simulated and measured values at point i, respectively. 𝑁 is the total number 

of data points. (𝑥𝑚𝑎𝑥 − 𝑥min ) represents the range of the studied parameter over the computational 

domain, which is 1.36 m/s when evaluating velocity profiles and 14.5 oC (36.7 oC - 22.2 oC) when 

evaluating temperature profiles for the two cases. 

3.3.1.3 Setup of simulations 

Table 3-1 Settings of simulations in FFD-Upwind and FFD-SL 

Case 

Grid Simulation Time (s) Time Step Size (s) 

FFD-

Upwind 
FFD-SL 

FFD-

Upwind 
FFD-SL 

FFD-

Upwind 
FFD-SL 

Forced Convection in 

an Empty Room 
40×40×40 1350 0.05 

Mixed Convection in a 

Room with a Box 
40×40×40 1350 0.05 

 

Table 3-1 summarizes the simulation settings employed in both FFD-Upwind and FFD-SL. 

We perform a similar grid independent study as was done in Tian, Sevilla, et al. [40]. It is found 

that with the non-uniform structured grid (40×40×40), in which the averaged mesh size is about 6 

cm, the simulations achieve grid independent results. Similar conclusions were drawn in previous 

studies [40, 79]. The mesh is refined at critical locations to capture the gradients and changes in 

the flow. For example, the inlet as well as near-ceiling areas is refined with a minimum mesh size 

of about 0.5 cm and the outlet as well as the near-floor area is refined with a minimum mesh size 

of about 1 cm. The FFD-Upwind and FFD-SL models perform transient-state simulations because 

of the time-split method used in FFD (with a time step size of 0.05 s and simulation time of 1350 

s). Both FFD-Upwind and FFD-SL use a zero-equation turbulence model [96, 97] and are 

performed on an AMD FireProTM W8100 GPU. 
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3.3.1.4 Results 

Table 3-2 NRMSD of predictions for cases with FFD-Upwind and FFD-SL 

Cases 
Simulation 

Program 
Predictions 

NRMSD (%) 

P1 P3 P5 P6 Ave. 

Forced Convection in 

an Empty Room 

FFD-SL Velocity 3.72 7.95 6.59 8.56 6.71 

FFD-Upwind Velocity 4.93 4.25 6.93 4.62 5.18 

Mixed Convection in 

a Room with a Box 

FFD-SL 
Velocity 5.22 5.46 4.18 4.38 

5.25 
Temperature 5.44 6.68 2.84 7.78 

FFD-Upwind 
Velocity 6.92 4.21 7.19 3.47 

4.00 
Temperature 2.33 3.47 2.43 1.99 

 

 

 

 

 

 

 

Table 3-2 summarizes the NRMSD of predictions for the cases with FFD-Upwind and 

FFD-SL. The average NRMSDs for the four locations with FFD-Upwind are 5.18% and 4% for 

the two cases. The FFD-Upwind has slightly better overall prediction accuracy with lower 

averaged NRMSDs for the two cases compared to FFD-SL. However, it can still be seen that FFD-

SL performs better than FFD-Upwind for velocity predictions at the locations P1 and P5. This may 

be due to the complex flow structure in those areas, which is hard to capture. 

  

Figure 3-6 Comparison of velocity profiles for forced convection in an empty room 
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Figure 3-7 Comparison of velocity profiles for mixed convection in an empty room with a 

box 

    

Figure 3-8 Comparison of temperature profiles for mixed convection in an empty room with a 

box 

Figure 3-6 ~ 3-8 compare the velocity and temperature profiles predicted by FFD-Upwind 

and FFD-SL for the two cases. Generally, all agree with the experimental data [79] for most 

locations and FFD-Upwind performs slightly better than FFD-SL does. However, some obvious 

discrepancies can be observed. For example, velocity prediction at P5 by FFD-Upwind and 

temperature prediction at P6 by FFD-SL for the second case. Both FFD-Upwind and FFD-SL do 
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not predict the velocity at the areas close to the ceiling and floor precisely. The possible reason is 

that FFD could not properly estimate the turbulence viscosity due to lack of wall functions even 

though an approximate wall function [97] is integrated with the zero-equation turbulence model in 

the FFD models. It is also found that FFD-SL performs better than FFD-Upwind at those areas 

especially for the location P5 even though FFD-Upwind has a slightly better overall accuracy. This 

is possible since the prediction accuracy may be influenced by aspects other than the solving 

methods of FFD, such as configurations of the mesh, settings of physical parameters. It is worthy 

to note that relatively larger discrepancies in some critical areas were also found in previous studies 

[80, 98] and even state-of-the-art CFD models with advanced turbulence models could not 

precisely predict all the flow details [79]. As a simplified alternative to CFD models that targets 

fast speed, it is acceptable that the proposed FFD model could generally capture the flow dynamics. 

For the speed, it takes 244.1 s and 244.9 s for the two cases with FFD-Upwind and takes 

260.3 s and 258.0 s for the two cases with FFD-SL. This is because of the new methods to solve 

equations in the FFD-Upwind as shown in Figure 3-2. In FFD-SL, the advection equation is solved 

with an SL scheme and the diffusion equation is solved with an upwind scheme. In FFD-Upwind, 

the advection and diffusion equations are solved together with an upwind scheme. As a result, the 

computing demand in FFD-Upwind is reduced by eliminating the SL scheme. Hence, FFD-

Upwind is faster than FFD-SL. To conclude, FFD-Upwind is about 5.7% faster than FFD-SL while 

achieving a slightly better overall accuracy compared to FFD-SL for the two studied cases.  

3.3.2 Validation of New Features for Data Centers 

The methodology section introduced the new features in the FFD model for data centers. 

This section is to validate the new FFD model using a real data center for industrial practice. It is 
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noted that various research has been done to validate the component models for data centers, such 

as the black box model [90, 91] and body force method [87]. The focus of this paper is to evaluate 

if the new FFD model can provide airflow prediction for real-world practice with the current 

implementation, such as zero-equation turbulence model, body force model and black box rack 

model. Therefore, we select a middle-size data center in real world instead of a simple data center 

with well-controlled boundary conditions in the laboratory.  

3.3.2.1 Description of the data center case  

 

Figure 3-9 Layout of the reference data center 
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In this section, the new FFD model with the new data center feature is validated using a 

real medium-size data center with raised-floor and dropped-ceiling architecture located in 

Massachusetts, U.S.A. As shown in Figure 3-9, the reference data center is approximately 30.5 m 

(100 ft) long, 22.6 m (74 ft) wide and 3.4 m (11 ft) high from the raised floor to the ceiling, with 

a total white space area of approximately 690 m2 (7,400 ft2). Total power consumption by 151 

racks and 12 PDUs is approximately 344 kW. Racks G11 and G13 (i.e., the 11th and 12th cabinets 

in Row G) are empty. There are 18 45U networking racks in Rows 1 and 10, and all the remaining 

racks in the data center have a capacity of 42U. 

Two central Air Handling Units (AHUs) supply cooling airflow through the short sides of 

the plenum, which is supported using 7/8” stanchions. The total supply air flow rate is 152,000 

m3/hr (89200 cfm). The airflow is then supplied to the IT equipment through 183 perforated floor 

tiles with 25% open-area-ratio (each 2 ft by 2 ft). The hot exhaust air returns to the CRAH through 

a dropped-ceiling plenum with 42 perforated ceiling tiles with 83% open-area-ratio.  

An on-site measurement was performed for the studied data center. In addition to the data 

center geometry and types of IT racks, three primary parameters are measured including 1) rack-

by-rack powers, 2) perforated tile airflow rates and 3) rack inlet temperatures. Rack-by-rack 

powers are estimated by two steps. First, all the racks fed by twelve large power distribution units 

(PDUs) are divided into twelve groups and the total power of each group is equal to the 

corresponding PDU power. Then, rack-by-rack powers are estimated by scaling the total power in 

each group of racks by the fraction of occupied U spaces in each rack. A flow hood is used to 

measure the perforated tile airflow rates. The flow hood is a TSI/Alnor EBT731 and the accuracy 

of the flow hood is ±3% of reading and ±12 m3/h at flows >85 m3/h. When being placed on a 
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perforated tile, the flow hood adds additional flow resistance which creates a measurement error 

relative to the true value. To correct for this error, the “2MUP(p=2)” method proposed by 

VanGilder, Pardey, et al. [99] is adopted. The rack inlet temperatures are measured at 4 points 

distributed vertically in front of each rack. The sensors are located at heights of 0.53 m, 0.91 m, 

1.3 m and 1.68 m, respectively. The horizontal distance between the thermocouples and the rack 

door is approximately 0.025 m. Four K-type thermocouples are connected to a UEi-DT304 Quad 

Input IP67 Digital Logging Thermometer with the accuracy of ±[0.1% + 0.5 oC]. Temperature 

measurements are averaged over a 1-minute sampling period. 

3.3.2.2 Evaluation metrics 

To evaluate accuracy of plenum airflow modeling we propose the percentage relative 

difference (PRD) between simulated tile airflow 𝑄̇𝑠𝑖𝑚 and experimentally measured tile airflow 

𝑄̇𝑒𝑥𝑝, which is defined as: 

𝑃𝑅𝐷𝑄̇ = |
𝑄̇𝑠𝑖𝑚−𝑄̇𝑒𝑥𝑝

𝑄̇𝑒𝑥𝑝
| × 100%. (3-14) 

To evaluate accuracy of temperature prediction in the white space, 𝑃𝑅𝐷𝑇  is used to 

represent the PRD between simulated and experimentally measured rack inlet temperatures (𝑇𝑠𝑖𝑚 

and 𝑇𝑒𝑥𝑝): 

𝑃𝑅𝐷𝑇 = |
𝑇𝑠𝑖𝑚 − 𝑇𝑒𝑥𝑝

Δ𝑇
| × 100%, (3-15) 

where 𝑇𝑠𝑖𝑚  and 𝑇𝑒𝑥𝑝  are calculated as the average of the temperature at four points along the 

heights. The reference temperature difference Δ𝑇  is assumed to be 14 oC (25 oF), which 

corresponds to a typical magnitude of temperature rise across the racks. In this case, a 5% of 𝑃𝑅𝐷𝑇 

corresponds to a temperature difference of 0.7 oC. 
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3.3.2.3 Setup of simulations 

Table 3-3 summarizes the simulation settings of the FFD model and CFD. Both use 

structured grids for the simulation of plenum and white space. The CFD does not require a time 

step size or a set simulation time since it performs steady-state simulations, while the FFD model 

performs transient-state simulations because of the time-split method used in FFD (with a time 

step size of 0.2 s – 1.0 s and simulation time of 100s – 400s). The CFD uses a 𝑘 − 𝜀 turbulence 

model  with wall function treatment while the FFD model uses a zero-equation turbulence model 

[96] with a simplified approximate-wall-function proposed by Dhoot, VanGilder, et al. [97]. The 

CFD simulation is performed on four cores of an Intel (R) Xeon (R) CPU E3-1220 v6 processor 

running on a Windows workstation with 32 GB of RAM. The FFD simulation is performed on an 

AMD FireProTM W8100 GPU. Except for the refined cells at some critical locations to handle 

complex geometries, a uniform and structured grid with the mesh size of 0.15 m (6 inches) is 

adopted for this case in both the FFD and CFD models. The grid independent studies show that 

the results do not change significantly when the mesh size is below 0.15 m (6 inches) in both 

models. Similar conclusions were drawn in VanGilder and Zhang [100], which studied ten data 

center layouts with six grid levels each. 

Table 3-3 Settings of simulations in FFD and CFD 

Case 
Grid Simulation Time (s) Time Step Size (s) 

FFD CFD FFD CFD FFD CFD 

Plenum 224×161×6 224×161×6 100 
N/A 

1.0 
N/A 

White space 200×148×22 200×148×22 400 0.2 
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FFD and CFD models use the same settings for the boundary conditions. The walls are 

assumed to be adiabatic since the heat dissipation from the IT equipment is much larger than the 

heat flux through walls. The leakage is neglected in the CFD/FFD models as the total raised floor 

leakage airflow for this data center is negligible according to Pardey, VanGilder, et al. [92]. In the 

plenum model, the inlet bays are modeled with Dirichlet boundary conditions and the velocities 

are assigned with measured data. The outlet, i.e. floor perforated tiles, are modeled as two-

dimensional flow resistances. In the whitespace model, the perforated tiles become inlets, which 

are modeled with Dirichlet boundary conditions with air flow rates and temperatures equal to the 

measurements. An additional momentum force is added to the cells above the floor perforated tiles 

to correct the under-estimated velocity due to the usage of fully-opened openings to model the 

perforated inlets in the CFD and FFD models. The outlets of the whitespace, i.e. ceiling perforated 

tiles, are simplified with fixed flow. The IT racks are modeled as a “black box” [90]. The server 

flow rates are assumed to be 125 cfm/kW [92]. The server powers are assigned based on the on-

site audit results of the rack-by-rack powers.  

It is noteworthy that the dropped-ceiling plenum is excluded from the FFD and CFD 

modeling for modeling convenience and simplicity. We perform CFD simulations to determine 

the effect of removing the ceiling plenum and find that the temperatures at the rack inlets are not 

affected. The perforated ceiling tiles are treated as fixed-flow outlets. In the plenum models, the 

measured supply air flow rates at all side inlets are used as model inputs. In white space models, 

the measured flow rates and temperatures at perforated floor tiles are used as model inputs. 
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3.3.2.4 Results 

The results of the plenum simulation are depicted in Figure 3-10. The predictions of air 

flow rates through the 183 perforated tiles in the reference data center by FFD and CFD are 

categorized by PRD from experimentally measured data. Both FFD and CFD has 95.1% of their 

predictions with a PRD less than 5% from the experimental measurements. Only 7 (3.8%) 

predictions from FFD and 8 (4.4%) predictions from CFD are within the PRD of 10-20% from 

experimental measurements. There are only two predictions (1.1%) from FFD and one prediction 

(0.55%) from CFD with deviation of more than 20% from the experimental measurements. 

 

Figure 3-10 Predictions of perforated-tile air flow rates categorized by percentage relative 

difference (PRD) from measurements 

The results of the white space simulations are shown in Figure 3-11. The predictions of 

rack-inlet temperatures at 149 racks (excluding 2 empty racks) in the reference data center by FFD 

and CFD are categorized by PRD from experimental measurements. 131 (88.0%) predictions from 
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FFD and 128 (85.9%) predictions from CFD deviate by less than 10% from the experimental 

measurements. 14 (9.4%) predictions from FFD and 16 (10.7%) predictions from CFD are within 

the 10%-to-20% relative difference range from experimental measurements. 4 (2.7%) predictions 

from FFD and 5 (3.4%) predictions from CFD deviate by more than 20% from the experimental 

measurements. 

 

Figure 3-11 Predictions of rack-inlet temperatures categorized by percentage relative difference 

(PRD) from measurements 

Generally, both FFD and CFD capture the rack-to-rack inlet temperature variation well. 

However, some discrepancies between simulated and measured temperatures can be observed for 

both FFD and CFD. The reasons may be as follows. First, the dynamic changing of the cooling 

system might affect the measured air flow rates and temperatures at perforated tiles, given the 

measurement usually takes several hours. Second, we did not have all required information about 

this real data center for the models, such as the leakage path through openings in or under the rack 
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or floor cracks. Moreover, some assumptions in the FFD and CFD models might not be able to 

represent the real situation. For instance, individual-rack power consumption is crudely estimated 

based on rack IT population and power measurements from PDUs, which served many racks. The 

rack airflow is, in turn, crudely estimated to be 212 m3/h (125 cfm) of airflow for each kW of 

power dissipation. Furthermore, additional uncertainties may also lie in the measurements since it 

is very hard to perfectly measure a real data center in operation, which was discussed in [99]. Even 

so, both FFD and CFD successfully predict the inlet temperature for more than 85% of the racks 

with a less-than-10% error. To conclude, the proposed FFD model achieves a similar level of 

sufficient accuracy compared to CFD for the studied case.  

For the simulation speed, CFD takes 10.3 minutes and 65.6 minutes while FFD takes 0.17 

minutes and 1.07 minutes to simulate the raised-floor plenum and white space, respectively. FFD 

is approximately 61 times faster compared to CFD. It is noted that the present solution time is 

obtained based on the current settings of the models for the reference data center and computer 

configurations. CFD runs on four cores of CPU while FFD runs on a GPU in parallel. 

3.4 Case Studies 

In this section, the usage of FFD model for data center design and operation is demonstrated 

by applying it to improve data center thermal management through model-based design and 

operation. These include 1) an optimal design of data center plenum and perforated tiles; 2) an 

optimal design of the data center cooling system regarding fan sizing and designed supply air 

temperature through parametric studies; 3) an optimal operation of the cooling system by 

optimizing setpoints of supply air flow rate and temperature based on the weather conditions. 
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3.4.1 Optimal Design of the Plenum and Perforated Tiles 

The design of a data center normally involves the determination of several key parameters, 

such as layout of the IT racks, width of cold aisles and hot aisles, plenum depth and perforated tile 

open-area-ratio.  

In the early design stage, the decision should be made based on the cooling performance, 

initial cost and operational cost. The initial cost could be roughly estimated using existing database 

and engineering experience, but it is usually hard to get the quantitative evaluation of the cooling 

performance and operational cost. CFD has been widely used to do that, but it is limited to 

evaluating a few scenarios instead of a systematic parametric study of multiple parameters due to 

its high computational demand.  

In this case, we demonstrate the usage of the FFD model for the optimal design of data 

centers, in which the effect of the design of plenum and perforated tile on the air distribution 

uniformity is investigated. 

3.4.1.1 Evaluation metrics 

A real data center can have hundreds of perforated tiles or more. Here we assume the design 

purpose is to uniformly distribute air flow to perforated tiles. To evaluate the uniformity of the 

airflow distribution among many perforated tiles, we propose a percentage relative difference from 

the mean air flow rate of all perforated tiles: 

𝑃𝑅𝐷𝑖,𝑚̇ =
𝑚𝑖̇ −𝑚̅̇

𝑚̅̇
100%, (3-16) 

where 𝑚̇𝑖 is the mass flow rates at perforated tiles i. The n is the total number of perforated tiles. 

𝑃𝑅𝐷𝑚̇
𝑖  represents the percentage relative difference from the mean air flow rate of all perforated 
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tiles at the perforated tile i. Ideally, if the cold air is distributed uniformly to each perforated tile, 

the 𝑃𝑅𝐷𝑚̅̇
𝑖  at all perforated tiles should be 0%. If the distribution is non-uniform, we can quantify 

the non-uniformity by evaluating the values and distribution of 𝑃𝑅𝐷𝑚̇
𝑖  of all perforated tiles. 

3.4.1.2 Setup of the case 

Table 3-4 Parameter settings in the case for optimal design of the plenum and perforated tiles 

Parameters Unit Values 

Plenum depth mm 305, 457, 610, 762, 914 

Tile open-area-ratio % 15, 25, 35, 45, 56 

 

As shown in Table 3-4, the studied parameters include the plenum depth and perforated 

tile open-area-ratio. The plenum depth ranges from 305 mm to 914 mm with an interval of 52 mm. 

The perforated tile open-area-ratio ranges from 15% to 56%. Among them 25% and 56% are 

commonly used in practice and the others are selected with an interval of 10%. As a result, there 

are a total of 25 cases for the parametric study. All other parameters are determined based on the 

operational data. The supply air temperature is 22 oC, which is calculated by averaging measured 

supply air temperatures. The supply air flow rate is 1.5×105 m3/h, which corresponds to an air ratio 

of 2.07 calculated based in Equation 3-17. The air ratio is defined as the ratio of total supply air 

flowrate (𝑄̇𝑠𝑢𝑝) over total IT flowrate (𝑄̇𝑖𝑛, refer to Equation 3-11): 

𝐴𝑖𝑟 𝑅𝑎𝑡𝑖𝑜 =  
𝑄̇𝑠𝑢𝑝

𝑄̇𝑖𝑛

 (3-17) 

3.4.1.3 Results 

The results from parametric study are shown in Figure 3-12. The distribution of the 𝑃𝑅𝐷𝑚̇
𝑖  

for all perforated tiles is depicted including maximum, minimum values and standard deviation. 
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Generally, a greater plenum depth helps improve the airflow uniformity. The influence is more 

pronounced when the plenum depth is smaller than 610 mm. In terms of the open-area-ratio of 

perforated tiles, a smaller open-area-ratio helps improve the airflow uniformity. Once again, the 

influence is more significant when the plenum depth is smaller than 610 mm. The reason is that a 

deeper plenum and/or more restrictive perforated tiles can lead to a more uniform pressure 

distribution in the plenum. When the depth of plenum is larger than 610 mm, the pressure 

distribution in the plenum is already fairly uniform, so further improvement for both parameters 

may not help as much compared to the cases with a smaller plenum depth. Assuming the design 

objectives are that maximum and minimum values of 𝑃𝑅𝐷𝑚̇
𝑖  are smaller than 3% and the standard 

deviation of 𝑃𝑅𝐷𝑚̇
𝑖  is smaller than 1%, the candidate combinations of tile open-area-ratio and 

plenum depth towards optimal design include 1) 15% + 457 mm and 2) 25% + 610 mm.  

 

Figure 3-12 Effect of open-area-ratio of perforated tiles and plenum depth on airflow uniformity 

among perforated tiles 
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It is worth to point out that the decision in real world could be more complex. Although 

the airflow uniformity can be improved, a greater plenum depth may increase the capital cost of 

construction and a smaller open-area-ratio of perforated tiles may increase the operational cost due 

to a larger pressure drop through the tiles, which increases fan energy consumption. The fan energy 

can be estimated based on the flow rate and fan head pressure so that the operational cost for fan 

can be calculated. Therefore, the optimal design should balance the costs and performance. Such 

a parametric study in the early design stage using FFD simulations could provide quantitative 

suggestions towards an optimal design. 

3.4.2 Optimal Design of the Data Center Cooling System 

The previous sections demonstrated optimal design of the data center plenum and 

perforated tiles using the FFD model. This section demonstrates another optimal design use case 

of the FFD model, which is the optimal design of the cooling system in the same data center. This 

is done through a parametric study using FFD simulations, in which we focus on two parameters: 

fan sizing and designed supply air temperature.  

3.4.2.1 Evaluation metrics 

There are various metrics to evaluate the thermal environment of a data center, such as rack 

cooling index (RCI) [101], return temperature index (RTI) [102], supply heat index (SHI) and 

return heat index (RHI) [103] and capture index (CI) [104]. Among them we adopt the RCI [101], 

which quantifies the conformance with the data center thermal standards, e.g. ASHRAE thermal 

guidelines [15], based on the calculation of equipment intake temperatures. ASHRAE guideline 

categorizes data centers into multiple classes and recommends different thermal standards for 

different classes. The data center we studied is Class A, which has tightly controlled thermal 
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environment and mission critical operations. The RCI metric consists of two numbers: 𝑅𝐶𝐼𝐻𝐼 and 

𝑅𝐶𝐼𝐿𝑂. The 𝑅𝐶𝐼𝐻𝐼 can be written as: 

𝑅𝐶𝐼𝐻𝐼 = [1 −
∑ 𝑓(𝑥)𝑛

𝑥=1

𝑛(𝑇𝑚𝑎𝑥−𝑎𝑙𝑙−𝑇𝑚𝑎𝑥−𝑟𝑒𝑐)
] 100%, (3-18) 

𝑓(𝑥) = {
𝑇𝑥 − 𝑇𝑚𝑎𝑥−𝑟𝑒𝑐 ;  𝑇𝑥 > 𝑇𝑚𝑎𝑥−𝑟𝑒𝑐 

0;                          𝑇𝑥 ≤ 𝑇𝑚𝑎𝑥−𝑟𝑒𝑐 
, (3-19) 

where, 𝑇𝑥 is the mean rack-inlet temperature at Rack x; n is the total number of racks; 𝑇𝑚𝑎𝑥−𝑟𝑒𝑐 is 

the maximum recommended rack-inlet temperature (27 oC by [15]); 𝑇𝑚𝑎𝑥−𝑎𝑙𝑙  is the maximum 

allowable rack-inlet temperature (35 oC by [15]). 𝑅𝐶𝐼𝐻𝐼 = 100% means no equipment intake 

temperature exceeds the maximum recommended value. The data center thermal environment can 

be regarded as “Good” when 𝑅𝐶𝐼𝐻𝐼 is larger than 96% and “Acceptable” when 𝑅𝐶𝐼𝐻𝐼 is in the 

91%-to-95% range. 

The 𝑅𝐶𝐼𝐿𝑂 can be written as: 

𝑅𝐶𝐼𝐿𝑂 = [1 −
∑ 𝑔(𝑥)𝑛

𝑥=1

𝑛(𝑇𝑚𝑖𝑛−𝑟𝑒𝑐−𝑇𝑚𝑖𝑛−𝑎𝑙𝑙)
] 100%, (3-20) 

𝑔(𝑥) = {
𝑇𝑚𝑖𝑛−𝑟𝑒𝑐 − 𝑇𝑥;  𝑇𝑥 < 𝑇𝑚𝑖𝑛−𝑟𝑒𝑐 

0;                         𝑇𝑥 ≥ 𝑇𝑚𝑖𝑛−𝑟𝑒𝑐 
, (3-21) 

where, 𝑇𝑚𝑖𝑛−𝑟𝑒𝑐 is the minimum recommended rack-inlet temperature, which is 18 oC per 

ASHRAE [15]. 𝑇𝑚𝑖𝑛−𝑎𝑙𝑙  is the minimum allowable rack-inlet temperature, which is 15 oC for 

Class A1 data centers per ASHRAE guideline. 𝑅𝐶𝐼𝐿𝑂 = 100%  means no equipment intake 

temperature falls below the minimum recommended value (i.e. 18 oC per ASHRAE [15]). The 

data center thermal environment can be regarded as “Good” when 𝑅𝐶𝐼𝐿𝑂 is larger than 96% and 

“Acceptable” when 𝑅𝐶𝐼𝐿𝑂 is in the 91%-to-95% range. 
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Another metric used in our study is the maximum rack-inlet temperature, which can be 

written as: 

𝑇𝑖𝑛
𝑚𝑎𝑥 = max

𝑥∈[1,𝑛]
𝑇𝑖𝑛

𝑥 , (3-22) 

where, 𝑇𝑖𝑛
𝑚𝑎𝑥 is the maximum rack-inlet temperature; 𝑇𝑖𝑛

𝑥  is the intake temperature at Rack x. The 

limit of 𝑇𝑖𝑛
𝑚𝑎𝑥 can be the maximum allowable rack-inlet temperature, which is 32 oC for Class A1 

data centers per ASHRAE guideline. Other limits of 𝑇𝑖𝑛
𝑚𝑎𝑥  can also be adopted, e.g. 27 oC 

according to the requirement of the data center. 

3.4.2.2 Setup of the case 

Table 3-5 Parameter settings in the case for optimal design of the cooling system 

Parameters Unit Values 

Supply air temperature oC 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 

Supply air flow rate 
m3/h 

3.65×104, 5.5×104, 7.3×104, 9.1×104, 1.1×105, 

1.28×105, 1.46×105, 1.51×105 

Air ratio 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.07 

 

The settings of parameters for this case are shown in Table 3-5. The supply air temperature 

ranges from 15 oC to 24 oC with a 1 oC interval. We define the air ratio ranging from 0.5 to 2.07. 

Therefore, there are 80 cases in total for the parametric study. It is noted that the air ratio of 2.07 

is determined based on the current settings in the reference data center. Accordingly, the supply 

air flow rates are calculated for the prescribed air ratios. All other parameters are set according to 

current configurations in the reference data center.  
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3.4.2.3 Results 

 

Figure 3-13 Effect of air ratio and supply air temperature on 𝑅𝐶𝐼𝐿𝑂, 𝑅𝐶𝐼𝐻𝐼 and 𝑇𝑖𝑛
𝑚𝑎𝑥  

The effect of the two studied parameters on the cooling performance is investigated 

regarding three metrics including 𝑅𝐶𝐼𝐿𝑂, 𝑅𝐶𝐼𝐻𝐼 and 𝑇𝑖𝑛
𝑚𝑎𝑥. As shown in Figure 3-13 (a), when the 

air ratio is smaller than 1.25, 𝑅𝐶𝐼𝐻𝐼 increases as the air ratio increases. When the air ratio is greater 

than 1.25, 𝑅𝐶𝐼𝐻𝐼 stays constant at 1.0. Figure 3-13(b) shows the effect on the 𝑅𝐶𝐼𝐿𝑂. For cases 

with supply air temperature from 15 to 17 oC, 𝑅𝐶𝐼𝐿𝑂 starts from a constant value of 1.0 when the 

air ratio is smaller than 0.75 and then falls drastically when the air ratio is larger than 1.0. For other 
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cases, 𝑅𝐶𝐼𝐿𝑂 stays constant as the air ratio increases. The obvious turning points for both 𝑅𝐶𝐼𝐻𝐼 

and 𝑅𝐶𝐼𝐿𝑂 start when the air ratio is around 1.0. As shown in Figure 3-13(c), the 𝑇𝑖𝑛
𝑚𝑎𝑥 decreases 

as the air ratio increases. The curves under different supply air temperature follow a similar pattern, 

which become relatively constant when the air ratio is larger than 1.25. The maximum rack-inlet 

temperatures when reaching constant values are higher than the supply air temperatures by 

approximately 3 oC. 

 

 

AR = 0.5 

 

AR = 0.75 

 

AR = 1.0 

 

AR = 1.25 

 

AR = 1.5 

 

AR = 1.75 

Figure 3-14 Temperature contours at 2/3-RACK height for different air ratios with supply air 

temperature of 16 oC 

The maximum rack-inlet temperatures are generated at some critical locations, such as 

Rack-A17 and Rack-A18 (see their locations in Figure 3-9), where the cold supply air coming into 

the racks is richly mixed with hot room air due to lack of perforated tiles close to the racks. The 
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temperature contours at 2/3-RACK height for different air ratios with supply air temperature of 16 

oC are plotted in Figure 3-14. When the air ratio is less than 1.0, the cooling system supplies less 

cold air than required by the IT equipment (i.e. total IT server air flow rate), causing recirculation 

(i.e. mixing cold supply air with hot room air) in front of racks. As a result, the rack-inlet 

temperatures are higher than the supply air temperature and local hot spots occur if the supply air 

temperature is not adequately cold. Interestingly, the 𝑅𝐶𝐼𝐻𝐼 values are negative when the air ratio 

is 0.5. According to Equations 18 and 19, the 𝑅𝐶𝐼𝐻𝐼 will be equal to 0 when the inlet temperatures 

at all racks are the maximum allowable equipment intake temperature (32 oC).  

  

Figure 3-15 Number of racks with rack inlet temperature of different ranges for different air 

ratios with supply air temperature of 16 oC 

The numbers of racks with inlet temperatures in different ranges are shown in Figure 3-15. 

We find that 95 (63.8%) racks have inlet temperatures higher than 32 oC and 53 (35.6%) racks 

have inlet temperatures in the 30-32 oC range when the air ratio is 0.5, which may lead to the 

negative value of 𝑅𝐶𝐼𝐻𝐼. To conclude, the less cold air the cooling system supplies or the higher 

the supply air temperature is, the more local hot spots exist and the smaller the 𝑅𝐶𝐼𝐻𝐼 will be. 
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When the air ratio continues to increase after 1.0, the rack-inlet temperatures approach 

closer to the supply air temperature. Therefore, the 𝑅𝐶𝐼𝐻𝐼 stays constant as 1.0, and 𝑅𝐶𝐼𝐿𝑂 falls 

drastically after the air ratio increases past 1.0. This effect is more significant when the supply air 

temperature is lower. When the supply air temperature is higher than 18 oC, the 𝑅𝐶𝐼𝐿𝑂  stays 

constant at 1.0 as the air ratio increases. When the supply temperature is lower than 18 oC, the 

values of 𝑅𝐶𝐼𝐿𝑂 stay at 0.2, 0.5, and 0.8 for supply air temperatures of 15 oC, 16 oC, and 17 oC, 

respectively. Take the case with supply air temperature of 16 oC as an example. Ideally, the rack 

inlet temperatures should be close to the supply air temperature when the supply air flow rate is 

large enough. The 𝑅𝐶𝐼𝐿𝑂 should be equal to 0.33 according to Equations 17 and 18 if the rack inlet 

temperatures approach close to the supply air temperature. However, there are still several racks 

with inlet air largely mixed with hot room air. For example, for the case with air ratio of 1.5, there 

are 10 racks with inlet temperatures that are larger than 18 oC (shown in Figure 3-15) including 

Racks A-11~12, A-16~18, E17~19, H-15 and J-01, which do not have perforated tiles close to 

them (see Figure 3-14 and Figure 3-9). There are 33 racks with inlet temperatures that are in 16.5-

to-18.0 oC range, such as Racks C-11, E-11 and J-2~3, which are located at the edge of each row 

or have relatively less cold air supply (see Figure 3-14 and Figure 3-9). As a result, the 𝑅𝐶𝐼𝐿𝑂 is 

determined to be 0.5 instead of 0.33. 

From the results of the parametric study, the optimal air ratio that balances thermal 

environment and fan energy ranges from 1.25 to 1.5, which corresponds to the fan sizing from 

9.1×104 to 1.1×105 m3/h. The corresponding optimal designed supply air temperature should be 

between 20 and 21 oC to create a similar thermal environment as baseline. Please note that there 

are multiple choices for the two studied parameters to create a similar thermal environment 
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regarding the three metrics, but the real optimal design should be determined through considering 

other aspects, such as the energy efficiency of the cooling system. 

3.5 Discussions 

3.5.1 Accuracy and Speed of the FFD Model 

In the validation with two indoor environment cases, the FFD model does not predict the 

velocity at the areas close to the ceiling and floor precisely. In addition to lack of wall functions in 

the FFD model, the prediction performance at near-boundary areas may also be influenced by 

configurations of the mesh and settings of physical parameters. When the turbulent viscosity is 

estimated improperly, it may lead to improper prediction of the near-wall airflow and further 

influence the overall prediction performance. Hence, future research is needed to improve the 

prediction performance at near-boundary areas with the FFD model. 

For the data center case, the FFD results are not perfectly consistent with the 

experimentally measured data. This may be due to various reasons. One possible reason is that 

there is some physical information (e.g. leakage through tile gap, cables or other obstacles in the 

plenum) at some local areas that the simulation models fail to capture. Another possible 

explanation is that the measurements are carried out over a period of hours, during which the 

airflow and temperature may vary because of control dynamics of the cooling system. Since the 

scope of this paper is to evaluate the possibilities to use the FFD model for data center thermal 

management, the validation results of FFD are acceptable since the proposed FFD achieves a 

similar level of accuracy compared to CFD. Note that the FFD model was originally applied to 

predict indoor environment with the purpose of fast speed. Even though it showed great success 
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in different applications [81, 39, 41, 82], the FFD model may not be suitable for applications that 

require strictly high accuracy without further improvements. 

For the computational speed, the FFD model running on GPU is approximately 61 times 

faster than CFD running on a CPU with four cores. It is noted that the computing time obtained in 

Section 3.2.4 is highly associated with the computer configurations and convergence parameters, 

which are case-by-case. Even so, for the case we studied, the 61 times of the speed significantly 

reduces the computing time of the case study in Section 4. The total computing time of the 

parametric studies is about 7.6 hours, which is estimated to be 464.8 hours if CFD is used. The 

improvement from about 20 days to several hours makes model-based design and operation more 

feasible and practical. 

3.5.2 Potential Applications Using the FFD Model 

The FFD model is promising for applications with high computing demand due to its 

significant speedup compared to CFD. One application is optimal design of data centers, especially 

when multiple parameters should be considered in the early design stage, which requires lots of 

simulations. Another application is optimal operation of data centers. A data-driven model may be 

adopted to predict critical information of thermal environment since the physics-based model is 

not fast enough for real-time optimal control. If synthetic data is needed to train the data-driven 

model, FFD can accelerate this process by providing a dataset much faster than CFD does. 

3.5.3 Future Work 

The future work may include the following directions. First, more complex component 

models can be adopted in the FFD model to predict the complex data center thermal environment. 

This may impose negative influence on the speed and its necessity depends on the requirements of 
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applications. Second, a few improvement can be made to further accelerate the speed, such as 

optimizing the OpenCL codes and employing different discretization and solving methods. In 

addition, the prediction accuracy of the FFD model can also be improved by adopting more 

complex turbulence models and wall functions.  

Another area of further work could be simultaneously modeling the plenum and white 

space since these two are modeled separately in our current FFD model. There are generally two 

approaches to achieve that. The first is a co-simulation-based approach where the white space and 

plenum are simulated separately in parallel. At each time step of the two simulations, data is 

exchanged between the two simulations. For example, the airflow rates at perforated tiles 

calculated in plenum model are sent to the white space model, and the pressure distributions above 

the floor tiles calculated in the whitespace model are sent to the plenum model. The two 

simulations will be processed until both converge. The other option is an integrated approach, in 

which the white space and plenum are modeled as one space, and the perforated tiles are modeled 

as resistances in the Navier Stokes equation. The treatment of the perforated tiles will be different 

in this approach. Instead of inlets or outlets, the perforated tiles will be treated as momentum 

sources within the modeling space. 

3.6 Conclusion 

The new FFD model is first introduced including governing equations, new methods to 

solve these equations, treatments of special boundary conditions in data centers and the 

implementation. The new model is then validated with two classical cases for indoor environment 

modeling and the results show that it achieves better accuracy and faster speed compared to 

conventional FFD. It is also observed that both FFD models achieve acceptable accuracy, except 
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for a few localized disparities with experimental data, which might be due to simplified handling 

of turbulent viscosity near the boundaries.  It is also validated with a real medium-size raised-floor 

data center located in Massachusetts, U.S.A. The results show that the proposed FFD model 

running on GPU can achieve a similar level of accuracy while being much faster compared to a 

CFD model running on a CPU with four cores for the studied case. It is worthy to note that some 

discrepancies between simulation and measurement can still be observed in the data center case. 

This is acceptable given that the scope of this paper is to develop an open source, adequate and 

fast alternative to CFD. Subsequently, the FFD model is demonstrated to optimize the design of 

data center plenum and perforated floor tiles as well as the design of the cooling system through 

parametric studies. Quantified results are obtained regarding the effect of perforated tile open-

area-ratio and plenum depth on the uniformity of airflow among perforated tiles and the effect of 

supply air temperature and flow rate on the cooling performance, which can be used to improve 

the design.  

With a much faster speed than traditional CFD, the FFD model is promising for carrying 

out practical model-based design and operation to improve data center thermal management. Even 

so, future work is still needed to continue to improve the speed for applications such as on-line 

optimal control. In addition, the prediction accuracy of the FFD model can also be improved by 

adopting more advanced turbulence models. 
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Chapter 4 An Online BES-ROM-CFD Co-Simulation Method for Fast 

Simulation of HVAC Systems with Non-Uniform Thermal Environment 

 

This chapter presents a new method for fast and accurate co-simulation of building 

energy simulation with indoor environment modeling.  

4.1 Introduction 

Ventilation systems involving stratified airflow and temperature distributions are designed 

to create a comfort thermal environment for occupants more effectively and efficiently. The typical 

applications are stratum ventilation in large spaces, ventilation in spaces with intense heat 

generation, displacement ventilation and natural ventilation [46, 45, 47]. Coupled simulation of 

Building Energy Simulation (BES) and computational fluid dynamics (CFD) has been used for 

studying such systems because of CFD’s great capability to model complex airflow and 

temperature distributions [46]. As shown in Figure 4-1, the BES-CFD co-simulation and 

conventional BES-ROM-CFD co-simulation are widely used in existing research. Here the ROM 

refers to the reduced order model. The online BES-ROM-CFD co-simulation is a new 

methodology proposed in this paper. 

The BES-CFD co-simulation directly couples BES with CFD during the online stage. The 

major limitation of this approach is the high computational demand due to the nature of CFD as 

pointed out in a recent review paper [66]. As a result, previous research only performed BES-CFD 

co-simulation for a short period, such as typical days, instead of a whole year. For example, 

Srebric, Chen, et al. [59] developed a coupled airflow-and-energy simulation program to study a 
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house (6 m × 4 m × 2.5 m) and an atrium (7 m × 4.3 m × 4.5 m), and found that it took about three 

hours to simulate the two cases for a typical day. 

 

Figure 4-1 Different coupling strategies for co-simulation of BES and CFD 

The conventional BES-ROM-CFD co-simulation (also called bin coupling or virtual 

dynamic coupling [58]) is proposed to address the limitations of BES-CFD. It pre-trains a ROM 

by CFD simulations on offline stage, then its BES calls the ROM on the online stage. This 

approach significantly reduces the simulation time during the online stage compared to the BES-

CFD co-simulation Zhang, Lam, et al. [105]. The ROM can be curve-fitted functions [58], linear 

time-invariant (LTI) model [69], proper orthogonal decomposition (POD) method [70], and 

artificial neural network [71]. However, the ROM model prediction may not be accurate when the 

model inputs are outside of the training domain. Increasing the training domain may address this 

issue, but it also significantly increase the time needed for generating the training data using CFD 

simulations. In addition, it is also difficult to control the ROM model prediction accuracy. For 

example, Wei, Zhang, et al. [72] found that the representativeness of the data samples from CFD 
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simulations is critical for the accuracy of the POD interpolation method and multiple iterations 

may be needed to identify sufficient data samples. As a result, the training of ROMs often needs 

expert knowledge and requires several iterations to achieve a desired prediction accuracy. 

An online learning model is promising to address the limitations in conventional BES-

ROM-CFD approaches. In conventional BES-ROM-CFD co-simulation, once the training is 

completed, the ROM model will not be updated when being used during the online stage. 

Conversely, an online learning model can be continuously updated during the simulation. This 

study therefore proposes a new online BES-ROM-CFD co-simulation method that integrates an 

online learning ROM. The online learning ROM returns prediction results from either regression 

or executing CFD simulations depending on if the ROM can make accurate predictions through 

regression.  

In comparison with the conventional BES-ROM-CFD co-simulation, several advantages 

can be expected with the proposed online BES-ROM-CFD co-simulation. First, in the online BES-

ROM-CFD co-simulation, the ROM model can provide accurate predictions using the CFD when 

the inputs of the ROM are outside of the training domain and train itself using this newly generated 

data. Second, the online learning ROM can adopt error control algorithm, which automatically 

estimates the error between the ROM and CFD prediction and determines the training needs.  

Therefore, we can achieve a desired prediction accuracy automatically without expert knowledge 

from users and multiple iterations of training and testing. Moreover, the training process in the 

online BES-ROM-CFD co-simulation can be very efficient, since it only focuses on the required 

sets or segments of ranges of model inputs that occur during the simulation, rather than 

comprehensively sweeping the entire training domain in the conventional BES-ROM-CFD co-
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simulation. In summary, the proposed online BES-ROM-CFD co-simulation is promising to 

achieve a fast and accurate co-simulation of BES and CFD in an efficient and automatic manner. 

To realize the idea of the online BES-ROM-CFD co-simulation, one challenge is the error 

control of the online learning ROM. In this paper, an In Situ Adaptive Tabulation (ISAT) algorithm 

is adopted to achieve that. ISAT is an algorithm that approximates nonlinear functions based on 

local linear approximations from a dynamically adaptive lookup database [53]. An error control 

algorithm is embedded in ISAT to ensure the prediction error within a user-defined tolerance. 

Some attempts have been made to use ISAT for fast indoor airflow simulation [106] and 

optimization of data center workload distribution [107]. This paper further integrates ISAT into 

BES-CFD co-simulation by implementing a Modelica-ISAT-FFD model, in which a Modelica 

modeling language [108] is used for BES, ISAT is for online learning ROM, and Fast Fluid 

Dynamics (FFD) [11] is for CFD. Our work differs from the previous work [106, 107] as they only 

focuses on indoor airflow prediction and our work extends their work to co-simulation between 

BES and CFD. In addition, their work adopts a traditional training process, in which ISAT is first 

trained on the training stage and then used on the evaluation stage. Our work proposes an online 

learning approach, in which ISAT is trained on the online stage without any pre-training. 

The rest of the paper is organized as follows. First, the online BES-ROM-CFD co-

simulation method and the implementation of a Modelica-ISAT-FFD model to demonstrate the 

new method are introduced. Then, the Modelica-ISAT-FFD model is verified and evaluated by 

comparing it with an existing Modelica-FFD model, which was developed and validated by Zuo, 

Wetter, et al. [47]. Finally, an annual simulation is performed to demonstrate the performance of 

the Modelica-ISAT-FFD model for long-term co-simulation. 
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4.2 Methodology 

4.2.1 Modelica-ISAT-FFD Model 

To demonstrate proposed online BES-ROM-CFD co-simulation approach, we implement 

a Modelica-ISAT-FFD model, in which Modelica is selected for BES and FFD is selected for 

CFD. It is noteworthy that the online BES-ROM-CFD model is not limited to be applied with 

Modelica and FFD, it can also be utilized to realize the online learning approach for other BES-

ROM-CFD models. For example, EnergyPlus-ISAT-Fluent or TRNSYS-ISAT-OpenFOAM can 

also be applied. 

Modelica is an equation-based, object-oriented language that can be used for modeling 

multi-domain complex systems [108]. In this study, BES is performed through modeling based on 

the Modelica Buildings library, which is an open-source library that contains various modular 

component and system models for building energy and control systems [12]. In addition to the 

conventional BES, the Modelica supports rapid prototyping, modeling of heating, ventilation and 

air-conditioning (HVAC) systems, development and verification of control algorithms, and 

emulation of the faults at the building-system level [12, 10, 109].  

FFD is an alternative to traditional CFD, which solves the same set of governing equations 

[39]. The primary difference between traditional CFD and FFD is the technique used to solve the 

governing equations. While traditional CFD commonly uses variants of the Semi-Implicit Method 

for Pressure Linked Equations (SIMPLE) [37], FFD uses a fractional time method (also called 

time split method), which breaks the momentum and energy equations into two or three parts and 

solves them sequentially [11]. 
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In the Modelica-ISAT-FFD model, the ISAT dynamically establishes a lookup table, based 

on which a new query point (inputs of the model) can be quickly evaluated by local linear 

approximations [53]. Specifically, during the co-simulation, the ISAT stores FFD results in a 

database and retrieves predictions from the database if the inputs of the model are within the ranges 

where a specified error tolerance can be met. If not, the ISAT will execute the FFD simulation to 

make predictions and update records in the database. The key feature in the ISAT to automatically 

control the prediction accuracy is the Ellipsoid of Accuracy (EOA) of records (data points) in the 

database [53]. When a new query point is within the EOA of the nearest record in the database, 

the prediction can be obtained from a local linear approximation with confident accuracy. 

Otherwise, the prediction will be made from executing a FFD simulation. The EOAs of records in 

the database are continuously updated with new data fed to the ISAT model. For more details, 

please refer to [53, 106, 107]. 

4.2.2 Coupling Strategies 

The workflow and data exchanges of the Modelica-ISAT-FFD are shown in Figure 4-2. 

The coupling process follows a cross quasi-dynamic coupling scheme, which is regarded to be a 

balance of accuracy and computational speed [66, 68]. The coupling of Modelica with ISAT and 

FFD follows a master-slave method [47], in which BES is the master, ISAT is the slave and FFD 

is executed by ISAT when needed. The simulation period of the co-simulation and next data 

synchronization point are determined in the Modelica. The Modelica performs transient 

simulations with a time step size of ∆𝑡  which can be constant or variable depending on the 

Modelica. The Modelica exchanges data with the ISAT with a time step size of ∆𝑡𝑠𝑦𝑛  (data 

synchronization time), which can also be fixed or variable. 
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Figure 4-2 Workflow and data exchanges of the Modelica-ISAT-CFD model 

The detailed procedures of the coupling process are explained as follows: 

Step 0: Initialize Modelica, ISAT and FFD programs. 

Step 1: Run Modelica, hold ISAT and FFD 

Step 2: If the synchronization point 𝑡𝑛 is not reached, continue Modelica simulation and 

compute states of exchanged variables 𝑥 : 

𝑥 (𝑡𝑛−1 + 𝑖∆𝑡) = 𝑓𝑀𝑂(𝑥 (𝑡𝑛−1 + (𝑖 − 1)∆𝑡),  (𝑡𝑛−1)), (4-1) 

where, 𝑖 ∈ ℕ, 𝑖 < 𝑁 and 𝑓𝑀𝑂 represents the nonlinear functions solved in Modelica. 

Step 3: If the synchronization point 𝑡𝑛  is reached, hold Modelica simulation, compute 

time-averaged values of exchanged variables, and send 𝑥(𝑡𝑛) from Modelica to the ISAT as a new 

query point 𝑥(𝑞). 
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𝑥(𝑡𝑛) =
1

∆𝑡𝑠𝑦𝑛
∫ 𝑥 (𝑡)𝑑𝑡

𝑡𝑛

𝑡𝑛−1
, 

(

(4-2) 

𝑥(𝑡𝑛)  𝑥(𝑞), 

(

(4-3) 

Step 4: Regression attempt: the ISAT searches the nearest record to 𝑥(𝑞)in the database 

(assuming it is 𝑥(0)). It then attempts to estimate the output of the nonlinear function with regard 

to the query point 𝑥(𝑞) using a linear approximation based on the record 𝑥(0): 

 (𝑙) = 𝑓(𝑥(𝑞)) = 𝑓(𝑥(0)) + 𝐴(𝑥(0)) ∙ (𝑥(𝑞) − 𝑥(0)), 
(

(4-4) 

where,  (𝑙)  represents the output of the nonlinear function from a local linear approximation. 

𝑓(𝑥(0)) is the mapping 𝑓 𝑥    with regard to 𝑥(0) and 𝐴(𝑥(0)) is the mapping gradient matrix 

with regard to 𝑥(0), which are stored in the database. 

Step 5: If the new query point 𝑥(𝑞) is within the EOA of the record 𝑥(0) in the database, 

the regression attempt succeeds, then directly returns the output (Retrieve) and proceeds to Step 7. 

 (𝑙)    (𝑡𝑛), 

(

(4-5) 

Otherwise, go to Step 6. 

Step 6: Execute a FFD simulation and compare FFD results  (𝑐𝑓 ) with the local linear 

approximations  (𝑙): 

𝜀 = ‖𝐵( (𝑙) −  (𝑓𝑓 ))‖
2
 

(

(4-6) 
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where, 𝜀  is the computed error between  (𝑓𝑓 )  and  (𝑟) . 𝐵  is a scaling matrix to make the 

calculated errors for all outputs comparable, even if they are not within the same order of 

magnitude. 

Update records in the database: if the error 𝜀  is less than the user-defined total error 

tolerance, 𝜀𝑡𝑜𝑡𝑎𝑙, a grow action will be executed to enlarge the current EOA of the record to include 

the query point; otherwise, an add action will be performed to store the query point and its related 

data as a new record in database. 

Then, return the output: 

 (𝑓𝑓 )    (𝑡𝑛), 

(

(4-7) 

Step 7: If 𝑡𝑛 = 𝑡𝑒𝑛 , then stop; else, go to Step 1. 

4.2.3 Software Implementation 

As shown in Figure 4-3, the Modelica-ISAT-FFD model is developed based on an existing 

Modelica-FFD model [47] by integrating the ISAT into the coupled model. Rather than through a 

middleware interface (e.g. Building Controls Virtual Test Bed [110]) or standard interface (e.g. 

Functional Mock-up Interface [111]), the Modelica is coupled with ISAT through a customized 

interface. Specifically, the ISAT and FFD codes are compiled as a dynamic link library (.dll) in 

Windows and a shared library (.so) in Linux, which is loaded by the Modelica program through 

external “C” functions during the co-simulation. The ISAT algorithm was originally developed in 

Fortran [53] and is linked to FFD with a wrapper programmed in “C” [106, 107].  
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Figure 4-3 Implementation of the Modelica-ISAT-FFD model 

The Modelica communicates with the ISAT through shared memory to avoid additional 

I/O costs in reading/writing files to hard disk for exchanging data. In addition to simulated results, 

the Modelica and ISAT exchange values of a coupling “flag” to make sure that both programs wait 

for each other if one program reaches the data synchronization point when the other has not. The 

records of ISAT are stored in a file for reuse. The FFD reads input information through a file and 

certain boundary conditions are overwritten and updated during the initialization stage with the 

data fed by the ISAT. The framework of this implementation can be extended for developing other 

BES-ISAT-CFD models by replacing the Modelica and FFD models. The customized coupling 

interfaces may need to be modified to align with the requirements of the specific BES and CFD 

programs. The source codes of the Modelica-ISAT-FFD model has been publicly released under 
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an open-source license, which can be found at [112]. The Modelica-ISAT-FFD model will be 

officially released in Modelica Buildings library [12] in the future. 

4.3 Numerical Experiments 

4.3.1 Case Descriptions 

 

  (a)                                                                                (b) 

Figure 4-4 (a) Schematic of the mixed convection case [79] and (b) velocity vectors and 

temperature contour on a cross-section at Y=1.22m computed by FFD [47] 

An existing Modelica-FFD model is taken as a reference model in this study, which was 

proposed and validated with a mixed convection case in Zuo, Wetter, et al. [47]. In this paper, the 

same case is studied and the new Modelica-ISAT-FFD model is verified and evaluated by 

comparing with the existing Modelica-FFD model. As shown in Figure 4-4 (a), this case simulates 

airflow in a space with a heated box. The space (2.44 m × 2.44 m × 2.44 m) has an inlet of height 

0.03 m along the top of the west wall and an outlet of height 0.08 m along the bottom of the east 

wall. The heated box (1.22 m × 1.22 m × 1.22 m) is located in the center of the space on the floor. 
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The heated box is meant to represent a heat source, such as occupants. The experiment for this 

case was designed to study airflow in an aircraft cabin with significant internal heat load [79]. The 

original settings of the boundary conditions in the experiment are described as follows [79]. The 

velocity and temperature at the inlet are 1.36 m/s and 22.2 oC, respectively. The temperatures of 

the ceiling and floor are 25.8 oC and 26.9 oC, respectively. The temperatures of the other walls are 

27.4 oC. The temperature of the surface of the heated box is 36.7 oC.  

This case has a typical stratified airflow and temperature distribution. As shown in Figure 

4-4 (b), mixed convection occurs in this space due to forced convection caused by the airflow from 

the inlet, as well as natural convection caused by temperature differences among the inlet air, walls, 

and heated box. The cold air is injected from the upper left corner and forms a circulation pattern 

between the east wall and heated box, while a thermal plume rises above the heated box due to 

buoyant effects. An obvious stratified airflow and temperature distribution is formed in the indoor 

space. Five virtual sensors are placed in the space and temperatures are extracted in these locations 

to evaluate the capabilities of the coupled model to capture the non-uniform airflow and 

temperature distribution.  

Based on this mixed convection case, we propose five case studies to evaluate the new Modelica-

ISAT-FFD model as described in Table 4-1. Cases 1-3 comprehensively evaluate the new 

Modelica-ISAT-FFD model by comparing with the existing Modelica-FFD model, and determine 

appropriate settings of parameters including the coupling frequency and user-defined error 

tolerance. After that, an annual simulation is performed to demonstrate the performance of the new 

model for long term co-simulation. A space heating case is also conducted to show the capability 

of the new model for control studies. 
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Table 4-1 Descriptions of case studies 

 

Case 1 performs a detailed evaluation of the Modelica-ISAT-FFD model with constant 

boundary conditions. The settings of the boundary conditions in this case are consistent with that 

in previous work that validated the existing Modelica-FFD model [39]. All key boundary 

Cases Models 
Inputs of 

ISAT 

Outputs 

of ISAT 

Error 

Tolerance 

[oC] 

Data 

Sychroniza-

tion Time [s] 

Simulation 

Period 

Case 1: Detailed 

evaluation with 

constant 

boundary 

conditions 

Modelica-FFD - - - 4 

800 s 
Modelica-

ISAT-FFD 

𝑇𝑊𝑎𝑙𝑙 

𝑇𝐶𝑒𝑖𝑙𝑖𝑛𝑔 

𝑇𝐹𝑙𝑜𝑜𝑟 

𝑇𝐼𝑛𝑙𝑒𝑡 

𝑚̇𝐼𝑛𝑙𝑒𝑡 

𝑇𝑅𝑜𝑜𝑚  

𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  

𝑇𝑠1 ~ 𝑇𝑠5 

𝑄̇𝐸 𝑊𝑎𝑙𝑙 

𝑄̇𝐹𝑙𝑜𝑜𝑟 

0.2 800 

Case 2: 

Different 

coupling 

frequencies 

Modelica-FFD - - - 4 

1 day 

Modelica-

ISAT-FFD 
𝑇𝑊𝑎𝑙𝑙 

𝑇𝑅𝑜𝑜𝑚  

𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  
0.2 

900; 1800; 

3600; 7200; 

14400 

Case 3: 

Different error 

tolerances 

Modelica-FFD - - - 

3600 31 days 
Modelica-

ISAT-FFD 

𝑇𝐸/𝑁 𝑊𝑎𝑙𝑙 

𝑇𝐶𝑒𝑖𝑙𝑖𝑛𝑔 

𝑇𝑅𝑜𝑜𝑚  

𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  

0.2; 0.4; 

0.6, 0.8 

Case 4: Long-

term co-

simulation 

Modelica-

ISAT-FFD 

𝑇𝐸/𝑁 𝑊𝑎𝑙𝑙 

𝑇𝐶𝑒𝑖𝑙𝑖𝑛𝑔 

𝑇𝑅𝑜𝑜𝑚  

𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  
0.6 3600 365 days 

Case 5: Space 

heating with 

feedback loop 

control 

Modelica-

ISAT-FFD 

𝑇𝐸/𝑁 𝑊𝑎𝑙𝑙 

𝑇𝐶𝑒𝑖𝑙𝑖𝑛𝑔 

𝑇𝑅𝑜𝑜𝑚  

𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  
0.6 300 31 days 
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conditions are taken as inputs of ISAT. Various types of information are returned from ISAT to 

evaluate the capability of the Modelica-ISAT-FFD model to precisely capture non-uniform indoor 

environment and heat fluxes through envelopes as the Modelica-FFD model does. A detailed 

comparison of the results from the Modelica-ISAT-FFD and Modelica-FFD models are conducted 

in this case. Since the boundary conditions are constant, we only simulate this case for one data 

synchronization period. 

Case 2 evaluates the Modelica-ISAT-FFD model with different coupling frequencies. 

Before further exploring the model, it is essential to identify a proper data synchronization time, 

which may vary for different applications. For example, Zhai, Chen, et al. [57] used 1 hour to for 

building energy analysis and Zuo, Wetter, et al. [47] used 4 seconds to study control dynamics. 

This can be determined from a parametric study with varying data synchronization time, which is 

determined by continuously halving a higher value from 14,400. The lower limit is determined to 

be 900 s because it becomes insufficient for the indoor airflow to reach steady state if 900 s is 

further halved to 450 s. The Modelica-FFD model with a data synchronization time of 4 s is taken 

as the ground truth since it has sufficiently high coupling frequency. Note that a data 

synchronization time of 4 seconds with the Modelica-FFD model is meaningful since FFD 

performs transient simulations. The simulation period for this case is one day. The values of the 

ISAT inputs (i.e. wall temperatures) are assumed to be a typical daily profile that follows a 

hypothetical sine function. 

Case 3 evaluates the Modelica-ISAT-FFD model with different settings of the error 

tolerance. The prediction accuracy and computational costs are assessed through comparisons with 

the Modelica-FFD model. This case simulates a typical application scenario, in which Modelica 
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sends boundary conditions (e.g. wall temperatures) to FFD and FFD returns the prediction of 

indoor environment (e.g. temperature at occupied zone) to Modelica. The relatively shorter 

simulation period (i.e. 31 days of January) is used for this case because of the excessive computing 

time required for the existing Modelica-FFD model to perform an annual simulation, which is 

estimated to be about 50 days. 

Using the data synchronization time and error tolerance determined in Cases 2 and 3, Case 

4 performs an annual simulation with the Modelica-ISAT-FFD model to assess its performance on 

long term co-simulation. In this case, we did not include the Modelica-FFD model due to its high 

computational costs. All other settings are the same as that in Case 2. Detailed analysis on the 

online learning process is provided for this case. 

Case 5 investigates the performance of the Modelica-ISAT-FFD model for control studies. 

This case compares the control performance of using different control variables including averaged 

room temperature, which is widely used with standalone BES, and occupied zone temperature, 

which can only be done by coupling external models to predict the non-uniform environment in 

BES. A shorter data synchronization time period, 300 s, is adopted to capture the minutes-level 

short-term thermal dynamics for control studies. 

To make a fair comparison between the Modelica-ISAT-FFD model and Modelica-FFD 

model, we made the following assumptions. In the previous Modelica-FFD model, FFD 

continuously performs transient simulations until the end of the co-simulation to capture the 

seconds-level short-term airflow and thermal dynamics. However, it may not be needed for 

scenarios with long data synchronization time. For example, the widely-used BES-CFD coupling 

scheme adopts a data synchronization time of 1 hour and CFD returns steady state results to BES 
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during the co-simulation [54, 57, 59]. Therefore, here in Cases 3 and 4 that adopt a data 

synchronization time of 1 hour, FFD simulations are treated as “steady state” CFD simulations, 

which converge by simulating a sufficiently long period. In the Modelica-FFD model, the FFD 

simulation stops when it converges and returns steady state results for airflow prediction to 

Modelica as it is in the Modelica-ISAT-FFD model. 

4.3.2 Model Implementation 

 

Figure 4-5 Diagram of Implementations for the Modelica-ISAT-FFD model in Modelica 

The Modelica models for the Modelica-ISAT-FFD model of Cases 1 and 2 are 

implemented as shown in Figure 4-5. To enable the model exchange, the Modelica-FFD model 

and Modelica-ISAT-FFD model share a similar interface on the Modelica side. The major 
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difference lies within the room model. In the Modelica-FFD model, the room model exchanges 

data with FFD, for example, Modelica sends the boundary conditions to FFD and FFD sends its 

simulation results back to Modelica [12, 47]. In the Modelica-ISAT-FFD model, the room model 

exchanges data with ISAT and then ISAT determines if the prediction should be returned through 

retrieving from the database or executing an FFD simulation.  

In Case 1, the room model receives boundary conditions for the temperatures of the floor, 

ceiling, remaining walls as well as the temperature and mass flow rate at the inlet. The radiative, 

convective and latent heat gains are set to zero. The outputs of the room model include averaged 

room temperature, averaged temperature at occupied zone, temperatures at five sensor locations, 

and heat fluxes through walls. The data synchronization time in the Modelica-FFD is set to be 4 s, 

which is the same as in the previous research [47]. For the Modelica-ISAT-FFD model, the data 

synchronization time is set to be identical with the simulation period of the co-simulation (i.e. 800 

s) since the boundary conditions are assumed to be constant in this case. From our tests, 800 s is 

enough for the airflow to become steady state for this case. FFD simulations use a non-uniform 20 

× 20 × 20 mesh and time step size of 0.1 s. The detailed settings of the FFD model as well as the 

validation of the FFD model with experimental data can be found in [47]. 

The Case 2 utilizes a similar Modelica model as Case 1. It differs from Case 1 in two 

aspects. First, the inputs and outputs of ISAT are different as described in Figure 4-5. Second, 

Case 2 uses a dynamic boundary condition for the walls rather than a constant one in Case 1. The 

dynamic boundary condition is assigned to represent a typical daily profile: 

𝑇𝑤𝑎𝑙𝑙(𝑡) = 5 sin (
2𝜋

3600×24
𝑡 −

𝜋

2
) + 25, (4-8) 
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where, 𝑇𝑤𝑎𝑙𝑙(𝑡) is the wall temperature at the time t. The wall temperature starts from 20 oC at 

12:00 am of a day, increases to 30 oC at 12:00 pm, and then goes back to 20 oC at the end of the 

day. 

The Cases 3 and 4 consider a more realistic scenario with exterior constructions and 

varying weather profile. They assume the studied room with mixed convection is located in the 

northeast corner on the top floor of a building, such that there are three exterior constructions: the 

north wall, east wall and ceiling. The north and east walls are constructed with 120 mm of brick 

while the ceiling has 200 mm of concrete and 100 mm of insulation. The interior surface 

temperatures of the north and east walls are assumed to have the same dynamic temperature values, 

since they are constructed with the same materials and their exteriors are exposed to the same 

outdoor environment. The remaining walls are interior partition walls adjacent to conditioned 

indoor rooms, with the interior surfaces of these walls treated as a fixed temperature value.  

Figure 4-6 shows the Modelica model for Cases 3 and 4. The interior surfaces of the 

interior partition walls, including the south and west walls and the floor, are assumed to be 25 oC. 

The room model receives inputs for the interior surface temperatures of the exterior walls, which 

are calculated by solving a one-dimensional heat transfer problem between indoor and outdoor on 

the Modelica side. The outdoor weather, including temperature, wind speed and solar irradiation, 

is included to determine the convective and radiative heat transfer between the building exterior 

and outdoor environment. The thermal properties of the building materials are also included to 

determine the heat conduction through the walls. Lastly, convection from the room air is 

considered when determining the temperature of these walls. The supply air flow rate and 

temperature are set to typical values for a ventilation system of 0.024 kg/s and 22.2 oC. The 
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additional radiative, convective and latent heat gains are assumed to be zero. This case is simulated 

for the month of January using weather data of Chicago, IL. 

 

 

Figure 4-6 Diagram of Modelica models for Cases 2 and 3 

For the ISAT model, two inputs are set including the interior surface temperatures of E/N 

walls and ceiling, and the two outputs are the average temperature in the room and in the occupant 

zone. The data synchronization time for both Modelica-ISAT-FFD and Modelica-FFD models is 

3600 s. The error tolerance is defined to be 0.6 oC for Cases 2 and 3 in the ISAT model. 
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Figure 4-7 Diagram of Modelica models for space heating of the mixed convection case 

In Case 5, a space heating case is studied to illustrate the capability of the Modelica-ISAT-

FFD model for feedback loop control. The implementation of the case in Modelica is shown in 

Figure 4-7, which adds an electrical heater and a heating power controller. The control objective 

of the heating system is to maintain the average room temperature at 25 oC with a dead band of ±1 

oC. The heating power controller resets the heating power by steps. 
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4.3.3 Results 

Case 1: Detailed Evaluation with Constant Boundary Conditions 

 

Figure 4-8 Comparison of the predicted indoor airflow conditions in the mixed convection case 

by the Modelica-ISAT-FFD and the Modelica-FFD 

Figure 4-8 shows the simulation results using the Modelica-ISAT-FFD model and 

Modelica-FFD model. Note that the Modelica-ISAT-FFD model predicts steady-state results of 

the airflow, while the Modelica-FFD performs transient airflow simulations. The temperatures 

predicted in both models include room temperature, temperature at occupied zone, and 

temperatures at different sensors. It can be found that the Modelica-ISAT-FFD steady-state 
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predictions are generally consistent with the time-averaged FFD results as they reach steady-state. 

The room temperature is slightly higher than the temperature at occupied zone because of the 

vertical stratification of temperature caused by the buoyancy effect. Both models capture the 

stratified air temperature distribution at different sensor locations in the room. For example, both 

models predict a warmer temperature at Sensor 1, which is caused by the hot air rising from the 

heated box. 

The last plot in Figure 4-8 shows the heat fluxes through the east wall and floor. The 

Modelica-ISAT-FFD steady-state results are again consistent with the time-averaged Modelica-

FFD results as they approach steady state. The heat flux through the east wall differs significantly 

from that through the floor. This is mainly because the temperature difference between the 

construction surface and adjacent indoor air are different for the east wall and floor due to the non-

uniform temperature distribution as shown in Figure 4-4 (b). To conclude, the Modelica-FFD 

model can be advantageous for capturing short-term dynamics by performing transient 

simulations, while the Modelica-ISAT-FFD model can be used for predicting steady-state results 

generally consistent with those from Modelica-FFD simulations. 
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Case 2: Different Coupling Frequencies 

 

Figure 4-9 Comparison of the Modelica-ISAT-FFD simulation with different coupling 

frequencies and the Modelica-FFD simulation for the mixed convection case 

Figure 4-9 shows the simulation results for the mixed convection case in a typical day. 

Although the Modelica-FFD results oscillate significantly due to the dynamic characteristics of 

the flow, their time-averaged values generally match with the steady-state temperature predictions 

from the Modelica-ISAT-FFD model, especially for the coupling frequencies with data 

synchronization time of equal or less than 1 hour. The Modelica-ISAT-FFD predictions delay by 

one data synchronization time compared to the Modelica-FFD results. This is because of the quasi-

dynamic coupling scheme used in the model. For example, from 𝑡𝑛−1 to 𝑡𝑛, the ISAT predictions 

are made based on exchanged data at the data synchronization point 𝑡𝑛−1, and remain constant 

until the next data synchronization point 𝑡𝑛. As a result, when the coupling frequency is low, e.g. 
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the data synchronization time is 4 hours, the accuracy of the Modelica-ISAT-FFD predictions 

decline significantly due to the considerable delay. 

The differences between the Modelica-ISAT-FFD predictions and the Modelica-FFD 

results are quantified by Normalized Mean Bias Error (NMBE), 𝑒𝑁𝑀𝐵𝐸: 

𝑒𝑁𝑀𝐵𝐸 =
∑ |

1

∆𝑡
∫ 𝑦(𝑖𝑠𝑎𝑡)(𝑡) 𝑡
𝑡0+𝑖∆𝑡
𝑡0+(𝑖−1)∆𝑡 −

1

∆𝑡
∫ 𝑦(𝑓𝑓𝑑)(𝑡) 𝑡
𝑡0+𝑖∆𝑡
𝑡0+(𝑖−1)∆𝑡 |𝑛

𝑖=1

𝑛|𝑦𝑚𝑎𝑥
(𝑓𝑓𝑑)

−𝑦
𝑚𝑖𝑛
(𝑓𝑓𝑑)

|
, (4-9) 

where  (𝑖𝑠𝑎𝑡) and  (𝑐𝑓 ) are the Modelica-ISAT-FFD and the Modelica-FFD results, respectively. 

To reduce the effect of the short-term oscillation in Modelica-FFD results, we divide the simulation 

period into small segments and calculate the 𝑒𝑁𝑀𝐵𝐸  based on time-averaged values for each 

segment. The size of each segment, ∆𝑡, is 5 minutes in this study, which results in the total number 

of segments, 𝑛, being 288. The mean bias error is normalized by dividing the range of the values 

in Modelica-FFD results, which is 3.9 oC for 𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  and 4.1 oC for 𝑇𝑅𝑜𝑜𝑚 for this case. This is 

to avoid underestimating the percentage error by using absolute values, which are about 24-28 oC. 

 

Figure 4-10 NMBEs of predictions by the Modelica-ISAT-FFD simulation with different 

coupling frequencies 
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The NMBEs of predictions by the Modelica-ISAT-FFD simulation with different coupling 

frequencies are shown in Figure 4-10. Both results for 𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  and 𝑇𝑅𝑜𝑜𝑚  follow a similar 

pattern, in which the NMBEs increase when the data synchronization time increases. This is more 

noticeable in particular when the data synchronization time is larger than 1 hour. We also tested 

the NMBEs for other outputs, e.g. heat flux through walls, and found a similar pattern. The 

prediction accuracy of 𝑇𝑂𝑐𝑐𝑢𝑝𝑖𝑒  is slightly more sensitive to the coupling frequency. This may be 

due to different air volumes and thermal mass capacities for these two outputs. To balance the 

accuracy and computational costs, the data synchronization time of 1 hour, which achieves 

NMBEs of 7.7-7.8% for both outputs, is determined for the following Cases 2 and 3. 

Case 3: Different Error Tolerances 

The EnergyPlus weather data for the month of January in Chicago, IL [12] is shown in 

Figure 4-11. The top plot shows the ambient dry bulb temperature and black sky temperature 

throughout the month, where the black sky temperature is included to determine the radiative 

exchange between the sky and building exterior. The second and third plots show the wind 

direction in radians and wind speed in m/s, respectively. The wind profile is critical to computing 

the convective heat transfer between the building exterior and outdoor environment. The final plot 

shows the solar irradiation on the ceiling and exterior walls of the building. The plot has spikes 

during the day when the sun is present, and there is consistently more incident irradiation on the 

ceiling compared to the exterior walls during these spikes. 
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Figure 4-11 Weather profiles in January of the studied case in Chicago. 

The five plots in the left column in Figure 4-12 show the interior surface temperatures of 

the E/N walls and ceiling, which are defined as the inputs of the ISAT in the Modelica-ISAT-FFD 

model. These temperatures are calculated by solving a one-dimensional heat transfer problem in 

the Modelica model. All results follow similar patterns, such as the surface temperatures of the 

ceiling being much higher and more stable than that of the E/N walls because of the materials and 

insulation layer added in the ceiling. The results for the Modelica-ISAT-FFD model with different 

settings of error tolerances show little differences, which can be explained because even the 

predicted room temperatures can differ as much as 0.8 oC. Such a deviation has very little impact 
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on the calculation of the interior surface temperatures, since the temperature differences between 

the room air and the interior surface are much larger than 0.8 oC. 

 

Figure 4-12 Surface temperatures at exterior constructions and temperature predictions by the 

Modelica-FFD model and the Modelica-ISAT-FFD model with different error tolerances 

The five plots in the right column in Figure 4-12 show the average room temperature and 

the average occupied zone temperature predicted by the Modelica-ISAT-FFD and Modelica-FFD. 

The results from both models are very similar and the predicted average room temperatures are 

higher than the average occupant zone temperatures. This is because both models predict the 
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temperature stratification in the room, so it is able to capture the warmer air rising towards the 

ceiling, resulting in the occupied zone temperature to be lower than the average room temperature. 

Interestingly, some discrepancies occur in the results of the Modelica-ISAT-FFD model with 

different settings of error tolerances. For example, for the predicted results on Days 2-3 and 24-

25, it can be clearly seen that the prediction resolution decays as the error tolerance becomes loose. 

This becomes more obvious when then the error tolerance is 0.8 oC, in which some unexpected 

oscillations occur. 

 

Figure 4-13 Comparison of temperatures predicted by the Modelica-ISAT-FFD model with 

different error tolerances and the Modelica-FFD model 
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The temperatures predicted by the Modelica-ISAT-FFD model and the Modelica-FFD 

model are compared in Figure 4-13. The results from both models generally match with each other. 

Taking the predictions from the Modelica-FFD model as the ground truth, the prediction errors of 

the Modelica-ISAT-FFD model are mostly within the pre-defined error tolerances. On one side, 

reducing the error tolerance in Modelica-ISAT-FFD can make the prediction more accurate. The 

average error reduces from 0.21 oC for 0.8 oC to 0.11 oC for 0.2 oC, as shown in Table 4-2. On the 

other side, reducing the error tolerance will also make the error control more challenging with 

more predictions outside of the user defined error tolerance (e.g. the violation increases from 0.5% 

for 0.8 oC to 15.7% for 0.2 oC, with an average value of 4.5% for all cases). 

Table 4-2 Number of actions and estimated computing time 

Models 

Error 

Tolerance 

[oC] 

Number of Actions 

Solution 

Time 

[hour] 

Average 

Error 

[oC] 

FFD Calls Regressions 

FFD Add Grow Total Retrieve 

Modelica-FFD - 744 0 0 744 0 103.3 - 

Modelica-

ISAT-FFD 

0.2 0 78 160 238 506 33.1 0.11 

0.4 0 28 124 152 592 21.1 0.14 

0.6 0 20 99 119 625 16.5 0.15 

0.8 0 15 84 99 645 13.8 0.21 

 

The simulation was performed using one core of Intel® Xeon® CPU E5-1603 with 

2.80GHz. The number of actions and estimated computing time for this case with different models 

are shown in Table 4-2. In the Modelica-FFD model, all the predictions are obtained from FFD 
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simulations, which result in a computing time of 103.3 hours. With the Modelica-ISAT-FFD 

model, most predictions are obtained from retrieving from the database, which do not require FFD 

simulations. As a result, the Modelica-ISAT-FFD models with error tolerances of 0.2 oC, 0.4 oC, 

0.6 oC and 0.8 oC save 68%, 79.7, 84%, and 86.6% of the computing time, respectively, compared 

to the Modelica-FFD model. To balance the accuracy and computational costs, the error tolerance 

of 0.6 oC is used to perform the annual simulation in Case 3. 

Case 4: Long-Term Co-Simulation 

In this case, an annual simulation is performed to evaluate the long-term performance of 

the Modelica-ISAT-FFD model. We did not run this case with the Modelica-FFD model due to 

the huge computing costs, but its computing time is estimated as a benchmark. 

The weather and predicted temperatures of the Modelica-ISAT-FFD model are shown in 

Figure 4-14. The first plot shows the outdoor dry bulb temperature profile during the year, which 

ranges from -20 oC to 30 oC. The following second and third plots show the surface temperatures 

of exterior constructions. As was also found in Case 1, the surface temperatures of the ceiling are 

more stable than that of the E/N walls because of the construction materials. The fourth and fifth 

plots show the predicted average room temperature and average occupied zone temperature, 

respectively. They generally follow similar patterns with the surface temperatures of exterior 

constructions. Similar to Case 1, the average room temperatures are generally higher than the 

average occupied zone temperatures. Interestingly, it is found that the differences between these 

two are much less during the summer. This may be because the higher surface temperatures of 

exterior constructions in summer result in a more uniform temperature distribution in the room. 
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Figure 4-14 Weather and predicted temperatures with the Modelica-ISAT-FFD model 

The ISAT training performance during the simulation is shown in Figure 4-15. The first 

plot shows the number of actions including grow, add and retrieve for each day. The grow and 

add actions occur frequently at the beginning of the simulation from Day 1 to Day 15 due to lack 

of data in the database, but then a few grow and add actions occur in the following days. Starting 

from Day 100, grow and add actions occur frequently again. This is because the weather varies 

drastically at that time, so that ISAT inputs are beyond the ranges of existing records in the 

database, preventing the predictions from being directly retrieved from the database. The 

occurrence of several other small spikes during the simulation shares the same reason.  
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The second and third plots show the number of FFD runs (grow and add) versus the number 

of regressions (retrieve) including the numbers of accumulated actions as well as percentages over 

the total actions. It can be found that about 25-50% of total actions are FFD runs at the first 20 

days, which means the Modelica-ISAT-FFD model is only about 50-75% faster than the Modelica-

FFD model if the simulation period is less than 20 days. The percentage of FFD runs decreases to 

about 10% after Day 50, then slightly increases from Day 100, and finally becomes about 5%. This 

indicates that a longer simulation period tends to better exploit the speed advantages of the 

Modelica-ISAT-FFD model. 

 

Figure 4-15 Training performance in the annual simulation with the Modelica-ISAT-FFD model 
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Table 4-3 Number of actions and estimated computing time 

Models 

Error 

Tolerance 

[oC] 

Number of Actions 

Solution 

Time 

[day] 

FFD Calls Regressions 

FFD Add Grow Total Retrieve 

Modelica-FFD - 8760 0 0 8760 0 50.7a 

Modelica-ISAT-FFD 0.6 0 46 344 390 8380 2.2 

a: The computing time of the Modelica-FFD model shown in this table was determined from an estimation, 

in which FFD was called every hour for the whole year resulting in an 8,760-times of FFD runs in total. 

The total number of actions and estimated computing time are summarized in Table 4-3. 

The actions and computing time with the Modelica-FFD model are estimated as a reference case. 

The Modelica-ISAT-FFD model saves 95.7% of computing time compared to the Modelica-FFD 

model. This significant acceleration makes the long-term BES-CFD co-simulation feasible while 

still controlling the prediction accuracy of the airflow. 

Case 5: Space Heating with Feedback Loop Control 

Two scenarios are studied in this case. The first one uses the Modelica-ISAT-FFD model 

with the control variable of average temperature at occupied zone. The second one uses the 

Modelica-ISAT-FFD model with the control variable of average room temperature. The first plot 

in Figure 4-16 shows the average temperature at occupant zone. It can be found that it is controlled 

at 25 ± 0.75 oC in the first scenario, but at a lower value in the second scenario. This is because 

when the average room air temperature is controlled at around 25 oC, the average temperature at 

occupied zone is lower than that due to temperature vertical stratification in the room. 

Consequently, the heating powers as well as the daily heating load in the first scenario are higher 
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than that in the second scenario, which result in a total heating load of 956.4 kWh in the first 

scenario and a total heating load of 704.8 kWh in total in the second scenario. 

 

Figure 4-16 Occupant zone temperatures and heating powers in different cases 

The number of actions and estimated computing time are summarized in Table 4-4. The actions 

and computing time with the Modelica-FFD model are estimated as benchmark, which are the 

same for the two scenarios. The Modelica-ISAT-FFD model saves 80.2%-81.2% of computing 

time for the two scenarios respectively, compared to the Modelica-FFD model. 
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Table 4-4 Number of actions and estimated computing time 

Models 
Control 

Variable 

Number of Actions 

Computing 

Time [day] Directly 

Calling FFD 
Add Grow Retrieve 

Modelica-FFDa Tocc 8,928 0 0 0 20.7 

Modelica-FFDa Troo 8,928 0 0 0 20.7 

Modelica-ISAT-FFD Tocc 0 96 1601 7231 3.9 

Modelica-ISAT-FFD Troo 0 107 1651 7170 4.1 

a: The computing time of the Modelica-FFD model shown in this table was determined from an estimation, 

in which FFD was called every 300 s for January resulting in an 8,928 times of FFD runs in total. 

4.4 Discussions 

To evaluate the performance, we conduct a comprehensive comparison between the new 

Modelica-ISAT-FFD model and the existing Modelica-FFD model, in which the accuracy of the 

Modelica-ISAT-FFD model is evaluated by comparing it with the Modelica-FFD model rather 

than using experimental data. This is justified since the existing Modelica-FFD model has already 

been validated with experimental data in Zuo, Wetter, et al. [47]. In addition, these comparisons 

can clearly show the advantages of the proposed new BES-ISAT-CFD coupling scheme against 

the conventional BES-CFD coupling scheme. 

The first advantage of the Modelica-ISAT-FFD model is the capability of error control, 

which is usually a challenge with conventional ROMs. The results of the case studies show that 

the prediction errors with the Modelica-ISAT-FFD model are generally well controlled within the 

pre-defined error tolerances. Therefore, with the Modelica-ISAT-FFD model, one can set different 

preferences for airflow prediction accuracy for different applications. Given that a stricter setting 
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of the error tolerance usually leads to a higher computing cost by calling more FFD simulations, 

this feature provides the flexibility to meet the requirement of airflow prediction accuracy while 

minimizing the computing costs. 

The second advantage of the Modelica-ISAT-FFD model is the fast speed. Compared to 

the existing Modelica-FFD model, the Modelica-ISAT-FFD model saves the computing time up 

to 95.7% for an annual simulation. The savings of computing time are case-by-case, but generally 

a higher error tolerance helps improve the speed. A longer simulation period with the Modelica-

ISAT-FFD model may also help offer more computational savings than the Modelica-FFD model 

from obtaining more retrieve actions. 

Another advantage of the Modelica-ISAT-FFD model is the online learning. With this 

feature, training with pre-computed CFD results is not required before the co-simulation, which is 

usually needed for conventional ROMs. The accuracy can also be guaranteed even when the query 

point is outside of the training domain, which is challenging for conventional ROMs. Moreover, 

the online training can be more efficient and effective compared to the conventional training 

method. The online training is performed per request during the co-simulation, while conventional 

training should cover the whole training domain by training the ROMs with a comprehensive 

dataset generated by CFD before the co-simulation. 

Nevertheless, the Modelica-ISAT-FFD also has limitations. First, it can only predict 

steady-state results while the Modelica-FFD model can capture the short-term dynamics in a scale 

of a few seconds. In this study, ISAT is used for predicting steady-state results, but it involves a 

transient process in the Modelica simulation. This is based on the assumption that the conditions 

do not change drastically between two data synchronization points, which is similar as [64]. Also, 
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even though the Modelica-ISAT-FFD has shown great improvement on the simulation speed 

compared to the existing Modelica-FFD model, the simulation speed can be further improved to 

handle full scale cases in the real world. One approach is to run the time consuming FFD on GPU 

[40, 38]. 

4.5 Conclusions 

To realize fast and accurate BES-CFD co-simulation, this study proposed an online BES-

ROM-CFD approach by integrating an online learning ROM with the BES-CFD coupled model. 

A Modelica-ISAT-FFD model was implemented to demonstrate the new approach and it was 

verified with a mixed convection case by comparing its results with that from an existing 

Modelica-FFD model, which was validated in previous research. The results showed that the 

steady state results of indoor environment and heat flux through walls predicted in the Modelica-

ISAT-FFD generally match with that predicted by the Modelica-FFD model, although it cannot 

capture short-term dynamics as the Modelica-FFD does. Three cases were studied to further 

evaluate the performance of the new model regarding the prediction accuracy of the ROM and 

computing time. The results showed that the Modelica-ISAT-FFD model saves up to 95.7% of 

computing time for an annual simulation while generally well controlling the prediction errors 

within the user-defined error tolerances compared to the Modelica-FFD model.  

To conclude, the proposed online learning approach significantly accelerates the BES-CFD 

co-simulation with well controlled prediction accuracy of non-uniform airflow and thermal 

environment. To allow wide use of the proposed methodology, the Modelica-ISAT-FFD model 

has been publicly released under a free open-source license.  
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Chapter 5 Towards Holistic Optimization of Data Center Cooling Systems 

and Airflow Management: Adaptive Online BES-ROM-CFD Co-

Simulation Powered by Distributed Computing 

 

This chapter further improves the online BES-ROM-CFD method and based on that 

proposes a holistic optimization platform. A real middle size data center is adopted to demonstrate 

the capability of the proposed optimization platform. 

5.1 Introduction 

Data centers, which house a large amount of mission-critical IT equipment, consume about 

1.5% of the global electricity in 2010 [113]. With the fast growing markets on cloud computing, 

data centers’ share on global electricity was estimated to be as high as 3-13% in 2030 [3]. The 

cooling systems, which consume about 24%-60% of total data center energy consumption [2], are 

crucial for reliable operation of IT equipment in data centers. However, many data centers are 

significantly overcooled to ensure the reliable operation of IT equipment, which leads to a low 

cooling efficiency [5]. To improve the effectiveness and efficiency of data center cooling systems, 

simulation-based optimization [6] can be adopted, in which the simulation models are critical to 

achieve the optimal solution. 

Among all data center modeling techniques, computational fluid dynamics (CFD) has been 

one of the most widely-used methods to evaluate and improve data center airflow management 

and cooling effectiveness [13]. CFD can be used to understand the detailed airflow and temperature 

fields in data centers. For example, Healey, VanGilder, et al. [36] found that with careful 
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calibration, CFD is able to make reliable predictions of perforated-tile air flow rates and rack-inlet 

temperatures for a middle-size data center. With this capability, CFD has been widely adopted to 

evaluate different design considerations. For example, Shrivastava [114] investigated the impact 

of different configurations of floor and ceiling supply diffusers and floor and ceiling returns 

through a what-if scenario evaluation. However, these research focused on the designs and few 

considered the off-design operations even though it has a significant energy impact as pointed out 

by Demetriou, Khalifa, et al. [115]. 

To support optimal off-deign operations, various high-fidelity building energy simulation 

(BES) models were developed. For example, eQuest [8], EnergyPlus [7, 17], TRNSYS [18, 115], 

and Modelica [10] were adopted to develop detailed models of cooling systems and optimize the 

off-design operations for data centers. If there is no special treatment, these BES programs 

commonly adopt a multizone room model with a well-mixed assumption, which makes it 

challenging to handle non-uniform thermal environment [47, 66]. However, the data center thermal 

requirements pertain to the air entering the IT equipment [15], which usually involves non-uniform 

thermal environment, therefore, the BES models may fail to guarantee the thermal guidelines can 

be met. For example, Fu, Zuo, et al. [10] optimized the cooling systems using a Modelica model 

with a well-mixed room model. They assumed the plenum air temperature is equal to the IT rack 

inlet temperature without considerations of any recirculation and leakage hot air mixed with the 

supply cold air. This assumption may not be valid for data centers with open-cold-aisle 

configurations. Even though a strict constraint may be added to force the optimal solution from 

cooling system optimizations to meet the thermal requirements, it may lead to the local optima 

problem. 
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To address these issues, a holistic optimization can be performed by simultaneously 

considering the cooling system and airflow management. This can be achieved by using a BES-

CFD coupled model [66]. However, dynamically coupling BES with CFD is too computationally 

expensive to perform an annual simulation within a reasonable computing time. For example, 

Zhang, Lam, et al. [54] studied a naturally ventilated building with a EnergyPlus-Fluent co-

simulation model, and found that it took about 11 hours to simulate the case for a day [54]. It 

becomes even more challenging when a simulation-based optimization is performed. For example, 

Tian, Han, et al. [65] optimized the thermostat location in a small office (5.16 m × 3.65 m × 2.43 

m) based on a Modelica-FFD coupled model. It took more than five hours to finish the optimization 

even though only 1 hour is simulated for the case and an extremely coarse grid (8 cells × 5 cells × 

5 cells) is used in the FFD simulations. Consequently, a huge computational cost is expected if 

one optimizes a data center with annual simulations, which has much more complex grids and 

longer simulation time than the case studied in [65]. Consequently, to our best knowledge, no 

research adopted a BES-CFD co-simulation to perform a holistic optimization of data centers. 

To realize a holistic optimization of data centers, various efforts have been made to couple 

BES with different variants of simplified airflow models. First, a constant value can be used to 

represent the non-uniform thermal environment. For example, [116] developed an analytic model 

to study the cooling system and airflow management in a holistic view, in which the air 

temperature rise from the perforated tile to the rack inlet temperatures was assumed to be a constant 

value, which can be determined from CFD simulations. Sun, Hong, et al. [117] made similar 

assumptions in an EnergyPlus data center model. However, this temperature rise depends on some 

parameters in cooling systems, IT racks and others, which may vary during the operation, such as 
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the supply air flow rate, IT loads, and room airflow pattern and average temperature. To take 

different scenarios into considerations, regression models or other reduced order models (ROMs) 

can be developed from a parametric study of CFD simulations. For example, Billet, Healey, et al. 

[118] utilized a simplified power consumption model to minimize the energy consumption by 

adjusting the total supply air flow rate, in which regression models was developed to predict the 

maximum rack inlet temperature. Demetriou and Ezzat Khalifa [70] optimized the IT load 

placement with a dynamic cooling system model, in which a ROM using proper orthogonal 

decomposition (POD) is used for predicting the rack inlet temperature distributions. However, 

these methods are only reliable for operating conditions within the training domain. The perdition 

accuracy may significantly decay if the operating conditions are outside of the training domain. 

The Chapter 4 introduced an online BES-ROM-CFD method that can address this issue. But it is 

still not fast enough for practical use in real applications.  

To further improve the online BES-ROM-CFD method, this dissertation proposes an 

adaptive online BES-ROM-CFD method, in which adaptive coupling frequencies are used to 

reduce the number of ROM-CFD calls during the co-simulation. The co-simulation is further 

powered by the distributed computing technology, which allows that BES-ROM runs on a CPU 

and CFD runs on a GPU in parallel during the co-simulation. By reducing the number of ROM-

CFD calls and maximizing the capacity of computing hardware of a computer, the new method 

significantly accelerates the online BES-ROM-CFD co-simulation. Based on that, a holistic 

optimization platform is proposed. To demonstrate the proposed optimization platform, an 

adaptive Modelica-ISAT-FFD model connected with GenOpt is implemented. 
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The rest of this chapter is organized as follows. First, the adaptive online BES-ROM-CFD 

method powered by distributed computing technology as well as the optimization platform based 

on that are introduced. Then, the implementation of the optimization platform based on an adaptive 

Modelica-ISAT-FFD model is described. After that, the new coupled model is verified with a real 

data center case. Finally, an optimization study is conducted with the same data center to 

demonstrate the performance of the proposed optimization platform. 

5.2 Methodology 

5.2.1 Improved Modelica-ISAT-FFD Model 

 

Figure 5-1 Coupling stratergy of the proposed adpative Modelica-ISAT-FFD model powered by 

distributed computing 

To realize the practical use of BES-CFD co-simulaiton based optimization, the key is to 

significantly reduce the computational costs of the BES-CFD co-simulaiton to an acceptable level. 
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Since the bottleneck of the BES-CFD co-simulaiton speed lies in the computationally expensive 

CFD simulations, there are two ways to accelearate the co-simulaiton. One the one hand, it can be 

done by reducing the number of CFD simulations. On the other hand, accelerating the CFD 

simulaiton itself can also help. To achieve both, this paper proposes an adaptive BES-ISAT-CFD 

coupled model powered by disbributed computing. 

Figure 5-1 shows the stratergy of the proposed adpative Modelica-ISAT-FFD model 

powered by distributed computing. First, an adaptive coupling frequency stratergy is proposed to 

reduce the number of calls of external solvers (i.e. FFD or ROMs) for steady state FFD results 

from the Modelica. The idea is that if the data sent from Modelica to FFD or ROMs does not 

change considerably in a certain period, the calls of FFD or ROMs will be skiped and Modelica 

adopts steady state FFD results returned at the beginning of that period. As a result, this stratergy 

avoids redundent FFD calls, which, otherwise, lead to high additional computatinal costs. Even if 

ROMs are coupled with BES, this stratergy reduces the computing time of exhanging data between 

two programs and loading ROMs.  

Second, an online learning ROM, namely ISAT, is adopted to further reduce the number 

of FFD calls while ensuring the accuracy. One the one hand, ISAT can significantly reduce the 

computational costs by performing linear approximations instead of calling FFD, which is similar 

as a conventional ROM. On the other hand, with the online learning feature, ISAT calls FFD for 

an accuracy prediction when a linear approximation can not provide sufficiently accuract results.  

By using the above two techniques, the time scale of perfoming a BES-CFD co-simulation 

can be reduced to days ~ hours. However, this may still not be fast enough since dozens of or even 

hundreds of runs of simulations are required to evalute the objective function during the 
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optimization. To further significantly speed up the FFD simulaitons, a distributed computing 

technique is integrated in the coupled model. The Modelica simulation, which is much faster than 

CFD, runs on a CPU and CFD, which is the speed bottleneck, runs on a GPU in parallel.  

5.2.2 Co-Simulation Based Optimization Platform 

 

Figure 5-2 The optimization platform based on an adaptive Modelica-ISAT-FFD powered by 

distributed computing 

An optimization platform is then proposed by linking the adaptive Modelcia-ISAT-FFD 

coupled model with an optimization program. By integrating all these techniques, we finally make 

such a BES-CFD co-simulation based optimization become computationally feasible. It is 
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noteworthy that this paper only focuses on data centers, but the proposed methodology can be used 

for other applications, such as optimal design and operation of displacement ventilations.  

The workflow of the optimization platform is shown in Figure 5-2. Assume we have the 

following multi-objective optimization problem: 

min
𝑥 

∑ ∫ 𝜔𝑖 ∙  𝑖(𝑥 )|
𝑡2

𝑡1

𝑁
𝑖=0  𝑖 ∈   , (5-1) 

where 𝑥  and    are vectors of optimization variables and objectives, respectively.  𝑖 is the weight 

for the objective  𝑖. 

During the optimization, the optimization engine generates candidate solutions 𝑥  and call 

Modelcia-ISAT-FFD simulations to evaluate the objective functions    with the candidate 

solutions. The key feature of the optimization platform is the Modelcia-ISAT-FFD model with 

adaptive coupling frequencies and distributed computing. The workflow is as follows. 

Initialize and run Modelica. When the data synchronization time 𝑡𝑛 is reached: 

𝑡𝑛 = 𝑛 ∙ ∆𝑡𝑠𝑦𝑛 | 𝑛 ∈ N, (5-2) 

BES calculates 𝑢⃗ (𝑡𝑛): 

𝑢⃗ (𝑡𝑛) = 𝑔 (𝑥 ,  ⃗⃗ (𝑡𝑛−1)), (5-3) 

where 𝑢⃗  is the vector of data sent from Modelica to FFD and  ⃗⃗  is the vector of data sent from FFD 

to Modelica. 𝑔  represents the functions solved in Modelica to calculate 𝑢⃗ .  

BES sends 𝑢⃗ (𝑡𝑛) to ISAT-FFD: 

 

𝑢⃗ (𝑡𝑛)  𝑢⃗ (𝑞) (5-4) 

To return the data  ⃗⃗ (𝑡𝑛) from FFD to Modelica, there are three scenarios.  
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Scenario 1: when the boundary conditions at 𝑡𝑛  updated from Modelica do not have 

notable changes compared to that at 𝑡𝑛−1: 

∆𝑢𝑖 = |𝑢𝑖(𝑡𝑛) − 𝑢𝑖(𝑡𝑛−1)| ≤ ∆𝑢0,𝑖 for 1 ≤ 𝑖 ≤ 𝑚 (5-5) 

where ∆𝑢0,𝑖 is the user-defined tolerance for the change of 𝑖th boundary condition from 𝑡𝑛−1 to 𝑡𝑛. 

𝑚 is the number of elements in 𝑢⃗ . 

Then, return  ⃗⃗ (𝑡𝑛) with the results at previous time step: 

 ⃗⃗ (𝑝𝑟𝑒) =  ⃗⃗ (𝑡𝑛−1)   ⃗⃗ (𝑡𝑛)  (5-6) 

Scenario 2: If the condition of Scenario 1 is not true, call ISAT. If the ISAT can retrieve 

the outputs from the database, then return  ⃗⃗ (𝑡𝑛) from performing a linear approximation based on 

the closest record 𝑢⃗ (0) to 𝑢⃗ (𝑞) in the database: 

 ⃗⃗ (𝑙) = 𝑓(𝑢⃗ (0)) + 𝐴(𝑢⃗ (0)) ∙ (𝑢⃗ (𝑞) − 𝑢⃗ (0))   ⃗⃗ (𝑡𝑛), (5-7) 

where  (𝑙) represents output of the nonlinear function from a local linear approximation. 𝑓(𝑥(0)) 

is the mapping 𝑓 𝑥    with regard to 𝑥(0) and 𝐴(𝑥(0)) is the mapping gradient matrix with 

regard to 𝑥(0), which are stored in the database. 

Scenario 3: If the ISAT fails to retrieve the outputs from the database, then return  ⃗⃗ (𝑡𝑛) 

from executing a FFD simulation: 

 ⃗⃗ (𝑐𝑓 ) = ℎ⃗ (𝑥 , 𝑢⃗ (𝑡𝑛))    ⃗⃗ (𝑡𝑛), (5-8) 

where ℎ⃗  represents the functions solved in FFD to calculate  ⃗⃗ .  

Until now, the data synchronization between Modelica and FFD at 𝑡𝑛 is completed. Then, 

continue to run Modelica and repeat above process for the next data synchronization 𝑡𝑛 1 until the 

end of the Modelica -ISAT-FFD simulation. 
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After finishing the Modelica -ISAT-FFD simulation, the results are sent to the optimization 

engine to evaluate the objective functions   . The optimization engine repeats above process from 

generating candidate solutions to evaluating objective functions by calling the BES-ISAT-CFD 

simulations until finding the optimal solution. 

5.2.3 Software Implementation 

 

Figure 5-3 Implementation of the co-simulation based optimization platform 

The adaptive BES-ISAT-CFD model is demonstrated with a Modelica-ISAT-FFD model. 

The implementation of the Modelica-ISAT-FFD was described in Chapter 4. The adaptive 

coupling frequencies are realized from revising the interface between Modelica with ISAT. The 

new feature for distributed computing is realized by implementing the FFD solver with a hybrid C 

and OpenCL programming languages. The FFD model is linked with the ISAT model through a 

wrapper in C. The optimization platform is implemented through a standard approach in GenOpt 

[119]. In each generation of the optimization, the GenOpt generates candidate solutions for the 
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optimization variables and the coupled simulations of Modelica with ISAT and FFD are performed 

to evaluate the objective function for these candidate solutions.  

5.3 Verification 

5.3.1 Case Description 

The studied data center is a real middle-size data center with raised-floor and dropped 

ceiling configuration located in Massachusetts. The total white space floor area of the reference 

data center is approximately 690 m2 (7,400 ft2). As shown in Figure 3-9, the reference data center 

is approximately 30.5 m (100 ft) long, 22.6 m (74 ft) wide and 3.4 m (11 ft) high from the raised 

floor to the ceiling. Total power consumption by the 151 racks and 12 PDUs is approximately 344 

kW. Racks G11 and G13 (i.e., the 11th and 12th cabinets in Row G) are empty. There are 18 45U 

networking racks in Rows 1 and 10, and all the remaining racks in the data center have a capacity 

of 42U. 

The central Air Handling Units (AHUs) supply cooling airflow through the short sides of 

the plenum, which is supported using 7/8” stanchions. The total supply air flow rate is 152,000 

m3/hr (89200 cfm). The airflow is then supplied to the IT equipment through 183 25%-open-area 

tiles (each 2 ft by 2 ft).  The heated airflow returns to the CRAH through a dropped ceiling plenum 

with 42 approximately-83%-open-area tiles.  
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Figure 5-4 Schematics of the cooling system in the data center 

The schematic drawing of the HVAC system of the subject data center is shown in Figure 

5-4. There are three chillers, chilled water pumps, condenser water pump and cooling towers in 

the schematic drawing, but only two of them run in Lead/Lag configuration and the other one is 

for backup. The chilled water is distributed to the AHU-1 and the AHU-2. The cooling system 

compromises of the following components: 

 2 chillers which operate in a Lead/Lag configuration. 

 2 variable speed primary chilled water pumps which operate in a Lead/Lag configuration. 

 2 constant speed condenser water pumps which operates in a Lead/Lag configuration. 
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 2 cooling towers, each tower with a variable frequency driver (VFD) driven fan and basin 

heater which operate in a Lead/Lag configuration. 

 2 AHUs with speed controls based on the static pressure in the plenum. 

The cooling system configures a chilled water system with airside economizers (ASEs), 

which operates in three cooling modes: (1) free cooling (FC) mode, where only ASEs are activated; 

(2) partial mechanical cooling (PMC) mode, where the chilled water system and ASEs work 

simultaneously; (3) fully mechanical cooling (FMC) mode, where only the chilled water system is 

used. The transition conditions between different cooling modes are shown in Error! Reference s

ource not found., which are determined based on the weather, control settings and system 

conditions.  

 

Figure 5-5 State graph of the cooling mode controller 

The ASEs are activated and the cooling system stages from the FMC mode to the PMC 

mode, when the firing condition 4 in Figure 5-5 is met: 

𝑇𝑂𝐴, 𝑏 < 𝑇𝑅𝐴 − 𝛿𝑇 and 𝑇𝑂𝐴, 𝑝 < 𝑇𝑂𝐴, 𝑝,ℎ𝑖𝑔ℎ, (5-9) 
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and deactivated (from the PMC mode to the FMC mode) when the condition 2 in Figure 5-5 is 

met: 

𝑇𝑂𝐴, 𝑏 > 𝑇𝑅𝐴 + 𝛿𝑇 and 𝑇𝑂𝐴, 𝑝 > 𝑇𝑂𝐴, 𝑝,ℎ𝑖𝑔ℎ + 𝛿𝑇, (5-10) 

where 𝑇𝑂𝐴, 𝑝 is the dew point temperature of outdoor air, 𝑇𝑂𝐴, 𝑏 is the dry bulb temperature of 

outdoor air, 𝑇𝑅𝐴 is dry bulb temperature of the return air, 𝑇𝑂𝐴, 𝑝,ℎ𝑖𝑔ℎ is the high cutoff limit for the 

dew point temperature, and 𝛿𝑇 is the temperature dead band. While 𝑇𝑂𝐴, 𝑝, 𝑇𝑂𝐴, 𝑏, and 𝑇𝑅𝐴 are 

read from measured data, 𝑇𝑂𝐴, 𝑝,ℎ𝑖𝑔ℎ and 𝛿𝑇 are set as 14 ℃ and 1.1 ℃ in the current system 

respectively.  

The chillers are activated and the cooling system stages from the FC mode to the PMC 

mode when the condition 1 in Figure 5-5 is met: 

𝑇𝑂𝐴, 𝑏 > 𝑇𝑆𝐴,𝑓𝑙𝑜𝑜𝑟,𝑠𝑒𝑡 + 𝛿𝑇 and 𝑇𝑂𝐴, 𝑝 > 𝑇𝑂𝐴, 𝑝,𝑙𝑜𝑤, (5-11) 

and deactivated (from the PMC mode to the FC mode) when the condition 3 in Figure 5-5 is met: 

𝑇𝑂𝐴, 𝑏 < 𝑇𝑆𝐴,𝑓𝑙𝑜𝑜𝑟,𝑠𝑒𝑡 − 𝛿𝑇 and 𝑇𝑂𝐴, 𝑝 < 𝑇𝑂𝐴, 𝑝,𝑙𝑜𝑤 − 𝛿𝑇, (5-12) 

where 𝑇𝑆𝐴,𝑓𝑙𝑜𝑜𝑟,𝑠𝑒𝑡 is the temperature setpoint of the supply air in the underfloor plenum, and 

𝑇𝑂𝐴, 𝑝,𝑙𝑜𝑤 is the low cutoff limit of the dew point temperature. 𝑇𝑆𝐴,𝑓𝑙𝑜𝑜𝑟,𝑠𝑒𝑡 is set as 22.2 ℃ in the 

baseline and it is dynamically adjusted by the optimal controller to maximize the operating time 

of the free cooling mode in the optimization case. The 𝑇𝑂𝐴, 𝑝,𝑙𝑜𝑤 is set as 12 ℃ in the current study. 

Note that the humidity of the data center is controlled by using limits of dew point temperature of 

outdoor air. For more detailed description of the cooling system, please refer to Fu, Zuo, et al. [10]. 
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5.3.2 Modelica Model 

 

Figure 5-6 Implementation of the cooling system model in Modelica 

The cooling system is modeled in Modelica based on Modelica Buildings library [12], as 

shown in Figure 5-6. The major component models include chillers, AHUs, cooling towers, chilled 

water pumps and condenser water pumps. The control system consists of the cooling mode control 
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and local controls. In Figure 5-6, the Cooling Tower Control represents the staging control and 

the speed control of the cooling tower fans. The Cooling Mode Control describes the cooling mode 

controller. The differential pressure control and the flowrate control of the evaporators are 

modelled in the Primary Pump Control. The supply air temperature and the chilled water supply 

temperature reset strategy, and the reheater control are described in the AHU Control. The settings 

of the reheater control are different in this study compared to Fu, Zuo, et al. [10]. To save the 

reheater energy, the reheater is only activated when the supply air temperature is lower than the 

allowable lower threshold according to [15]. For more detailed description of the cooling system, 

please refer to Fu, Zuo, et al. [10]. 

 

Figure 5-7 Diagram of the Modelica model for the ISAT-FFD model 

The key component model to realize the Modelica-ISAT-FFD model is the ISAT-FFD 

model as shown in Figure 5-6. The inputs of the ISAT-FFD model are connected with the sensors 

of supply air mass flow rate and temperature. The output of the ISAT-FFD model is the maximum 
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rack inlet temperature, which can be used for control. The detailed implementation of the ISAT-

FFD model is shown in Figure 5-7. The radiative, convective and latent heat gains are set to zero. 

The boundary conditions of walls are defined as constant values since the cooling loads injected 

through walls are much less than that caused by heat dissipation from IT servers and therefore are 

neglected in this study. The room model exchanges data with the ISAT model and the ISAT model 

determines to return the prediction through retrieving from the database or calling FFD to perform 

a full simulation. 

5.3.3 FFD Model 

The plenum and white space of the data center are modeled separately in the FFD model 

with structured grids for the simulation. The FFD model performs transient-state simulations with 

a time step size of 0.2 s – 1.0 s and simulation time of 100s – 400s. A zero-equation turbulence 

model is adopted [96, 97]. The FFD simulation is performed on an AMD FireProTM W8100 GPU. 

For more details of the FFD model, please refer to Section 3.3.2. 

The FFD model was validated with experimental measurements in Section 3.3.2. It was 

found that 95.1% of the FFD predictions deviate by less than 5% from the experimental 

measurements for the plenum and 88.0% predictions of the FFD predictions deviate by less than 

10% from the experimental measurements. Therefore, the FFD model generally capture the airflow 

distribution in the plenum and rack-to-rack inlet temperature variation well. The FFD model 

achieves a similar level of sufficient accuracy compared to CFD even though some discrepancies 

between simulated and measured temperatures can be observed. For more details, please refer to 

[120]. 
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5.3.4 Results 

 

 

Figure 5-8 Prediction error of the Modelica-ISAT-FFD model with different settings of error 

tolerances compared to the Modelica-FFD model  

Figure 5-8 compares the predictions from the Modelica-ISAT-FFD model with different settings 

of error tolerances and the Modelica-FFD model in details. It is found that the errors of predictions 

with the Modelica-ISAT-FFD model against the Modelica-FFD model are within the user-defined 

error tolerances. Generally, reducing the error tolerance in Modelica-ISAT-FFD can make the 

prediction more accurate. Even though there are some predictions outside of the user-defined error 

tolerance, the prediction accuracy with the Modelica-ISAT-FFD is generally well controlled. 
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Table 5-1 Number of actions and estimated computing time 

Models 

Error 

Tolerance 

[oC] 

Number of Actions 
Computing 

Time 

[hour] 
Directly 

Calling FFD 
Add Grow Retrieve 

Modelica-FFD - 8,760 0 0 0 146 

Modelica-ISAT-FFD 

0.1 

0 

50 32 8,678 1.4 

0.2 29 32 8,699 1.0 

0.4 18 24 8,718 0.7 

0.6 13 21 8,726 0.6 

0.8 9 28 8,723 0.6 

1.0 8 22 8,730 0.5 

 

The number of actions and estimated computing time for this case with different models 

are shown in Table 5-1. With the adaptive Modelica-ISAT-FFD model, most predictions are 

obtained from retrieving from the database, which do not require FFD simulations. Taking 

advantages of the distributed computing, the Modelica-ISAT-FFD models with error tolerances of 

from 0.1 oC to 1.0 oC save the computing time by from 99.04% to 99.66%, compared to the 

Modelica-FFD model. To balance the accuracy and computational costs, the error tolerance of 0.4 

oC is used for the following case studies. 
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5.4 Case Studies 

5.4.1 Description of the Holistic Optimization 

5.4.1.1 Optimization Problem 

In this study, the optimization problem is to minimize the energy consumption of data 

center cooling systems with air-side economizer (ASE) while meeting the thermal requirements of 

data centers [15]. The optimization variables is the supply air flowrate:  

min
𝑚̇𝑠𝑢𝑝

∑∫ 𝐸𝑖,
𝑡2

𝑡1

𝑁

𝑖=0

 (5-13) 

s.t. 𝑚̇𝑠𝑢𝑝,𝑚𝑖𝑛 ≤ 𝑚̇𝑠𝑢𝑝 ≤ 𝑚̇𝑠𝑢𝑝,𝑚𝑎𝑥 

𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 ≤ 27℃ 

where, the ranges of 𝑚̇𝑠𝑢𝑝 is constrained according to the configurations of the cooling systems. 

The maximum rack inlet temperature should be equal or lower than 27 oC according to the thermal 

guideline by ASHRAE [15]. The control of the 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 is achieved through a supply air 

temperature setpoint reset controller.  

5.4.1.2 Supply Air Temperature Setpoint Reset Control 

The non-uniform thermal environment is controlled through a supply air temperature 

setpoint reset control as shown in Figure 5-9. The setpoint of the supply air temperature is adjusted 

according to the 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥, which is predicted by the ISAT-FFD model based on the system status. 

The control objective is to maintain the 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 at 26 ±1 oC. When the 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 is higher than 

the target, the setpoint of supply air temperature will be lowered and vice versa. The key 
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component in this controller is the ISAT-FFD model that predicts the critical information of non-

uniform thermal environment. 

 

Figure 5-9 Setpoint of the supply air temperature reset control 

5.4.2 Evaluation of the Optimization Platform 

 

Figure 5-10 Searching trajectory with the GPS optimization method 
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The optimization is implemented based on GenOpt [119] as introduced Section 6.2.2. The 

generalized pattern search (GPS) optimization method provided in GenOpt [119] is adopted in this 

study. At each iteration of the GPS optimization, the pattern either moves to the point which best 

minimizes its objective function, or reduces the step size by a user-defined factor (2 in this study) 

if no point can be found to be better than the current base point, until the desired accuracy has been 

achieved [121]. The range the optimization variable, namely air ratio, is from 0.8 to 2.0. The initial 

step size to perform the GPS algorithm is defined as 0.2.  

The GPS based optimization is evaluated by comparing its results with that from an 

exhaustive search. The starting point in the GPS optimization is at 1.4 and it moves to 1.2, 1.0 and 

finally 1.1 during the optimization. It is found that the GPS optimization finds the global optima 

successfully. 

 

Table 5-2 Number of actions and estimated computing time for the optimization with the 

different models 

Optimization 

With Different 

Models 

Coupling 

Frequencies 

Distributed 

Computing 

Offline 

Stage 
Online Stage 

Estimated 

Computing 

Time Add Grow 

Directly 

Calling 

FFD 

Add Grow 

Modelica-FFD Constant No 0 0 1024920 0 0 585 years 

Modelica-FFD Adaptive No 0 0 113880 0 0 65 years 

Modelica-

ISAT-FFD 
Adaptive No 334 708 0 18 74 47.25 days 

Modelica-

ISAT-FFD 
Adaptive Yes 334 708 0 18 74 0.78 days 



122 

 

 

 

Table 5-2 shows the total number of actions and estimated computing time for the 

optimization with the different models. Using the original Modelica-FFD model with constant 

coupling frequencies and without distributed computing, FFD is called at each data 

synchronization time resulting in a 1024920 times of FFD calls in total and corresponding 585 

years of computing time. Taking advantage of the adaptive coupling frequencies, FFD is called for 

113880 times, which leads to a reduced computing time to 65 years. Taking advantage of the online 

learning, FFD is called for only 92 times, which leads to a significantly reduced computing time 

to 47.25 days. Powered by the distributed computing, an additional 98% of reduction on the 

computing time is achieved. As a result, the total computing time eventually reaches as less as 0.78 

days, which becomes acceptable for practical use in real applications. 

5.4.3 Optimization Results 

 

Figure 5-11 Weather profiles for the studied case in Massachusetts 
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The baseline has constant setpoints for supply air temperature and mass flow rate as 

description in Section 6.3.1. The optimization is performed with different optimization frequencies 

including annually, monthly, weekly and daily optimization. The studied case is a real data center 

in Massachusetts as described in Section 6.3.1. The weather profiles are downloaded from the 

closest meteorological station from the data center and shown in Figure 5-11. The dry bulb 

temperatures are as low as more than -20 oC in winter and as high as 40 oC in summer.  

 

Figure 5-12 Control actions in baseline and optimization cases 

The optimization results are shown in Figures 5-13~5-17 in terms of the control actions, 

performance of energy efficiency and thermal environment control. Control actions in baseline 

and optimization cases with different optimization frenqucies are shown in Figure 5-12. In the 

optimization cases except the annually optimization, the optimal setpoints of supply air mass flow 

rate are determined to be at the lower limit in winter and with higher values in summer. This is 
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because the fan energy is dominant in winter since the cooling system operates on the free cooling 

mode and consequently a supply air mass flow rate at the lower limit saves the fan energy to the 

maximum extent. Correspondingly, the setpoints of supply air temperature are adjusted to a lower 

level to meet the thermal requirements of data centers. On the other hand, in the summer, higher 

supply air flow rates and corresponding higher supply air temperatures are determined to get more 

free cooling and save chiller energy.  

 

Figure 5-13 Cooling modes in baseline and optimization cases 

The Cooling modes in baseline and optimization cases with different optimization 

frenqucies are shown in Figure 5-13. The baseline runs with a high supply air flow rate and 

temperature so that it performs well regarding the usage of free cooling to save energy. As a result, 



125 

 

 

 

the optimization cases are intended mostly to save energy through reducing the fan energy and 

meanwhile avoiding or reducing the sacrifice of free cooling instead of getting more free cooling. 

The hours running on the free cooling mode in the optimization cases are generally similar as that 

in baseline.  

   
Figure 5-14 Daily energy savings for optimization cases with different optimization frenqucies 

compared to the baseline 

The Figure 5-14 shows the daily energy savings for optimization cases with different 

optimization frenqucies compared to the baseline. As analyzed above, most energy is saved from 

fan energy. This is also shown in Figure 5-15. Interestingly, obvious higher or lower energy 

savings are achieved on some days than that on other days. This is because the changes of cooling 
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modes the cooling system runs on those days. For example, significant energy can be saved if the 

cooling system switches from mechanical cooling to free cooling from adjusting the setpoints of 

the supply air temperature. 

 

Figure 5-15 Annual energy consumption in baseline and optimization cases 

As shown in Figure 5-15, the chiller and fan consume most of the energy in baseline, but 

only fan energy is reduced from optimizations. The chiller energy depends on the operating time 

of chiller. In baseline, it operates with a large supply air flow rate and high supply air temperature, 

which leads to that the baseline has almost maximum free cooling and minimum operating time of 

chiller. Therefore, the energy saving potential from chiller is limited. As a result, the energy 

savings from simulation-based optimizations are mostly obtained from the fan energy. 

Interestingly, it is found that annual optimization results are close to daily optimization results. By 

conducting an exhaustive search for two typical days, we found that the optimal setpoint for a 

specific day from annual optimization only has slightly worse performance than that from daily 
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optimization for both winter and summer conditions. In other words, the optimal setpoint from 

annual optimization is already fairly good in term of saving fan energy compared to that from daily 

optimization. 

 

Figure 5-16 Maximum rack inlet temperature and relative humidity in baseline and optimization 

cases with different optimization frequencies 

  Except the energy efficiency, another important aspect for a holistic optimization is the 

airflow management. Figure 5-16 shows the maximum rack inlet temperature and relative 

humidity in baseline and optimization cases with different optimization frequencies. As described 

in Section 2.1.2, the allowable and recommended ranges for rack inlet temperature are 15-32 oC 

and 18-27 oC, respectively, and the allowable and recommended ranges for humidity are 8-80% 

and -9-15 oC DP and 60% RH, respectively. Most rack inlet temperatures and relative humidities 

are controlled within the recommended ranges. Though some are beyond the recommended ranges, 
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all the rack inlet temperatures and relative humidities are within the allowable ranges. To conclude, 

the holistic optimization saves energy by as much as 48.1% and meanwhile the thermal 

environment is well controlled to meet the requirements of data centers. 

5.5 Discussions 

For the optimization of the two parameters including supply air temperature and flow rate, 

some considerations are as follows. Ideally, we can optimize both parameters simultaneously. 

However, since the Modelica-ISAT-FFD co-simulation is still time consuming (though much 

faster than existing methods), we want to reduce the number of co-simulations as much as possible 

during the optimization. This is achieved by a dimension reduction in the optimization problem, 

in which only one optimization variable (supply air flow rate) is considered. By do this, the 

optimization only requires about 20 times of co-simulation to find the optima, which can be 100 

or even more if two variables are optimized. 

The idea of the dimension reduction is that if we optimize both parameters, the optimal 

value of the supply air temperature to minimize the energy consumption while satisfying the 

optimization constrains should be the highest temperature that can meet the thermal requirements 

(no generation of hot spots). This is because a higher supply air temperature setpoint is always 

good to get more chances for free cooling leading to a higher cooling efficiency in the studied case. 

Given that, we design a supply air temperature setpoint reset control, which can reset the supply 

air temperature setpoint to the highest value that can meet thermal requirements. This allows us to 

exclude the supply air temperature setpoint in the optimization and still be able to set it at the 

optimal value. Above all, the optimal setpoint of the supply air flow rate is obtained from 

simulation-based optimization on the offline stage (before operation), which remains constant at 
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each optimization period, e.g. one month or one week. The optimal setpoint of the supply air 

temperature is dynamically determined based on a local reset control during the operation. 

In practical, it is more common to use a constant supply air flow rate and adjust the supply 

air temperature in the data center cooling systems. For example, our studied data center uses a 

fixed setpoint of supply air flow rate throughout the year. This is because the adjustment of supply 

air flowrate will change the airflow pattern in the data center, and this transition process may bring 

uncontrollable risks to generate hot spots. Note that this dissertation also demonstrates 

simultaneously optimizing these two parameters in Chapter 6 by using a real-time optimal control 

strategy. 

5.6 Conclusions 

This study proposed a holistic solution to simultaneously optimize the data center cooling 

system and airflow management based on an adaptive Modelica-ISAT-FFD model powered by 

distributed computing. A real middle size data center was adopted to validate the new model and 

we found that the rack inlet temperatures predicted by the proposed model are generally within the 

pre-defined error tolerances compared to the existing Modelica-FFD model. The total computing 

time of the holistic optimization was significantly reduced to as less as 0.78 days with the proposed 

model, while it is estimated to take many years with conventional Modelica-FFD models. The 

results of the case studies showed that the holistic optimization saves the annual energy 

consumption by as much as 48.1% and meanwhile hot spots involving non-uniform thermal 

environment are well controlled for reliable operations of data centers. 
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Chapter 6 Machine Learning Assisted Expert System for Optimal Control of 

Data Center Cooling Systems with Air Side Economizer 

 

This chapter presents a machine learning assisted expert system (MLES) for optimal 

control of cooling systems with air side economizer in data centers. A model predictive control 

(MPC) method is also implemented to evaluate the performance of the proposed MLES approach. 

6.1 Introduction 

Data centers consume approximately 2% of total electricity in the United States, and about 

half of that is used for cooling. Many data centers are overcooled for reliable operation since 

overheating of IT servers can reduce performance, permanently damage the hardware, or in rare 

cases start fires. For instance, the cooling system normally supplies a fixed amount of cold air that 

is designed for handling the nominal IT load unless variable frequency drives (VFDs) are installed, 

which may lead to overcooling and a lower cooling efficiency at the partial load scenario. This 

study therefore aims to propose an optimal control strategy that dynamically optimize the cooling 

efficiency of data centers. 

Free cooling has been considered as one of the most prominent ways to improve energy 

efficiency of data centers [122]. Among free cooling technologies, direct ASE has been adopted 

by about 40% of data centers utilizing free cooling [123], in which the outdoor air is used for 

cooling the IT servers when the weather satisfies certain conditions. Various efforts have been 

made to improve cooling efficiency by using ASE. Chen, Zhang, et al. [124] proposed a control 

strategy of ventilation cooling technology with ASE to maximize the energy savings while 
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ensuring the thermal environment in a telecommunication base station. [8] utilized simulation 

based methods to analyze the energy saving potential of using ASE in different climate zones. 

However, these research employed rule based control strategies, which use constant supply air 

flow rate. Such a fixed-flow fan may limit the energy saving potential since the fan energy may 

become dominant when the cooling system operates in free cooling mode. To dynamically 

optimize the supply air flow rate, one of the major challenges is to ensure the reliable operation by 

preventing the generation of hot spots, which usually involve non-uniform airflow pattern 

influenced by supply air flow rate and temperature, room temperature, leakage path and IT loads 

in data centers. 

Model predictive control (MPC) has been widely used to realize the optimal control [125]. 

Zhou, Wang, et al. [126] implemented a MPC to minimize the cooling power while meeting the 

thermal requirements by dynamically tuning supply air temperature, flow rate and openings of 

adaptive vent tiles, in which an analytical model was developed for predicting rack inlet 

temperatures based on mass and heat balance principles. The coefficients and constant term in the 

analytical model represent the airflow pattern. For example, a constant C represents the rack inlet 

temperature increase caused by recirculation, which can be identified from system identification 

experiments. However, this simplification is not valid when the airflow pattern changes drastically. 

For example, when the air ratio (ratio of the total IT flow rate to the total supply air flow rate) 

increases from 1.0 to 2.0, the recirculation air entering the rack will be reduced significantly. Some 

simplifications are also made for predicting the energy consumption in the MPC. For example, 

they assumed the chiller power follows a linear relationship with the supply air temperature. This 

may be reasonable when the chiller is continuously running. But this is not valid if an ASE is 
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adopted, with which the chiller may be turned on or off under different cooling modes. To 

summarize, though the MPC can achieve good performance theoretically, formulating a precise 

and sufficiently fast model for MPC is not easy especially for complex systems, such as data center 

cooling systems with ASE, which involve non-uniform thermal environment and complex control 

logics. 

As a model-free supervisory control method, an expert system is promising to address this 

problem. The key of the expert system is the capability to determine the optimal actions that 

minimize the cooling energy while preventing generation of hot spots for reliable operation. To 

realize that, this study proposes a novel machine learning assisted expert system (MLES) optimal 

control method. A model predictive control (MPC) method is also implemented to evaluate the 

performance of the proposed MLES optimal control. The rest of the chapter is organized as follows. 

First, the methodology is introduced including a MPC as the benchmark and the proposed MLES. 

Then two cases studies are performed to demonstrate the performance of the proposed MLES for 

optimal control of the cooling system with ASE in a real data center. 

6.2 Methodology 

In this study, the optimization problem is to minimize the energy consumption of data 

center cooling systems with air-side economizer (ASE) while meeting the thermal requirements of 

data centers [15]. Two optimization variables including supply air temperature and mass flowrate 

are considered.  

min
 𝑇𝑠𝑢𝑝,𝑚̇𝑠𝑢𝑝

∑∫ 𝐸𝑖 ,
𝑡2

𝑡1

𝑁

𝑖=0

 (6-1) 

s.t. 𝑚̇𝑠𝑢𝑝,𝑚𝑖𝑛 ≤ 𝑚̇𝑠𝑢𝑝 ≤ 𝑚̇𝑠𝑢𝑝,𝑚𝑎𝑥 
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𝑇𝑠𝑢𝑝,𝑚𝑖𝑛 ≤ 𝑇𝑠𝑢𝑝 ≤ 𝑇𝑠𝑢𝑝,𝑚𝑎𝑥 

𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 ≤ 27℃ 

where, the ranges of 𝑚̇𝑠𝑢𝑝 and 𝑇𝑠𝑢𝑝 are constrained according to the configurations of the cooling 

systems. The maximum rack inlet temperature should be equal or lower than 27 oC according to 

the thermal guideline by ASHRAE [15]. 

The challenge of this problem is the control of the 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥. For a data center with open-

aisle configuration, the temperature of air entering the rack is supply cold air mixed with hot room 

air. Therefore, the 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 usually needs be predicted by detailed airflow simulation, such as 

CFD, instead of a well-mixed room model in conventional BES programs. In this study, a machine 

learning (ML) model is trained to handle this issue. The inputs of the ML model are IT load and 

supply air flowrate, and the output is the highest supply air temperature that can meet the thermal 

requirements. The training database is generated from a parametric study of FFD simulations.  

6.2.1 Model Predictive Control (MPC) Approach 

A conventional model predictive control (MPC) approach is implemented in this study as 

benchmark. The implementation generally follows a standard MPC approach [127] as shown in 

Figure 6-1. In each time step, an optimization is performed to determine the optimal actions, in 

which the objective function is evaluated through model-based simulations with the time period 

that covers the prediction horizon. In this study, the time step size and prediction horizon are 

defined as 10 minutes and 20 minutes as they achieve the best performance. The optimization 

workflow generally follows a similar procedure as is in Chapter 5. The difference is that the ISAT 
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model is replaced with a machine learning model to support realization of optimization in real-

time. 

 

Figure 6-1 Schematic diagram of the model predictive control (MPC) approach 

The difference here from a conventional MPC is the involvement of the ML model. The 

objective function is formulated as follows: 

min
𝑚̇𝑠𝑢𝑝

∑∫ 𝐸𝑖 ,
𝑡2

𝑡1

𝑁

𝑖=0

 (6-2) 

s.t. 𝑚̇𝑠𝑢𝑝,𝑚𝑖𝑛 ≤ 𝑚̇𝑠𝑢𝑝 ≤ 𝑚̇𝑠𝑢𝑝,𝑚𝑎𝑥 

𝑇𝑠𝑢𝑝 = 𝑓(𝑚̇𝑠𝑢𝑝, 𝑃𝐼𝑇) such that 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 ≤ 27℃ 
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where, the range of 𝑚̇𝑠𝑢𝑝 is constrained according to the configurations of the cooling systems. 

The setpoint of 𝑇𝑠𝑢𝑝 is determined according to the ML model that predicts the highest supply 

temperature for a given air ratio (supply air flow rate) with a certain IT load level (rack power) to 

meet the data center thermal requirements [15].  

6.2.2 Machine Learning Assisted Expert System (MLES) Approach 

 

Figure 6-2 Workflow of the proposed MLES approach 

The workflow of the proposed MLES is shown in Figure 6-2. First, the objective function 

of the optimization that minimizes the energy consumption of the cooling systems with ASE is 

simplified to maximize the operating hours of the free cooling mode: 

max
 𝑇𝑠𝑢𝑝,𝑚̇𝑠𝑢𝑝

∑∫ 𝑇𝑖,𝐹𝐶 ,
𝑡2

𝑡1

𝑁

𝑖=0

 (6-3) 
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s.t. 𝑚̇𝑠𝑢𝑝,𝑚𝑖𝑛 ≤ 𝑚̇𝑠𝑢𝑝 ≤ 𝑚̇𝑠𝑢𝑝,𝑚𝑎𝑥 

𝑇𝑠𝑢𝑝 = 𝑓(𝑚̇𝑠𝑢𝑝, 𝑃𝐼𝑇) such that 𝑇𝑟𝑎𝑐𝑘,𝑚𝑎𝑥 ≤ 27℃ 

where, 𝑇𝑖,𝐹𝐶 is the total time that the cooling system runs on the free cooling mode, and the range 

of 𝑚̇𝑠𝑢𝑝 is constrained according to the configurations of the cooling systems. The setpoint of 𝑇𝑠𝑢𝑝 

is determined according to the ML model that predicts the highest supply temperature for a given 

air ratio (supply air flow rate) with a certain IT load level (rack power) to meet the data center 

thermal requirements [15].  

Then, an expert system is designed based on control logics in the cooling system and expert 

knowledge. To support the decision making in ES for reliable operation, a machine learning model 

is trained from CFD simulations to predict and control hot spots. The schematic diagram is shown 

in Figure 6-3. There are two key parts: one is the expert system (ES) and the other is the machine 

learning model (ML). The ES determines the optimal actions based on a pre-defined decision 

making process without calculating the cooling energy for candidate solutions and performing an 

optimization to find the optima. The decision making process in ES can be different for different 

cases. It is configured as shown Figure 6-5 for the case demonstrated in this study. 

The constraints of the optimization regarding the thermal requirements are satisfied 

through the ML model. The ML model is trained on the offline stage and called by the ES on 

online stage. Generally, the highest supply temperature increases with a greater air ratio. The 

MLES adjusts the setpoints of supply air flowrate and temperature to make the cooling system 

operate on the free cooling mode as much as possible and meanwhile saving the fan energy as 

much as possible. The detailed description will be introduced in Section 6.3.2. 
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Figure 6-3 Schematic diagram of the proposed MLES appraoch 

6.3 Case Studies 

6.3.1 Case Description 

The Layout of the subject data center room is shown in Figure 3-9. The data center is a 

single-room of 690 m2, containing 151 IT racks and 12 floor-mounted PDUs that collectively 

consume 344 kW. The white space is 30.5 m wide and 22.6 m long, with a ceiling height of 3.4 m. 

The data center has a conventional cold-aisle and hot-aisle configuration. The front face of each 

rack orients toward a cold aisle. Each cold aisle is supplied with cold air from perforated floor tiles 

set into a raised floor and fed by an underfloor plenum. The exhaust air from the IT racks is directed 

into open hot aisles and then enters a ceiling plenum through the ceiling tiles. After that, the 
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exhaust air will mix with outdoor air in a mixed plenum and then return into the Air Handler Unit 

(AHU). 

The schematic drawing of the HVAC system of the subject data center is shown in Figure 

5-4. There are three chillers, chilled water pumps, condenser water pump and cooling towers in 

the schematic drawing, but only two of them run in Lead/Lag configuration and the other one is 

for backup. The chilled water is distributed to the AHU-1 and the AHU-2. Refer to Section 5.3.1 

and Fu, Zuo, et al. [10] for more details. 

The cooling system features a chilled water system with airside economizers (ASEs), 

which provides free cooling in cold weather. The cooling system operates in three cooling modes: 

(1) free cooling (FC) mode, where only ASEs are activated; (2) partial mechanical cooling (PMC) 

mode, where the chilled water system and ASEs work simultaneously; (3) fully mechanical 

cooling (FMC) mode, where only the chilled water system is used. The transition conditions 

between cooling modes are determined based on the weather data, control settings and system 

conditions, which are shown in Figure 5-5. For example, the FC mode switches to PMC mode 

when the outdoor dry bulb temperature is higher than the raised-floor plenum temperature setpoint 

(which determines supply air temperature) plus a dead band and the outdoor dew point temperature 

is higher than its predefined low cutoff limit plus a dead band. For more detailed description of the 

cooling system, please refer to Section 5.3.1 and Fu, Zuo, et al. [10]. 

6.3.2 Model Implementation 

The cooling system is modeled in Modelica based on Modelica Buildings library [12], as 

shown in Figure 6-4. The major component models include chillers, AHUs, cooling towers, 
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chilled water pumps and condenser water pumps. The control system consists of the cooling 

mode control and local controls.  

The new feature in the Modelica model is the MLES controller, which is implemented in 

Python and dynamically communicates with Modelica model through a Python interface in 

Modelica Buildings library [12].  

  

Figure 6-4 Implementation of the cooling system model in Modelica 
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The inputs of the MLES include: 

 Previous status of cooling mode, 

 Arrival rate of IT loads, 

 Outdoor dry bulb temperature, 

 Outdoor dew point temperature, 

 Low limit of dew point temperature defined in cooling mode controller, 

 High limit of dew point temperature defined in cooling mode controller, 

 Deadbands defined in cooling mode controller; 

The outputs of the MLES include: 

 Optimal setpoint of supply air temperature, 

 Optimal setpoint of supply air mass flow rate. 

The MLES controller determines the optimal control actions through a machine learning 

assisted expert system based decision making process as shown in Figure 6-5. As described in 

Section 6.2.2, the objective of the controller is to maximize the operating hours of the free cooling 

mode.  

There are three steps for the decision making process in the MLES. In Step 1, the controller 

evaluate if the cooling could keep on or switch to the free cooling mode if the supply air mass flow 

rate is determined to be at high limit. If no, that means the cooling system will have to operate on 

the mechanical cooling mode no matter how the optimization variables are adjusted. Then the 

optimal actions will be provided with optimization variables at lower limit to save energy from the 

fan since little energy can be saved from the chiller. If yes, go to Step 2. 
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Figure 6-5 The machine learning assisted decision making process in the MLES 

In Step 2, the controller evaluates if the cooling could keep on or switch to the free cooling 

mode if the supply air mass flow rate is determined to be at low limit. If yes, that means the cooling 

system could run on the free cooling mode with any values of the optimization variables and 

consequently the fan energy is dominant. Then the optimal actions will be provided with 

optimization variables at lower limit to save the fan energy as much as possible. If no, that means 

there should be an optimal setpoint for the supply air mass flow rate between the lower and higher 

limits, go to Step 3. 

In Step 3, a “for” loop is performed to find the optima setpoint, with which the cooling 

system can run on the free cooling mode and meanwhile the fan energy can be saved as much as 

possible. 
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6.3.3 Machine Learning Models for Airflow Management 

6.3.3.1 Parametric Study with FFD Simulations 

A comprehensive parametric study is performed to generate data for training of machine 

learning models. As shown in Table 6-1, the studied parameters include supply air temperature, 

supply air flowrate and IT load. The supply air temperature ranges from 15 oC to 25 oC with an 

interval of 2 oC. The supply air flow rate varies, which correspond to the air ratios from 0.8 to 2.0. 

The IT load ranges from 2.0 kW/rack to 5.0 kW/rack. This results in 1,014 times of FFD 

simulations in total. The simulation settings of the FFD model for the studied data center was 

introduced in Section 3.3.2. The FFD model was also validated in Section 3.3.2. For more details, 

please refer to [120]. 

Table 6-1 Settings of the parametric study 

Parameters Unit Values 

Supply air 

temperature 
oC 15, 17, 19, 21, 23, 25 

Supply air flow 

rate 
Air ratio 

0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 ,1.8, 1.9, 

2.0 

IT load  kW/rack 
2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 

4.75, 5.0 

 

Taking advantages of the fast speed of the FFD model, the parametric study can be 

completed within a day. The results of the parametric study is shown in Figure 6-6. Maximum 

rack inlet temperatures are extracted from the results of FFD simulations for different IT loads, air 

ratios and supply air temperatures. Generally, the relationship between the maximum rack inlet 
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temperature and the air ratio follows similar pattern for different IT loads and supply air 

tempertaures.  

 

Figure 6-6 Maximum rack inlet temperatures with different IT loads and air ratios predicted by 

FFD simulations 

Based on the results of the parametric study, the highest supply air temperatures under 

different IT loads and air ratios to meet thermal requirements of data centers are determined as 

shown in Figure 6-7. The machine learning model generated based on these data can be used to 
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adjust supply air temperature to meet the data center thermal requirements by being integrated into 

the cooling system simulation and optimization. 

 

Figure 6-7 Highest supply air temperatures under different IT loads and air ratios to meet 

thermal requirements of data centers 

6.3.3.2 Training of Machine Learning Models 

Table 6-2 Inputs and outputs of the machine learning models 

Machine Learning 

Models 
Inputs Outputs 

ML-1 

 

1. IT load 

2. Air ratio 

3. Supply air temperature 

1. Maximum rack inlet 

temperature 

ML-2 
1. IT load 

2. Air ratio 

1. Highest supply air temperature 

that can meet the data center 

thermal requirements 
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As described in Table 6-2, two machine learning models are described including ML-1 and 

ML-2. The ML-1 is to evaluate the data center thermal environment regarding the maximum rack 

inlet temperature with the inputs include IT load, air ratio and supply air temperature. The ML-2 

is to provide the highest supply air temperature that can meet the data center thermal requirements 

for a given IT load and air ratio.  

 

(a) Error distribution with different ML models          (b) Polynomial regression model 

Figure 6-8 Training of the ML-1 that predicts the maximum rack inlet temperatures under 

different IT loads, supply air temperatures and air ratios 

Different machine learning models are evaluated for the two proposed problems as 

described in Table 6-2. The machine learning models [128] include: 

 Linear regression model: a linear approach to modeling the relationship between a 

scalar response (or dependent variable) and one or more explanatory variables (or 

independent variables). 
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 Polynomial regression model: a form of regression analysis in which the relationship 

between the independent variable x and the dependent variable y is modelled as an nth 

degree polynomial in x. 

 Random forest model: an ensemble learning method for classification, regression and 

other tasks that operate by constructing a multitude of decision trees at training time 

and outputting the class that is the mode of the classes (classification) or mean 

prediction (regression) of the individual trees. 

 Support vector machine: supervised learning models with associated learning 

algorithms that analyze data used for classification and regression analysis. 

 XGBoost: a software library which provides a gradient boosting framework. 

All descriptions for these machine learning models are from Wikipedia. The data generated 

from the parametric study is divided in training dataset and testing dataset. The training dataset is 

determined by randomly selecting 70% of the data in the original dataset and remaining data in the 

original dataset is defined as testing dataset. The training performance of ML-1 and ML-2 models 

is shown in Figure 6-8 and Figure 6-9, respectively. Figure 6-8 (a) compares the prediction errors 

with different machine learning models and it is found that the polynomial regression, random 

forest and XGBoost models have the best prediction accuracy. The polynomial regression model 

is selected in this study and the detailed comparison between its predictions and true values is 

shown in Figure 6-8 (b). It is found that almost all the predictions are within 3% error compared 

to the true values in the database. 
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(a) Error distribution with different ML models          (b) Detailed analysis 

  

(c) Polynomial regression model 

Figure 6-9 Training of the ML-2 that predicts highest supply air temperatures under 

different IT loads and air ratios to meet thermal requirements of data centers 
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The same evaluations with different machine learning models are performed for the ML-2 

case. Similar findings are obtained for the ML-2 case as the ML-1 case. The Figure 6-9 (b) shows 

the detailed analysis for the best three machine learning models. The polynomial regression model 

has the best overall performance if considering new data between existing data points in the dataset 

though the random forest and XGBoost models have smaller errors with respect to the existing 

data in the dataset. It is also found that almost all the predictions with the polynomial regression 

model are within 3% error compared to the true values in the database for the ML-2 case. 

6.3.4 Detailed Control Performance Evaluation with Typical Days 

 

Figure 6-10 Control inputs and actions in different systems 
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In this section, a detailed evaluation for the proposed MLES real-time optimal control is 

performed with typical days from July 25-26. Two cases using the MLES control with different 

settings of target maximum rack inlet temperature are studied. In MLES-1, the setpoint of 

maximum rack inlet temperature is defined as the recommended high threshold 27 oC suggested 

by ASHRAE [15]. In MLES-2, the setpoint of maximum rack inlet temperature is defined with a 

more conservative setting, which is 2 oC lower (25 oC) than the recommended high threshold 

suggested by ASHRAE [15]. A case with a conventional MPC approach is also conducted as a 

reference case, in which a 10 minutes of time step and 20 minutes of prediction horizon are used. 

The MPC is assumed to be an ideal MPC, which has an ideal model and perfect predictions for 

future weather and IT loads. 

The control inputs and actions in different systems are shown in Figure 6-10. In baseline, 

the setpoints for supply air temperature (TFloSet in Figure 6-10) and supply air mass flow rate (Air 

Ratio Set in Figure 6-10) are constant. In MLES-1, MLES-2 and MPC, the setpoints are 

dynamically adjusted to achieve the best energy performance while meeting the thermal 

requirements. The optimal setpoints determined by MLES-1 and MPC almost match with each 

other. MLES-2, which has a more conservative setting, results in a lower supply air temperature 

or higher supply air flow rate to better meet the thermal requirements. 

Figure 6-11 shows the control performance of different systems. Both MLES and MPC 

approaches save fan energy through dynamically adjusting the setpoints of supply air flow rate 

and temperature without sacrificing free cooling, which realizes in significant energy savings 

compared to the baseline. The thermal environment is well controlled in all the cases and among 

them, the MLES-2 performs better than the MLES-1 and MPC as expected.  
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Figure 6-11 Control performance of different systems 

Regarding the computing time, it takes about 2.5 minutes to determine the optimal actions 

for one time step with the MPC, but only less than 1 second with the MLES. Above all, the 

proposed MLES real-time optimal control could achieve similar performance as a well-designed 

ideal MPC does, but is much faster than the MPC. 
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6.3.5 Control Performance Evaluation with Annual Simulation 

 

Figure 6-12 Control performance and daily energy savings in different systems 

The performance of the MLES real-time optimal control is also evaluated with an annual 

simulation. The weather profiles were shown in Section 6.4.3. Figure 6-12 shows the control 

performance and daily energy savings in different systems. The MLES cases are intended mostly 

to save energy through reducing the fan energy and meanwhile avoiding or reducing the sacrifice 

of free cooling. The hours running on the free cooling mode in MLES cases are generally similar 

as that in baseline. Interestingly, obvious higher energy savings are achieved on some days than 

that on other days. This is because more free cooling is achieved with MLES control than baseline 
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on those days. For example, on the days around Day 300, MLES-1 case got more free cooling than 

the baseline. 

   

 

Figure 6-13 Annual energy consumption for different components of the cooling system for 

different systems 

Figure 6-13 summarizes the annual energy consumption for different components of the 

cooling system for different systems. Most energy savings are achieved from the AHU fans in 

MLES cases. MLES-1 saves chiller energy by 6 MWh (6%) because it allows the cooling system 

to run more on the free cooling mode through a real-time optimal setpoints of supply air 

temperature. MLES-2 consumes more chiller energy than the baseline and MLES-1 because of a 

conservative settings for a more robust thermal environment control. Consequently, the MLES-1 

and MLES-2 saves the annual energy consumption by 282.6 MWh (64.6%) and 263.3 MWh 

(60.2%).  
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Figure 6-14 Data center thermal environment created by different systems 

  Except for the energy performance, another important aspect is the impact on the airflow 

and thermal management. Figure 6-14 shows the maximum rack inlet temperature and relative 

humidity in baseline and MLES cases. As described in Section 2.1.2, the allowable and 

recommended ranges for rack inlet temperature are 15-32 oC and 18-27 oC, respectively, and the 

allowable and recommended ranges for humidity are 8-80% and -9-15 oC DP and 60% RH, 

respectively. Most rack inlet temperatures and relative humidities are controlled within the 

recommended and allowable ranges. But it can be found that the rack inlet temperatures exceed 

the high limit of the allowable ranges at around Day 140. The reason lies in the weather data. As 

can be seen in Figure 5-11, the segment of the weather data from Day 120 to Day 140 is created 

from interpolation because of lack of data. For those days, the outdoor dew point temperatures are 

lower than 10 oC but the outdoor dry bulb temperatures are about 20 oC. This results in that the 
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cooling system operate on the free cooling mode because of the low outdoor dew point 

temperatures. But the rack inlet temperature can be very high due to the high outdoor dry bulb 

temperatures. To conclude, the MLES real-time optimal control saves the annual energy 

consumption by 60.2%-64.6% and meanwhile the thermal environment is generally well 

controlled to meet the requirements of data centers. 

6.4 Discussions 

In addition to the good control performance, fast speed in real-time and ease to implement, 

the proposed MLES optimal control strategy has another advantage over a MPC in term of the 

uncertainty. MPC needs to perform model-based optimization for a future horizon. Therefore, the 

future weather predictions, future load predictions, and model accuracy bring a lot of uncertainties 

to MPC. However, MLES is model-free optimal control method, which makes decisions based on 

expert knowledge, the previous system status, and current IT loads and weather conditions. So, the 

uncertainties in MPC do not exist in MLES. Based on algorithm in MLES, one of the potential 

uncertainties may come from the changes of IT loads and weather conditions between two 

activations of MLES. For example, after calling MLES and determining the optimal setpoints, the 

setpoints will keep constant until next time of calling MLES. Therefore, during this period, if the 

weather or IT loads change drastically, it will bring uncertainties to the systems. This study uses a 

very small time interval to call MLES to reduce this effect. Another possible uncertainty comes 

from the accuracy of the ML model. This uncertainty can be reduced by improving parameter 

tuning for ML models, adopting more advanced ML models, and creating a more accurate and 

larger training dataset. 
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6.5 Conclusion 

This study proposed a novel robust and easy-to-implement MLES method to achieve a 

real-time optimal control for data center cooling systems. First, a comprehensive parametric study 

was conducted with more than 1,000 CFD simulations. Then, ML models are trained with the data 

generated from the parametric study, in which different machine learning models were evaluated. 

To realize the real-time optimal control, a MLES based decision making process was proposed. A 

MPC approach was also implemented to evaluate the performance of the proposed MLES optimal 

control. A detailed control performance evaluation shows that the proposed MLES real-time 

optimal control could achieve similar performance as a well-designed ideal MPC approach, but is 

much faster than the MPC. An annual simulation shows that the proposed MLES optimal control 

saves the annual energy consumption by 60.2%-64.6% and meanwhile the non-uniform thermal 

environment is generally well controlled to meet the requirements of data centers. 
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Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions 

This dissertation proposes novel modelling methods, optimization framework and optimal 

control methods to support improving cooling efficiency while maintaining reliable operation for 

data centers in the real world. The major scientific contributions and conclusions are as follows: 

1) Developed a new open-source Fast Fluid Dynamics (FFD) model, which allows fast 

and accurate prediction of data center airflow management. First, the new FFD model 

shows slightly better accuracy and faster speed compared to existing FFD models. Second, 

to simulate a real data center, the new FFD model achieves similar accuracy compared to 

CFD and is 61 times faster than CFD. Third, FFD shows good capability on handling 

realistic cases with complex boundary conditions. Fourth, the new FFD model has been 

publicly released. 

2) Proposed a new online BES-ROM-CFD co-simulation method, which significantly 

accelerates BES-CFD co-simulation while well controlling prediction accuracy. A 

Modelica-ISAT-FFD model is implemented to demonstrate the new co-simulation method. 

First, for the accuracy, the new model can generally control the prediction error within 

user-defined tolerances compared to an existing Modelica-FFD model. Second, for the 

speed, an annual simulation shows that the new model saves up to 95.7% of computing 

time against the existing Modelica-FFD model. 

3) Proposed an optimization platform based on an adaptive online BES-ROM-CFD co-

simulation powered by distributed computing, which makes co-simulation-based 
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optimization become computationally practical and sufficiently accurate for real 

applications. A real middle-size data center is adopted to demonstrate the capability of the 

proposed optimization platform. First, the computing time of the holistic optimization 

reaches as less as 0.78 days, which is estimated to take many years based on an existing 

Modelica-FFD model. Such an improvement makes a co-simulation based optimization 

become practical for real applications, which is potentially to have great impact for other 

ventilation systems involving stratified airflow and thermal environment. Second, the 

results of the case studies show that the holistic optimization saves the annual energy 

consumption by as much as 48.1% and meanwhile the non-uniform thermal environment 

is generally well controlled to meet the thermal requirements of data centers. 

4) Proposed a robust and easy-to-implement machine learning assisted expert system 

method, which realizes real-time optimal control for data center cooling systems. First, 

a detailed control performance evaluation shows that the proposed MLES optimal control 

could achieve similar performance as a well-designed ideal MPC approach does, but is 

much faster than the MPC. Second, an annual simulation shows that the proposed MLES 

optimal control saves the energy consumption by up to 64.6% while maintaining reliable 

operation of data centers. Third, this methodology is potentially to help realize optimal 

control for other ventilation systems involving stratified airflow and thermal environment. 

7.2 Limitations and Future Work 

Based on findings and conclusions in this dissertation, some limitations and potential future 

research are proposed as follows: 
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1) The proposed Modelica-ISAT-FFD model can only predict steady state results for indoor 

thermal environment, and cannot capture seconds-level short term airflow and thermal 

dynamics. This is because the data drive model, ISAT, is trained with steady state FFD 

results. Future work may investigate how to use data driven models for transient problems. 

2) The current work mostly focused on data center applications. Future work may evaluate 

the proposed models, optimization platform and optima control methods for other types of 

buildings that involve non-uniform thermal environment, such as residential buildings with 

natural ventilation, offices with displacement ventilation. 

3) The current work validated the Modelica-FFD model for the data center case in a separate 

manner instead of a dynamically coupling way. This is due to limited resources and time, 

as well as the consideration on the focus of this dissertation. Since the Modelica-FFD 

model has already been validated and proved in previous research, this study simply 

assumed it is correct, and put more efforts on demonstrating the advantages of our proposed 

new models by taking the existing Modelica-FFD model as benchmark. It can be a direction 

for future research to validate the Modelica-FFD model or even the Modelica-ISAT-FFD 

model in a dynamically coupling way. 

4) Other future work may include (a) Systematically evaluating and ameliorate the training 

method to further improve the training efficiency of the Modelica-ISAT-FFD model; (b) 

Performing BES-CFD co-simulation in community and city scales to support large scale 

building energy and urban thermal environment simulations. 
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