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ABSTRACT
The increasing frequency of man-made disasters as well
as extreme weather events is causing more frequent
power outages. To overcome this, resilient communi-
ties with on-site photovoltaic (PV) generation and bat-
tery storage can sustain power outages and continue to
operate without sacrificing the occupants’ comfort needs.
However, it remains challenging to prioritize and sched-
ule the loads on a community scale during off-grid oper-
ation. This paper proposes a hierarchical load scheduling
framework for the optimal operation of community loads
and heating, ventilation and air-conditioning (HVAC)
systems with only limited PV and batteries. The frame-
work consists of a community coordinator layer, a build-
ing layer, and an appliance layer, which are separately
formulated as rule-based resource allocation, model pre-
dictive control (MPC) problems and four types of load
models. We discuss the unserved load ratio, battery
sizes, PV curtailment, and thermal comfort satisfaction
to evaluate the optimal load scheduling outcome. The
results show the proposed framework can help maintain
the community unserved load ratio at about 6.2% during
the simulated 48 hours.

INTRODUCTION
The electric power grid has been faced with higher stress
in the past several decades. On one hand, the increasing
frequency of man-made disasters and extreme weather
events is leading to more power outage events. On the
other hand, the large-scale adoption of renewable en-
ergy is bringing more uncertainty and variability to the
grid. It is recognized by the research community that
demand side flexibility can help maintain resilience, in-
stead of purely relying on traditional power networks for
that role.
Resilience, as an emerging concept for the power grid
and its connected systems, describes a system’s ability
to anticipate, resist, absorb, respond to, adapt to, and
recover from a disturbance (Carlson et al. 2012; Wang
et al. 2019). Based on this concept, a resilient community
should be able to sustain disruptions (e.g., power out-
ages), and adapt to them quickly by continuing to oper-
ate without sacrificing the comfort needs of its residents.

Traditional research efforts for such resilient commu-
nities mainly focus on micro-grid formation techniques
(Ding et al. 2017). In this paper, we study the problem
from a building operation and load scheduling perspec-
tive.
There exist some researches for rule-based optimal oper-
ation of buildings in literature. Zhao (Zhao et al. 2013)
introduced a general architecture for home energy man-
agement to reduce the energy bill cost by scheduling
building loads based on electricity price signals. Zhang
(Zhang et al. 2016) developed a learning-based mecha-
nism for smart home demand response where the major
home appliances are categorized into fixed, regulatable,
and deferrable loads. A decoupled demand response
strategy was developed with a special focus on a home
HVAC system. Ayodele (Ayodele et al. 2017) used a
genetic algorithm (GA) to optimally manage the critical
and noncritical loads in a stand-alone PV-battery system.
The results showed that adopting the load management
scheme can increase the percent satisfaction of the loads.
The aforementioned researches all have the scope of sin-
gle buildings. The first two focused on the optimal oper-
ation while the building is still connected to the grid with
an unlimited amount of power supply. However, when
the community is in islanded mode, the priority of loads
will change and the objective of the optimization prob-
lem also shifts. The third research studies a stand-alone
PV-battery system. However, the model was nonlinear
and a GA was used to solve the optimization problem,
which can be computationally expensive.
Hence, to provide a general solution to optimal energy
management in a community in a disaster scenario and
to explore the principles of load prioritizing for resilient
communities, this paper proposes a rule-based commu-
nity load scheduling framework. The whole community
is modeled in a hierarchical structure which consists of
three layers: a community coordinator layer, a building
layer and an appliance layer. As a case study, the frame-
work is virtually tested on a community located in Anna
Maria Island, FL for two consecutive days. The rest of
the paper is organized as follows: Section 2 presents the
methodology. Section 3 discusses the results. Section 4
concludes this paper with future work and limitations.



METHODOLOGY
Hierarchical Structure
The community load scheduling framework has a hierar-
chical structure as shown in Fig. 1. The top level repre-
sents the community-level where the coordinator decides
how to best allocate the resources (e.g., PV energy) to
each building to achieve the objective of the whole com-
munity. The middle level represents the building agents
in the community, which receive signals from the co-
ordinator and try to meet their own objective with the
given resources by scheduling its appliances and battery
operation. Ideally, the community coordinator should
determine the resource allocation by running a commu-
nity level optimization (i.e., outer-loop optimization) and
then each building runs its own optimization (i.e., inner-
loop optimization). In this paper, we simplified the top
level to rule-based resource allocation. The building
agents are implemented as independent MPC problems.
Each building has its own battery. At the bottom level,
we model the battery operation, HVAC system, and ap-
pliance loads. Appliance loads are categorized into four
types: sheddable, modulatable, shiftable and critical and
modeled separately. The following introduces each layer
in detail.

Figure 1: Hierarchical optimization framework.

Community Coordinator
The community coordinator allocates energy resources
to achieve the community-level optimum. When discon-
nected from the main grid during outages, the only en-
ergy source is the PV power generated from on-site PV
panels. In this paper, the community coordinator adopts
a rule-based allocation and distributes the total PV power
based on each building’s maximum power demand (Sce-
nario 1) or average power demand (Scenario 2). Thus,
the allocation factor is the fraction of the total commu-
nity PV power that each building is allocated. In the case
study, three buildings of different types are selected to
showcase the proposed framework: a residential build-
ing (area: 93.8 m2), an ice cream shop (area: 160.5 m2),
and a bakery (area: 410 m2). The ice cream shop has the
largest power demand due to its refrigeration equipment.
Table 1 lists the allocation factors used in Scenarios 1
and 2.

Table 1: PV power allocation factors

Residential
Ice

Cream
Shop

Bakery

Max.
Power
[kW]

0.369 6.244 6.099

Scenario 1 0.029 0.491 0.48
Avg.

Power
[kW]

0.131 5.418 3.894

Scenario 2 0.014 0.574 0.412

Building Agents
At the building level, each building agent is formulated
as an MPC problem. The optimization makes the best
decision for the current time horizon based on knowl-
edge of future predicted outdoor dry-bulb temperature,
PV generation and solar radiation in order to minimize
curtailment of PV generation, and continues to the next
time step in a receding horizon control-based fashion.
This work does not consider the uncertainty on the fu-
ture predictions described above. Since the total simu-
lation time is 48 hours, the MPC prediction horizon is
selected as 12 hours with a simulation time step of one
hour. This selection considers the trade-off between the
simulation time and the information fed to the optimizer.
The optimization objective is to maximize the PV power
used while satisfying occupants’ needs as much as pos-
sible over the two day simulation. To achieve this, each
building has a battery for enabling energy usage to be
shifted to times when there is no PV generation. Addi-
tionally, building loads can be scheduled based on oc-
cupants’ preferences. The HVAC system will pre-cool
the building when surplus PV power is available. To en-
sure thermal comfort for occupants, temperature upper
and lower bounds are set according to the ASHRAE stan-
dard (ASHRAE 2017). Therefore, the optimization vari-
ables include: PV curtailment, charging and discharging
power of the battery, HVAC system power, and building
load power. The mathematical formation of the prob-
lem is introduced throughout the remainder of this sec-
tion. Note that the following formation is applied to each
building of the community.
For each of the three studied buildings, the power balance
that must be satisfied at each time step is given by:

Pt
PV −Pt

curt = Pt
ch−Pt

dis +Pt
load +Pt

HVAC, (1)

where PV curtailment is limited by how much PV gener-
ation is available:

s.t. 0≤ Pt
curt ≤ Pt

PV . (2)

In Eq. (1), Pt
load represents all building loads other than



the HVAC system load. The following subsections intro-
duce the HVAC, load, and battery models in detail.
The optimization objective is to maximize the amount
of PV power generation that is used or stored. In the
implementation, we maximized the right-hand side of
Eq. (1). Since the available PV generation Pt

PV is given
by real data, this implementation is equivalent to mini-
mizing Pt

curt . Additionally, to avoid simultaneous charg-
ing and discharging of the battery in the simulation, we
added a slight penalization, α (usually a small number
such as 0.01), on battery charging in the objective func-
tion reflected by Eq. (3). The objective function is given
by:

max
k+H

∑
t=k

(Pt
ch−Pt

dis +Pt
load +Pt

HVAC)−αPt
ch, (3)

where k ∈ {1,2, ...,48}. The above and the following
equations apply to every time step of the simulation.

HVAC Models
To preserve the linearity of the optimization problem, the
HVAC models of the three buildings are trained using lin-
ear regression. The room temperature of the current time
step is dependent on the ambient (i.e., outdoor) temper-
ature, room temperature, HVAC cooling power, and the
solar radiation through windows of past time steps. Com-
mon practice in load scheduling research is to use only
one past time step (Jin et al. 2017; Garifi et al. 2018). In
this paper, we adopted two past terms to better reflect the
impact of building thermal mass on indoor air temper-
ature evolution (Zakula, Armstrong, and Norford 2014).
The mathematical formulation of the linear HVAC model
is given by:

T t
room =β1T t−1

amb +β2T t−2
amb +β3T t−1

room +β4T t−2
room

+β5Pt−1
HVAC +β6Qt−1

sol +β7Qt−2
sol

(4)

Tmin ≤ T t
room ≤ Tmax, (5)

where the lower and upper temperature limits are gov-
erned by ASHRAE Standard 55-2017 (ASHRAE 2017),
which recommends the temperature range for thermal
comfort to be approximately between 67◦F and 82◦F
(20◦C to 28◦C). Thus, Tmin is 20◦C and Tmax is 28◦C.
The training data of the HVAC models are the simula-
tion results of the corresponding physics-based HVAC
system models built in Modelica (The Modelica Associ-
ation 2019; He et al. 2016). The simulations were run
for the entire month of August 2017 which corresponds
to the hurricane season in Florida. The physics-based
HVAC models were built based on system design data.
The weather file embedded in the model is typical me-
teorological year (TMY) data for the weather station at

Tampa International Airport (NREL 2019). The solar ra-
diation data was calculated based on the direct and dif-
fused horizontal irradiation data collected on site. The
dataset has a time step of one hour and it is randomly
divided into a 70:30 split for the training and the testing
sets, respectively, for the linear regression model. Table 2
lists the linear regression coefficients of the three build-
ings, as well as the Root Mean Square Error (RMSE) to
measure the accuracy of the models. The HVAC models
can predict the room temperature with RMSE between
0.2◦C-0.3◦C.

Table 2: HVAC linear regression model coefficients

Resi-
dential

Ice
Cream
Shop

Bakery

Coeffi-
cients

T t−1
room 1.540 1.640 1.599

T t−2
room -0.543 -0.645 -0.603

T t−1
amb 0.0541 0.0402 0.0348

T t−2
amb -0.0469 -0.0348 -0.0309

Pt−1
HVAC -0.0310 -0.0962 -0.0810
Qt−1

sol -0.176 0.197 0.112
Qt−2

sol 0.113 -0.211 -0.0423
RMSE [◦C] 0.303 0.236 0.202

Load Models
To better schedule various building loads, they are cat-
egorized into four types based on the assumed occu-
pants’ preference during disaster circumstances, as well
as the electrical characteristics of different appliances. In
this paper, only loads that are related to visual comfort
(e.g., lighting) and food preservation (e.g., refrigerator)
are considered critical. Sheddable loads are those can
be fully disconnected without impacting life quality dur-
ing the studied time period. Whether a load is sheddable
is determined from the building owner’s aspect. For in-
stance, the coffee maker and the soda dispenser in the ice
cream shop are classified as sheddable during the out-
age. Modulatable loads are those have varying power
amplitudes such as mixers with variable speed options.
Since some plug loads in the dataset are unspecified, we
sum those loads into one modulatable load. Shiftable
loads are those that need to be operated but are rather
flexible concerning the time of day they are scheduled.
Washer, dryer, and range are considered shiftable loads
in this work. Due to the disaster circumstances, some
loads commonly categorized as critical are considered to
be sheddable (e.g., computer) in this paper. Table 3 sum-
marizes all load types in the three studied buildings.
Next, the mathematical models for the four types of loads
are introduced. The sum of the loads across all types,
Pt

load , is given by:

Pt
load =

A

∑
a=1

Pt
T 1,a +

B

∑
b=1

Pt
T 2,b +

C

∑
c=1

Pt
T 3,c +

D

∑
d=1

Pt
T 4,d . (6)



Table 3: Summary of load types in studied buildings
Resi-

dential
Ice Cream

Shop Bakery

Type 1:
Shed-
dable

Com-
puter

Coffee
maker, soda
dispenser,

outdoor ice
storage

Microwave

Type 2:
Modu-
latable

HVAC HVAC

Mixer,
unspecified
room plugs,

HVAC

Type 3:
Shiftable

Range,
washer,
dryer

None
Range,
oven,

dishwasher

Type 4:
Critical

Lights,
refriger-

ator

Lights,
cooler,
display

case

Lights,
cooler,
display

case

Sheddable, modulatable, and critical loads are described
by:

Pt
T 1,a = ut

a ∗Pt
a, a ∈ {1, ...,A} (7)

0≤ Pt
T 2,b ≤ Pt

b, b ∈ {1, ...,B} (8)

Pt
T 4,d = Pt

d , d ∈ {1, ...,D}. (9)

In Eq. (7), the actual power of a Type 1 sheddable load
Pt

T 1,a equals to the original power demand Pt
a multiplied

by a binary optimization variable ut
a. Thus, the optimiza-

tion will determine the ON/OFF status of the sheddable
loads. The power demand data, Pt

a, is collected from
power meters installed in these buildings. In Eq. (8),
the actual power of a Type 2 modulatable load Pt

T 2,b is
an optimization variable which determines how much of
the load is modulated between zero (all) and the original
power demand (none). For Type 4 critical loads, the ac-
tual power should be exactly equal to the original power
demand data, as in Eq. (9).
For Type 3 shiftable loads, the scheduling matrix method
introduced in Zhao’s work is adopted (Zhao et al. 2013).
First, using the metered power data, we extracted the av-
erage cycle time nc and average power demand Pc,avg for
each Type 3 load. Within an optimization horizon, when
the starting time of the load is determined, the power
shape of this load is then fixed. Hence, the optimization
variable for Type 3 loads is its starting time tc,s, which is
an integer variable. To formulate the problem, we use a
series of binary variables vt

c to indicate the starting time
step. The relationship between tc,s and vt

c is given by:

vt
c =

{
1, t = tc,s
0, t 6= tc,s

,

∀t ∈ {k, ...,k+H−nc}, c ∈ {1, ...,C}.
(10)

Over the whole optimization horizon, vt
c=1 only at the

starting time step and the appliance must finish its cycle
before this horizon ends (t ∈ {k, ...,k+H−nc}). In this
paper, we assume that each shiftable load operates once
and only once in each horizon, which is enforced by:

k+H−nc

∑
t=k

vt
c = 1. (11)

Next, a scheduling matrix Sc of shape H×(H−nc+1) is
generated for each Type 3 load. The actual power shape
of load c, denoted Pt

T 3,c, is calculated by:

Pt
T 3,c = Sc×

 vk
c
...

vk+H−nc
c

×Pc,avg (12)

For example, when nc = 3, an appliance scheduling ma-
trix of shape 12×10 is generated as follows.

Sc =



1 0 0 0
1 1 0 0
1 1 0 0
0 1 0 0
... 0 · · ·

... 0

0
... 0

...
0 0 1 0
0 0 1 1
0 0 1 1
0 0 0 1


(13)

Battery Models
In this work, we assume that each building has its own
battery. The battery models are linear with separate
variables for charging and discharging and include con-
straints on maximum charging and discharging power.
The battery model is given by:

Et+1
bat = Et

bat +ηchPt
ch∆t− 1

ηdis
Pt

dis∆t (14)

0≤ Pt
ch,P

t
dis ≤ Pmax (15)

0≤ Et
bat ≤ Emax. (16)

where ηch = ηdis = 0.9. The size of each battery Emax
is chosen such that the size will not be binding for
storing PV power generation. The maximum charg-
ing/discharging power Pmax is determined as 40% of the
battery capacity. The initial battery state of charge is as-
sumed to be 50% of Emax.
Hence, based on the above discussion, the optimization
variables are collected in the vector:

xt = [{Pt
curt}k+H

t=k ,{Pt
ch}k+H

t=k ,{Pt
dis}k+H

t=k ,{Pt
HVAC}k+H

t=k ,

{ut
a}k+H

t=k ,{Pt
T 2,b}k+H

t=k ,{vt
c}

k+H−nc
t=k ].

(17)



RESULTS AND DISCUSSIONS
To evaluate the proposed community load scheduling
framework, a case study has been implemented for a
community located in Anna Maria Island, Florida during
the hurricane season on August 4 and 5. Three build-
ings of various types have been chosen for the simula-
tion (i.e., residential, ice cream shop, bakery) to encap-
sulate all four types of loads. The data inputs for the
simulation (e.g., PV power, outdoor dry-bulb tempera-
ture, solar radiation) were extracted from the community
physics-based model in Modelica (The Modelica Associ-
ation 2019; He et al. 2016). It’s noted that the simulation
results shown below are directly gained from the MPC
problems themselves, rather than from the detailed Mod-
elica models. Two scenarios were designed to compare
different resource allocation methods: In Scenario 1, the
coordinator allocates PV power according to the maxi-
mum power demand of each building, and in Scenario 2
the allocation is based on average power demand. The
community load scheduling framework is implemented
as a mixed integer linear program in Python and solved
using an academic Gurobi license (Gurobi 2019). The
simulation results are discussed through selected key per-
formance indices (KPIs), i.e., unserved load ratio, battery
size, PV curtailment ratio, and comfort hour ratio.

Building Loads

The original load shapes before and after scheduling (for
both Scenario 1 and Scenario 2) for each of the three
buildings are shown in Figs. 2 to 4. The original load pro-
files are exported from the high-fidelity Modelica mod-
els with a room temperature setpoint of 24◦C. From
these figures, notice that the residential building has a
much smaller power demand compared to the ice cream
shop and the bakery, where a large proportion of the de-
mand is for refrigeration. In the residential building, the
HVAC load accounts for the largest proportion. In Fig-
ure 2 for Scenario 1, due to the lack of PV power, the
HVAC load is slightly reduced and the shiftable loads
are shifted from the night to the morning and afternoon
hours. In Scenario 2, the residential HVAC load is further
reduced. In the ice cream shop and the bakery, the HVAC
load shapes show a different trend than in the residential
building. As seen in Figs. 3 and 4, the HVAC system
operates twice in the day, once in the morning and once
in the afternoon. It tends to pre-cool the building when
there is still PV power available and then remains off for
several hours until its next operation. Hence, the original
HVAC load profile tends to be flatter, compared to the
scheduled HVAC load shape which has a larger ampli-
tude. This is because the pre-cooling energy is stored in
the thermal mass of the building to assure thermal com-
fort for later. Lastly, when PV power is not available, all
critical loads and part of the sheddable and modulatable

loads are served by the battery.

Figure 2: Residential building load profile. (Top) Origi-
nal load profile. (Middle) Scenario 1 load profile. (Bot-
tom) Scenario 2 load profile.

Figure 3: Ice cream shop load profile. (Top) Original
load profile. (Middle) Scenario 1 load profile. (Bottom)
Scenario 2 load profile.

Table 4 shows the unserved load ratio of different load
types in each building, as well as in the whole commu-
nity, for Scenarios 1 and 2. From Table 4, we show that
all critical loads are satisfied. In the residential build-
ing, 54.4% of the sheddable loads and 19.92% of the
shiftable loads are unserved in Scenario 1. In Scenario 2,
the unserved sheddable load ratio increases slightly to
54.81% since less PV power is allocated to this build-
ing. The shiftable load unserved ratio is the same across
both scenarios because shiftable loads operate once and
only once, as described by Eq. (11). The unserved load
ratio of sheddable loads of the ice cream shop increased
slightly by 0.13% from Scenario 1 to 2 while more PV is
allocated to this building in Scenario 2. This is likely
because the optimization objective is to maximize PV



Figure 4: Bakery load profile. (Top) Original load pro-
file. (Middle) Scenario 1 load profile. (Bottom) Scenario
2 load profile.

power usage, so it was optimal to charge the battery to
serve more loads later in the prediction horizon, instead
of satisfying the immediate load demand. This is also
seen in the required battery size for the ice cream shop
in both scenarios, which will be discussed in the next
section. The unserved load ratio of modulatable loads
in the bakery slightly increased in Scenario 2 since less
PV is allocated. The unserved load ratio for sheddable
and shiftable loads remains the same. Overall, the un-
served load ratio of the whole community is at about
6.2%. However, the change of the allocated PV power
in Scenario 1 and 2 is reflected in the required battery
size which will be discussed next.

Power Balance and Battery Behavior
The power balance in the three buildings is depicted in
Figs. 5 to 7. For the residential building, the optimization
results in Fig. 5 show that the battery seldom charges
with PV power. Instead, the PV is mainly used for the
HVAC load to cool the building. This likely due to the
relatively small total load of the residential building com-
pared to the ice cream shop and bakery. However, for the
ice cream shop and bakery results shown in Figures 6
and 7, the battery is used to store PV power from dur-
ing the day for use later. In both the ice cream shop and
the bakery, the HVAC is used for cooling in the morn-
ing and afternoon hours in order to charge the battery as
much as possible with PV power. In the afternoon hours
when the battery is almost full and the room temperature
approaches the upper comfort limit, the HVAC system
begins to pre-cool the building. At night, the battery dis-
charges to serve the critical loads and partially serve the
other loads. For all buildings and all scenarios, PV power
is either consumed or charged into the battery; thus, none
is curtailed.

Figure 5: Residential building power balance. (Top) Sce-
nario 1. (Bottom) Scenario 2.

Figure 6: Ice cream shop power balance. (Top) Scenario
1. (Bottom) Scenario 2.

Figure 7: Bakery power balance. (Top) Scenario 1. (Bot-
tom) Scenario 2.

Table 5 lists the minimum required battery sizes for dif-
ferent buildings. The sizes were calculated by subtract-
ing the minimum battery state of charge (SOC), mea-
sured in kWh, from the maximum SOC in the simula-
tion results. Comparing Scenario 1 with Scenario 2, the
required battery size of the residential building increases
despite of the reduced PV power. This was caused by
more battery discharging due to the lower allocation fac-
tor in Scenario 2, which leads to a lower minimum SOC.
Hence, a larger battery size is required. The required
battery capacity for the ice cream shop increases in Sce-
nario 2 in order to store more PV power since the PV
allocation is greater. Similarly for the bakery, when the
available PV power is greater, the required battery size
is larger. This is because greater PV power availability



Table 4: Unserved load ratio of different load types
Unserved Load Ratio

Scenario Building Sheddable Shiftable Modulatable Critical Overall

1

Residential 54.40% 19.92% N/A 0 9.01%
Ice Cream Shop 43.11% N/A N/A 0 8.62%

Bakery 1.29% 8.18% 40.56% 0 2.60%
Community 42.97% 10.94% 40.56% 0 6.16%

2

Residential 54.81% 19.92% N/A 0 9.04%
Ice Cream Shop 43.24% N/A N/A 0 8.65%

Bakery 1.29% 8.18% 40.59% 0 2.61%
Community 43.10% 10.94% 40.59% 0 6.18%

Table 5: Battery size and PV curtailment

Scenario Building
Battery

Size
[kWh]

PV Cur-
tailment

Ratio

1

Residential 3.68 0
Ice Cream

Shop 61.00 0

Bakery 92.73 0
Community 157.41 0

2

Residential 4.01 0
Ice Cream

Shop 92.9 0

Bakery 56.91 0
Community 153.82 0

leads to more charged power into the battery. As a result,
the maximum battery SOC will be larger.
It should be noted that the optimization results shown
here are sensitive to the battery capacity Emax and the
maximum charging/discharging power Pmax. Specifi-
cally, if the battery capacity constraint is binding in the
optimization, the extra PV generation will be curtailed
because the battery is full, causing there to be both PV
curtailment and unserved load. Similarly, if the avail-
able PV generation is more than the sum of the load and
battery charging limit Pmax, there will also be PV cur-
tailment. Increasing either of these two parameters will
decrease the PV curtailment and possibly reduce the un-
served load ratio and increase thermal comfort. In this
paper, we sized the battery to ensure the capacity con-
straint was non-binding in order to investigate the battery
size needed for the community to be resilient.

Thermal Comfort

The indoor and outdoor temperature during the simula-
tion for each building are shown in Figs. 8 to 10. Addi-
tionally, a baseline temperature trajectory is plotted for
reference. The baseline curve is the simulated indoor
temperature without MPC by the Modelica models with
a fixed setpoint of 24◦C. Figs. 8 to 10 show that the tem-

Figure 8: Residential building indoor and outdoor tem-
perature.

Figure 9: Ice cream shop indoor and outdoor tempera-
ture.

Figure 10: Bakery indoor and outdoor temperature.

peratures of the three buildings are well maintained be-
tween 20◦C and 28◦C for both scenarios with the allo-
cated PV power. For the residential building and the bak-
ery, the indoor temperature is well maintained using the
HVAC during the day, and then drifts during the night-
time hours when there is no PV generation. For the ice
cream shop, the room temperature in both scenarios is
maintained close to the lower thermal comfort bound of
20◦C. Additionally, the ice cream shop indoor tempera-
ture decreases drastically at 8 am in the morning to about
20◦C and then maintains almost unchanged because of
thermal mass and another cooling provided at 3 pm.

CONCLUSION
In this paper, a hierarchical community load scheduling
framework is proposed. KPIs such as unserved load ra-
tio, battery size, PV curtailment and comfort hour ratio
for scenarios with different PV allocation methods are



compared. Based on the analysis of the simulation re-
sults, the unserved load ratio of the whole community is
at about 6.2%. For the proposed frame, the optimization
results are sensitive to the battery size constraint and the
maximum charging/discharging power constraint, which
will be investigated in future work. Future directions also
include formulating the outer-loop community level co-
ordinator as an MPC problem to ensure the resources of
different buildings could be shared dynamically, which
builds upon our current static rule-based resource alloca-
tion approach used in this work.
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NOMENCLATURE
Parameters and Variables

x Vector of optimization variables
P Power
t Time step
H Optimization horizon
T Temperature
βi Coefficients of the HVAC model
Q Heat flow
u,v Binary variables for ON/OFF load status
n Average time steps of run cycle
S Scheduling matrix
E Energy
η Efficiency

Subscripts
amb Ambient outdoor temperature
sol Solar irradiance
curt PV curtailment
ch Battery charging
dis Battery discharging
HVAC HVAC cooling
load Building loads
bat Battery
min Minimum value
max Maximum value
T 1,a Type 1 load a ∈ {1, . . . ,A}
T 2,b Type 2 load b ∈ {1, . . . ,B}
T 3,c Type 3 load c ∈ {1, . . . ,C}
T 4,d Type 4 load d ∈ {1, . . . ,D}
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