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Abstract 
Commonly used deterministic methods are unable to 

capture the randomness in occupant behavior and its 

impact on electric power consumption. In this paper, we 

propose a new data-driven model to capture occupant 

behavior in a stochastic manner. Unlike existing models 

and prediction tools, this new model does not require 

occupant presence data and can learn occupants’ arrival 

and departure time based on lighting power 

consumption data, which is more readily available than 

occupant presence data. We applied this occupant 

behavior model to lighting power consumption 

prediction and implemented the entire prediction 

process in Modelica. We then validated the Modelica 

model by comparing the predicted daily, weekly and 

monthly peak lighting power with measurements from 

two small commercial buildings. The results suggest 

that the prediction matches the measurement within 

acceptable deviations of 7%. The results also indicate 

that the proposed stochastic model performs better for 

long-term prediction of lighting power (monthly and 

weekly) than the short-term (daily). 

Keywords: Occupant behavior modeling, occupant 
presence prediction, lighting power prediction, 

regression model, stochastic simulation 

1 Introduction 

The increasing penetration of renewable energy is 

introducing more variability within the power grid (J. 

Wang et al. 2018). To better balance generation and 

consumption, the power demand side needs to become 

more flexible and even more controllable. Some studies 

focus on estimating building load flexibility by 

controlling thermostatically controllable loads (TCLs) 

such as HVAC systems and water heaters in buildings 

(Wu et al. 2018; Zhao et al. 2017). Compared to TCLs, 

the lighting system has the advantage of shorter 

response time which makes it more suitable for faster 

demand response mechanisms (e.g., shimmy).  

The stochasticity of occupant behavior and its impact 

on power and energy consumption presents a challenge 

to accurate real-time estimation of building electric 

loads. Traditional building energy modeling (BEM) 

tools use static hourly schedules both for occupant 

presence and building equipment. This leads to 

discrepancies between the simulated power shape and 

the actual consumed power (Luo et al. 2017; Kim et al. 

2017), especially for short-term prediction scenarios 

such as those needed for fast demand response. Limited 

data availability is a second challenge, as due to privacy 

reasons, occupant sensor data is often unavailable. 

These challenges must be accounted for in theoretical 

and model-based studies on occupant behavior and its 

related impacts on the power consumption and 

flexibility characterization of the built environment.  

For commercial buildings, existing occupant 

presence prediction models have been developed mainly 

on single office rooms. Wang et al. used exponential 

distribution to predict the vacancy intervals of single 

offices (D. Wang, Federspiel, and Rubinstein 2005). 

Small commercial buildings have not gained enough 

attention concerning occupant behavior studies.  

Lighting prediction models have been investigated 

over the past 40 years, and the research points to strong 

correlation between occupants’ presence and the 

lighting status in a zone. The first published study for 

occupants’ light switching behavior in office buildings 

found that switching mainly takes place when entering 

or vacating a space and the switch-on probability on 

arrival exhibits a strong correlation with minimum 

daylighting illuminance in the working area (Hunt 

1980). Manual switch-off probability of lights is 

strongly correlated with the expected length of absence 

(Pigg, Eilers, and Reed 1996). Later, this research was 

expanded by the study of correlations between 

intermediate switch-on/-off behavior and illuminance 

levels (Reinhart and Voss 2003).  

In this paper we propose a methodology for occupant 

presence and lighting power prediction based on 

minute-level power meter data. We apply the 

methodology for two small commercial buildings use 

cases (one bakery and one ice cream shop) and validate 

the prediction performance with real data collected from 

building sites. Here we present only the prediction of 

occupant presence and lighting power. In future work 

we will extend the methodology to other loads driven by 

occupant behavior. 



The innovation of this work lies in: (1) The proposed 

method can be applied to occupant presence prediction 

without occupancy sensor data and it has been validated 

against real power meter data. (2) The method can be 

used for sub-hourly power demand prediction within 

acceptable deviations of 7%. (3) The method could be 

applied to other building systems and the Modelica 

model is extensible and scalable. The rest of the paper is 

organized as follows: Section 2 presents the 

methodology. Section 3 discusses the results. Section 4 

concludes this paper with future work and limitations. 

2 Methodology 

Our method is based on the assumption that the usage of 

the lighting system and its associated power 

consumption is strongly determined by the presence of 

the occupants in the building spaces. This assumption 

allows us to extract occupant presence schedules from 

lighting power data. We then use the extracted presence 

data to train logistic regression models that predict 

people’s arrival and departure times. The trained 

probability models are then implemented in Modelica 

language to reproduce building occupancy patterns. The 

lighting power is then predicted by multiplying the 

occupant presence value (0 or 1) with the observed 

nominal lighting power. We then extend the model to 

address realistic scenarios of multi-stage lighting power. 

To validate our model, we compare the simulation 

results with the lighting power data collected at two 

building sites and evaluate the model performance with 

respect to several statistical metrics.  

The following flowchart (Figure 1) shows the 

research workflow for the results presented in this paper. 

 

Figure 1. Research and modeling workflow. 

2.1 Determine Occupant Presence 

In this section, we discuss the extraction of occupant 

presence information from the lighting power data. As 

indicated in the literature review, occupant arrival time 

and departure time has a strong correlation with the 

lighting power utilization: According to Hunt’s work 

(Hunt 1980), the action of turning on the lights depends 

on the minimum illuminance level on the working plane 

upon arrival and people tend to leave the lights on until 

the space is fully empty. This is consistent with our 

observation on the lighting power data in the two studied 

buildings (C2: ice cream shop and F1: bakery). As 

plotted in Figure 2 and Figure 3, once the lights are 

turned on, they will remain on for the whole day until 

all the people leave the space. This means that in this 

case the illuminance level is not a strong driver for the 

light utilization. In our preparation work where we used 

regression of lighting power based on indoor 

illuminance levels, prediction accuracy was relatively 

low. In this paper, we will assume that people in the two 

studied buildings are not sensitive to the illuminance 

levels and will turn on the lights once they enter the 

space and will keep the lights on while they are there. 

Based on this assumption, we extract the occupant 

presence information from the lighting power data and 

regard it as the ground truth.  

 

 

Figure 2. Lighting power and occupant presence (C2: ice 

cream shop). 

 

 

Figure 3. Lighting power and occupant presence (F1: 

bakery). 



To convert the lighting power data into occupant 

presence information, we first cleaned the power meter 

data by removing obvious outliers such as values that 

are extremely large for lighting systems. Then, we 

selected the threshold for determining occupant 

presence (e.g., 0 for absent; 1 for present) to avoid 

oscillations in presence status. For instance, the 

threshold for C2 ice cream shop is selected as 50 W. 

Any power value above this threshold is converted to 1 

and below this threshold into a 0. Because the power 

data has 1-minute resolutions, we will make the 

assumption that presence or absence of 1 minute can be 

neglected and we will filter out two consecutive changes 

of occupant presence to eliminate frequent oscillations 

in the resulted presence data.  

The lighting power shapes shown in Figure 2 and 

Figure 3 indicate the different characteristics of the two 

buildings. For the ice cream shop, only one power value 

occurs every day regardless of weekday or weekend. 

However, for the bakery, two distinct levels are 

observed in the power shape. Hence, for his case, we 

divide the power shape into two parts namely base 

lighting power (Figure 4) and additional lighting power 

(Figure 5) and we model them separately. This two-

stage lighting behavior is probably caused by zoning of 

the lighting system. The expression for multi-stage 

lighting power can be described with Eq. 1. 

𝑃 = 𝑎0𝑃𝑏𝑎𝑠𝑒 + 𝑎1𝑃𝑒𝑥𝑡𝑟,1 + ⋯ + 𝑎𝑛−1𝑃𝑒𝑥𝑡𝑟,𝑛−1 (1) 

𝑃  is lighting power; 𝑎𝑖  is the binary variable that 

indicates the status of base or extra lighting; n is the 

number of stages. For example, F1 bakery needs a two-

stage lighting prediction model, so 𝑛 = 2 . The base 

power and extra power are extracted from the average 

power value of each stage. Details are introduced in 

Section 2.2. 

2.2 Train Logistic Regression Models 

The prediction of occupant presence could be viewed as 

a classification problem. As discussed before, the arrival 

and departure behavior in the two studied buildings 

follows the same pattern for weekdays and weekends 

regardless of the indoor illuminance level. Hence, the 

main feature for classifying occupant presence is the 

time of the day. We chose logistic regression as our 

model for the training because: (1) it is a linear classifier 

and is easy to train; (2) it can reach the same level of 

accuracy as non-linear classifiers; (3) it is easy to 

implement in Modelica. We divided the arrival and 

departure behavior into two models and trained them 

separately as they have opposite trends along time of the 

day.  

To rule out the impact of seasonal change in the 

occupant behavior, the training and validation datasets 

were selected from the summer of 2018. June and July 

data were used for the training and August data was used 

for the validation. During the model training process, 

the dataset was divided randomly and 10% of the points 

were used to test the accuracy of the logistic regression 

classifier. The accuracy is defined as the rate of 

classifying the data point into the right group. The 

confusion matrices for the test datasets of all the 

regression models are shown in Table 1. The format of 

the confusion matrices follows the pattern in Table 2. 

Table 1. Confusion Matrices for Classification 

Performance. 

C2 

Arriv
al 

3693 44 F1 Arrival 
2736 132 

118 1406 
31 624 F1 

Departure 

1797 260 

C2 

Depa
rture 

283 60 273 2062 

F1 Extra 

On 

16 0 
4 1849 3 0 

Table 2. Example Confusion Matrix (C2 Arrival). 

 Predicted No Predicted Yes 

Actual No 3693 44 

Actual Yes 31 624 

The accuracy of the classifier is then calculated with 

Eq. 2. 

Figure 4. Base lighting power and occupant presence in 

F1 bakery. 

Figure 5. Extra lighting power and lighting status in F1 

bakery. 



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑁𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁𝑜.  𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
 

(2) 

For building F1, the lighting power is divided into the 

base power and the extra power. The base part reflects 

occupants’ arrival and departure and is regressed in 

dependence on time of the day. The frequency (i.e., 

number of total times) of extra lights on of F1 in 2018 is 

plotted in bars (Figure 8). From the figure, we can see 

that the status of the extra lighting has a correlation with 

day of week. Hence, the feature for this part is chosen as 

day of week. Also, from the figure, we see that the total 

frequency of extra lights on in 2018 is only 8.8%. To 

deal with the imbalance in the training dataset, we 

adopted the Synthetic Minority Over-sampling 

Technique (SMOTE) (Chawla et al. 2002), which made 

the minority (extra lights on) class equal to the majority 

class (extra lights off) by creating synthetic samples of 

the minority class. The logistic regression parameters 

for each model are listed in Table 3. The probability 

function is expressed in Eq. 3, where 𝑝 represents the 

probability of occupant present or extra lights on; 𝑒 is 

  

Figure 6. Logistic regression model for arrival (left) and departure (right) in C2 ice cream shop.  

  

Figure 7. Logistic regression model for arrival (left) and departure (right) in F1 bakery. 
 

Table 3. Logistic Regression Parameters. 

  Accuracy β0 β1 β2 β3 β4 β5 β6 β7 

C2 
Arrival 0.98 -27.1983 0.0447 

N/A 
Departure 0.97 34.6877 -0.0249 

F1 

Arrival 0.94 -11.9311 0.0254 
N/A 

Departure 0.88 13.7769 -0.0125 

Extra On 0.84 -0.8309 -0.4829 0.4967 -0.2586 0.4967 -0.1171 -0.4829 -0.4829 

 

Figure 8. Extra lights on frequency for day of week in F1 

bakery (2018). 



the natural log base; 𝛽 is the regression intercept and 

coefficients; 𝑚  refers to the number of logistic 

regression independent variables. The accuracy of all 

the models are above 84%. Table 4 lists the probability 

of extra lights on for day of week in building F1.  

𝑝 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑚𝑥𝑚)
 (3) 

Table 4. Probability of Extra Lights On for Day of Week 

from Logistic Regression. 

 Mon Tue Wed Thu Fri Sat Sun 

Proba

bility 
0.21 0.42 0.25 0.42 0.28 0.21 0.21 

Figure 6 and Figure 7 visualize the training data 

points and the logistic regression models for arrival and 

departure in C2 and F1. The time of day is in minutes. 

Based on observations, occupants will arrive before 12 

pm and leave after 12 pm. Hence, the arrival models are 

trained with data points before 720 min (12 pm) and vice 

versa. For the ice cream shop departure model, people 

tend to leave very late: The probability of presence at 

midnight is around 0.22. To increase the prediction 

accuracy, we used data after 6 pm to train this model.  

2.3 Implement in Modelica 

The implementation of the presence model and the extra 

lighting status model is adapted from 

Buildings.Occupants.Office.Lighting.Hunt1979Light in 

Modelica Buildings library (Wetter et al. 2014). The 

model is implemented as a stochastic simulation model. 

Every two minutes, a binary variable generator will 

randomly generate a binary number. The probability of 

this number being 1 equals the calculated probability of 

the occupant being present at that time of day based on 

the logistic regression model. Similarly, in the extra 

light status model, the probability of the random number 

being 1 equals the probability of the extra light being on 

at the simulated day of week.  

Figure 9 depicts the layout of the two-stage lighting 

power prediction model for F1. The presence models 

generate binary signals which will be multiplied with the 

nominal power of each stage. The nominal powers are 

the calculated mean values of the lighting power in each 

stage. The sum of the lighting power of all stages are 

then compared with the actual lighting power data to 

validate the performance of the stochastic simulation 

models. An assumption is made in this model that the 

extra light will only be on when both of the following 

conditions are satisfied: (1) The extra light should be on 

for that day of week; (2) There are occupants in the 

building. The simulation was run for the whole month 

of August 2018 and the time step was set as 10 minutes. 

The actual time step was picked by Dymola to be 2 

minutes due to the stochastic events. 

 

Figure 9. Modelica layout of the two-stage lighting 

power prediction model. 

3 Results and Discussions 

We evaluate both the occupant presence prediction 

performance and the lighting power prediction 

performance in this section. The presence models are 

evaluated with the root mean squared error (RMSE) and 

the coefficient of variation of RMSE (CVRMSE) of the 

probability distribution model. The lighting power 

prediction performance is evaluated with the relative 

error of the peak power and normalized mean bias error 

(NMBE). The error in the lighting power prediction is 

dependent on the presence prediction error as well as the 

error of nominal power estimation.  

ASHRAE Guideline 14-2002 has requirements for 

whole building energy calibration (ASHRAE 2002). 

The smaller the time scale, the more tolerant the criteria. 

For example, the criteria for monthly NMBE is 5%, 

monthly CVRMSE is 15%, and the criteria for hourly 

NMBE is 10%, hourly CVRMSE is 30%. Though only 

the lighting system is calibrated in our work, the 

principle for different time scales should apply.  

3.1 Occupant Presence Prediction 

RMSE represents the standard deviation of the errors 

and CVRMSE is the ratio of the standard deviation to 

the mean of the dependent variable. They both describe 

how concentrated the data is around the line of its best 

fit. Large errors are especially noticed in these metrics. 

The equations for calculating the two metrics are listed 

below. 𝑥𝑜,𝑖  is the original value of the predicted 

variable, 𝑥𝑓,𝑖 is the forecasted value, N is the number of 

total data points. Table 5 lists the RMSE and CVRMSE 

of the occupant and extra lighting status prediction 

models. The CVRMSE for the occupant presence 

models are below 25%. The CVRMSE for extra lighting 

prediction is 125%. This is caused by the imbalance of 

the training data. The probability of the extra lights 

being on is much lower than the probability of them 

    

        

    

        

 

 

        

      

       

    

       

 

    

        

 

 

         

       

    

       

 

   

 
 

 

      

      

                    

     

            

            

             

              

              

              

              

     

               

     

              

                

               

            

    

     



being off. Hence, the mean value 𝑥𝑜̅̅ ̅ is very small and 

small errors could cause a large CVRMSE.  

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑓,𝑖 − 𝑥𝑜,𝑖)
2𝑁

𝑖=1

𝑁
 (4) 

𝐶𝑉𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (𝑥𝑓,𝑖 − 𝑥𝑜,𝑖)

2𝑁
𝑖=1

𝑥𝑜̅̅ ̅
 

(5) 

Table 5. RMSE and CVRMSE of Occupant Presence and 

Lighting Status Prediction Results. 

 
C2 F1 

Occupant 
Presence 

Occupant 
Presence 

Extra 
Lights 

RMSE 0.108 0.101 0.153 

CVRMSE 20.9% 25.0% 125% 

Figure 10 and Figure 11 plot the regression model, 

simulated probability distribution and the actual 

probability distribution of arrival and departure in the 

two buildings. From the figure, we see that the simulated 

probability distribution aligns with the regression model 

very well. The actual probability distribution deviates 

from the regression model especially during the 

transitional periods in the middle (e.g., 9 to 11 for C2 

arrival, 17 to 21 for F1 departure). This could have been 

caused by the inappropriate selection of the training data. 

The high accuracy of the classifiers shown in Table 3 is 

partially because more data points are located outside 

the transitional period. The classifier can distinguish 

those points easier. Another reason could be that only 

one feature is used to predict occupant presence. This 

could have limited the shape of the logistic regression 

model to further fit the actual curve. More features 

should be explored in the future. 

Table 6 compares the probability of extra lights on in 

F1 calculated from the simulated results and the actual 

data. From the table, we see that the simulated and actual 

results deviate on Tuesday and Wednesday. For other 

days, the simulation results reproduced the actual 

probability well.  

Table 6. Comparison of Simulated and Actual Probability 

of Extra Lights On for Day of Week. 

 Mon Tue Wed Thu Fri Sat Sun 

Simula

ted 
0 0.29 0.29 0.14 0.29 0.29 0.14 

Actual 0 0 0 0.14 0.29 0.29 0.14 

3.2 Lighting Power Prediction 

To evaluate the lighting power prediction performance 

of the models, peak power prediction relative error and 

NMBE are calculated on a monthly, weekly and daily 

basis. In this way, the lighting power prediction 

performance is evaluated for different time scales. As 

the models in this paper are mainly designed for shorter-
time demand response scenarios, annual energy 

consumption is out of scope. Table 7 summarizes the 

  

Figure 10. Arrival and departure time probability distribution (C2: ice cream shop). 

  

Figure 11. Arrival and departure time probability distribution (F1: bakery). 
 



peak power prediction accuracy. For C2, the errors are 

all below 2.36%. For F1, which is two-stage prediction, 

the errors are larger, but all stay below 6.9%. Hence, the 

multi-stage method performs well in predicting peak 

power. 

Table 7. Peak Power Prediction Accuracy. 

 

Monthly 
Peak 

Power 

Weekly Peak 
Power 

Daily Peak 
Power 

C2 2.36% 
2.36%~2.36% 

(avg: 2.36%) 

0.73%~2.36% 

(avg: 1.99%) 

F1 6.90% 
2.15%~6.90% 

(avg: 5.34%) 

1.05%~6.90% 

(avg: 2.42%) 

To further evaluate the fitness of the power curve to 

the real power curve, the NMBE metric is adopted, 

which describes the average bias in the model. NMBE 

is determined with Eq. 6. By definition, it is the sum of 

error over the sum of the actual values. This metric 

evaluates the fitness of the model over the whole 

simulation horizon.  

𝑁𝑀𝐵𝐸 =
∑ (𝑥𝑓,𝑖 − 𝑥𝑜,𝑖)𝑁

𝑖=1

𝑁 × 𝑥𝑜̅̅ ̅
 (6) 

Table 8 summarizes the daily, weekly and monthly 

NMBE of the lighting power. The lighting power 

obtained by multiplying the ground truth occupancy 

data with nominal power is set as the baseline for better 

comparison. From the table, the two-stage prediction 

generally has larger errors than the single-stage model. 

For the single-stage lighting power (C2), the monthly, 

weekly and daily NMBE are all within 5%, which 

indicates a high accuracy for power demand predictions. 

For the two-stage lighting power (F1), the monthly and 

weekly average errors are within 10%, which is still 

acceptable. However, we see a big deviation in the daily 

NMBE, and this leads to a high average value for daily 

NMBE. This high deviation could have been caused by 

an uncommon data record on Aug. 19 (see Figure 12) 

when the lights are only on for a short time period but 

the model simulated it just as usual.  

Table 8. NMBE of Lighting Power Prediction. 

 Baseline Model 

Monthly 
NMBE 

C2 0.061% 3.92% 
F1 -0.55% 8.28% 

Weekly 
NMBE 

C2 
-0.27%~0.44% 

(avg: 0.060%) 
-0.25%~9.84% 

(avg: 4.07%) 

F1 
-2.84%~1.30% 

(avg: -0.68) 
0.33%~20.4% 

(avg: 7.92%) 

Daily 
NMBE 

C2 
-0.56%~0.72% 

(avg: 0.057%) 
-2.59%~23.72% 

(avg: 4.03%) 

F1 
-12.9%~50.9% 

(avg: 0.39%) 
-21.6%~807% 

(avg: 44.1%) 
Additionally, as the models are simulated in a 

stochastic manner and the occupant presence was 

determined every 2 minutes, we see an obvious 

oscillation in lighting power in Figure 12. This feature 

of the model leads to that the longer the simulation time, 

the closer the expectation of the simulation results will 

be to the actual data. This explains why the model shows 

a better performance concerning monthly NMBE. 

However, short-term accuracy of the model still needs 

some improvement. 

4 Conclusion 

This paper proposed a methodology for occupant 

presence learning and reproducing based on lighting 

power metering data. The method was validated against 

real data. The results show that the proposed multi-stage 

lighting power prediction method can predict daily peak 

power with 2.42% relative error. The monthly and 

weekly NMBE of lighting power are on average below 

8.28%.  

Through the training and validation process of this 

work, we found that logistic regression models are 

sensitive to the quality of the training data. Ideally, the 

dataset should be more focused on the transitional 

region of the model and the two classes should be well 

balanced. Further, increasing the number of independent 

features should help improve the fitness of the 

probability model. The stochastic simulation results 

show that stochastic models can be very accurate for 

long-term predictions. However, they cannot predict 

Figure 12. Monthly predicted and actual lighting power in F1 bakery. 



uncommon events, and this can lead to large short-term 

prediction errors.  

This work has the limitation of not having the ground 

truth data for occupant presence. The presence 

generated from lighting power can be delayed when 

people arrived and did not turn the lights on. This can be 

cross validated with other appliance usage data in the 

future. In the best-case scenario, occupant surveys 

should be conducted to know their preferences and 

habits, and occupant sensors should be installed.  
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