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Past research has demonstrated that high-efficiency building technologies have great potential

to reduce the energy consumption of commercial buildings. However, different technologies may

have different impacts on various types of commercial buildings depending on the climates. Thus,

it is necessary to conduct building energy analyses to identify areas where energy efficiency can

be improved for different types of commercial buildings. Despite of the process, current research

has three limitations: (1) Current research is often done in ad hoc fashion and requires lengthy

computing time. A standardized computational framework to streamline and accelerate building

energy analyses is needed. (2) Prototypical building energy models represent the standard or

reference energy models for the most common commercial buildings. They are often used as the

starting point in conducting building energy analyses. However, current prototypical building

energy models only represent limited types of buildings in certain countries, which limits their

applications. (3) To select energy efficiency measures (EEMs), researchers tend to apply static

energy prices to estimate their return on investment (ROI). Recently, more and more commercial

buildings are adopting dynamic electricity pricing programs and the ROI analyses based on static

energy prices may not be valid anymore. However, the impacts of dynamic electricity pricing

programs on the selection of EEMs has not been fully evaluated.

To address the above three limitations, this dissertation creates a standardized computational

framework for U.S. commercial buildings, applies it to create new prototypical models, and analyzes

the impact of dynamic electricity pricing using these models. First, this dissertation reviews existing

energy-related data sources for U.S. commercial buildings. These sources include nine building

energy databases in total, three from surveys and six from simulations. Their applications are
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detailed for building energy analyses. Based on the review, a standardized computational framework

for U.S. commercial buildings is created, which can select the best data sources and methods to

create prototypical building energy models and conduct building energy analyses.

Then, by using the framework, this dissertation proposes a new methodology for prototyp-

ical building energy model creation independent of building types and countries. By using this

new methodology, this dissertation creates prototypical building energy models for four types of

U.S. commercial buildings: (1) medium office buildings, (2) religious worship buildings, (3) col-

lege/university buildings, and (4) mechanical shops. The medium office buildings and religious

worship buildings are used as two case studies.

Finally, this dissertation uses the framework to analyze the impacts of electricity pricing

programs on the selection of EEMs. The DOE Commercial Prototype Building Energy Models

for medium office buildings are the baseline models in these analyses. Furthermore, this research

involves three global sensitivity analysis methods and five electricity pricing programs. The results

by only considering building energy savings are similar to those of other studies. Moving on to the

cost analysis, the results indicate that the ROIs of EEMs greatly change under different electricity

pricing programs. If different electricity pricing programs were available to commercial buildings,

building owners would be more likely to conduct energy retrofits to take advantage of these savings.

This dissertation address the three limitations: (1) create a standardized computational

framework for U.S. commercial buildings regulates the analysis process and automizes the whole

procedure, (2) develop a new methodology for prototypical building energy model creation, and

(3) provide a new perspective about the selection of EEMs by considering the impact of dynamic

pricing programs. The future research will extend the scope of the standardized computational

framework, complement the sets of prototypical building energy models, and continue researching

on the impact of dynamic electricity pricing programs.
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Chapter 1

Introduction

1.1 Background

The Energy Information Agency’s (EIA) Annual Energy Outlook 2019 estimated that the

commercial building sector was responsible for approximately 18.2% of primary U.S. energy use

in 2018 [61]. It also projected that the primary energy consumption of U.S. commercial buildings

would increase approximately 5% by 2050. The comparison of energy use intensities (EUIs) be-

tween existing buildings and high-efficiency buildings showed great potential to reduce the energy

consumption in commercial buildings [74, 77, 103, 104, 109, 176]. For example, Griffith et al. [77]

concluded that the site EUI with high-efficiency buildings, excluding photovoltaic (PV) panels, was

457.67 MJ/m2-yr, which was only 45% of the average site EUI of existing commercial buildings at

the time of the study. Glazer (2016) analyzed 272 building and climate combinations, and reported

that high energy-efficient commercial buildings in the U.S. had the potential to consume only ap-

proximately 50% of the site energy compared to the American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013 [11]. Therefore, it is necessary to

conduct building energy analyses to identify areas where energy efficiency can be improved within

commercial buildings.

Before conducting building energy analyses, energy-related data needs to be analyzed, which

is useful to understand the broad picture of U.S. commercial building energy consumption. this

dissertation classifies the data sets into two categories: survey data sets and simulation data sets

[197]. Survey data sets collect the raw data mainly from surveys of building respondents and energy
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providers, on-site meters, utility bills, or other survey data sets. Then databases are created.

For example, the Commercial Buildings Energy Consumption Survey (CBECS), the California

Commercial End-Use Survey (CEUS), and the Building Performance Database (BPD) are the

three popular survey data sets for the energy-related data of U.S. commercial buildings [22, 59,

107]. Simulation data is generated by building energy simulation programs [31]. Model developers

collect the building model inputs from survey data, energy standards, and expert knowledge. Then

building energy simulation programs produce the results based on the building model inputs. This

dissertation defines both building model inputs and simulation results as simulation data. For

instance, Huang and Franconi [88] and Griffith et al. [78] developed two simulation data sets for

U.S. commercial buildings. The descriptions of the building models in the two data sources provide

the values of main model inputs and the energy data, which was summarized in their reports. The

simulation data consists of both model inputs and energy data. Further, Commercial Reference

Building Models, Commercial Prototype Building Models, and OpenStudio-Standards gem are

the three current popular simulation data sets created by the U.S. Department of Energy (DOE)

[39, 45, 134]. Commercial Reference Building Models, Commercial Prototype Building Models,

and OpenStudio-Standards gem all belong to prototypical building energy models. These models

represent the standard or reference energy models for the most common commercial buildings and

are important and treated as the starting point in conducting building energy analyses. Moreover,

the National Renewable Energy Laboratory (NREL) developed DEnCity to store a rich set of

existing OpenStudio building models for future research and makes it possible to conduct large-

scale analyses [130, 131].

Based on these data sources, researchers conduct different types of building energy analyses

in support of the energy saving and energy efficiency of U.S. commercial buildings. For example,

based on the 1979 Nonresidential Building Energy Consumption Survey (NBECS) data, which is

named CBECS now, the Gas Research Institute (GRI) conducted a project to develop a catego-

rization of the office building sector by using clustering, and to characterize in detail the energy

requirements of existing and new office building sectors [19, 20, 30]. Further, based on several
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databases, the Environmental Protection Agency (EPA) released a 1-100 ENERGY STAR score

for U.S. buildings by using regression models [66]. Recently, existing research provided many varied

methods to conduct uncertainty and sensitivity analyses to save energy and improve energy effi-

ciency in U.S. commercial buildings [16, 34, 63, 89, 161]. Tian [174] reviewed the existing research

for the sensitivity analysis applied in the building energy analyses and some researchers compared

the advantages and disadvantages of the various sensitivity analysis methods [121, 123, 128]. An-

other example of an analysis is to select energy efficiency measures (EEMs) during building energy

retrofit projects [97, 99, 106, 129]. Current studies usually select EEMs based on their return on

investment (ROI), which aims to save both energy and cost. The researchers tend to apply static

energy prices to estimate ROI, although more and more commercial buildings are adopting dynamic

electricity pricing programs.

1.2 Problem Statement

A rich set of the existing research shows that building energy analyses are necessary and have

been conducted for decades. However, there are still some problems and, if they can be solved,

analysis results will become better. The three potential major problems for researchers are listed

as following:

(1) A standardized computational framework to conduct building energy analyses

does not exist. To generate accurate results with efficient methods, a comprehensive

review of existing data sources and previous research is required before conducting building

energy analyses. Further, it is more efficient to automatically conduct building energy

simulations and analyses. To accomplish these, it is necessary to develop a standardized

computational framework, which does not exist.

(2) Current prototypical building energy models only represent limited types of

buildings in certain countries. As the starting point of the building energy analyses, it

is necessary to prepare prototypical building energy models for all main building types in
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different countries. However, in many countries, especially some developing countries, there

is a lack of prototypical building energy models as the starting point to the building energy

analyses. Further, although there is a rich set of existing prototypical building energy

models in the U.S., there are still some building types missing, such as religious worship

buildings, mechanic shops, and college or university buildings. These missing building types

still account for over 20% of the total energy consumption in the U.S. commercial building

sector and approximately 20% of the floor space [173, 36].

(3) The impacts of dynamic electricity pricing programs on the selection of EEMs

has not been fully established. Building energy retrofits have great potential to save en-

ergy and cost. Current studies tend to apply static energy prices to estimate ROI. However,

more and more commercial buildings are adopting dynamic electricity pricing programs,

and the selection of EEMs based on static energy prices may not be valid anymore.

1.3 Objectives

There are three objectives for this dissertation, which are to solve the three problems men-

tioned in Section 1.2. These three objectives are shown as follows:

(1) Develop a standardized computational framework. This computational framework

is able to systematically create prototypical building energy models and conduct various

building energy analyses. The remaining objectives will be achieved by using this compu-

tational framework.

(2) Develop a methodology to create prototypical building energy models for exist-

ing U.S. commercial buildings. This methodology aims to create prototypical building

energy models, which have representative model inputs and energy data. By using this

methodology, this dissertation will create prototypical building energy models for missing

types of U.S. commercial buildings. The energy results will be validated by using the

empirical data.
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(3) Analyze the impacts of energy savings and dynamic electricity pricing programs

on the selection of EEMs. The prototypical building energy models for existing U.S.

medium office buildings are used for this objective. Based on previous research, the sensitive

EEMs will be identified for the analysis. To analyze the impacts of dynamic electricity

pricing programs on the selection of EEMs, this dissertation will analyze the impacts by

using the static and four dynamic electricity pricing programs. The ROI is used as the

indicator to select EEMs in this research.

1.4 Scope

This dissertation consists of eight chapters and is able to achieve the three objectives men-

tioned in Section 1.3. Figure 1.1 shows the structure of the dissertation and the main topic for each

chapter is shown below:

(1) Chapter 1: Introduction. This chapter provides a general introduction of the back-

ground, existing problems, objectives, and scope of the dissertation.

(2) Chapter 2: Literature Review. This chapter conducts a comprehensive literature re-

view for existing energy-related data sources for U.S. commercial buildings and the existing

research on building energy analyses. The data sources and existing building energy analy-

ses are used to create the standardized computational framework introduced in Chapter 3.

(3) Chapter 3: Standardized Computational Framework. This chapter details the

structure of the standardized computational framework. Furthermore, this chapter dis-

cusses about the potential applications by using this framework.

(4) Chapter 4: Methodology to Create Prototypical Building Energy Models. This

chapter proposes a new methodology to create prototypical building energy models for

existing buildings and this methodology can be implemented by using the standardized

computational framework. This methodology standardizes the rules to identify the values
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and uncertainties of the model inputs, and provides the rule-based links for the models

in different climate zones. Moreover, the improved genetic algorithm (GA) is adopted to

calibrate the models, which enables the selection of the best values among the uncertainties

of model inputs under the limited reference energy data.

(5) Chapter 5: Creation of Prototypical Building Energy Models. By using the

methodology introduced in Chapter 4 and the standardized computational framework in-

troduced in Chapter 3, this chapter creates the prototypical building energy models for the

four types of U.S. commercial buildings: (1) medium office buildings, (2) religious worship

buildings, (3) college/university buildings, and (4) mechanical shops. The medium office

buildings and religious worship buildings are used as two detailed case studies. In the first

case, the prototypical building models for U.S. medium office buildings are compared to

the existing models in the DOE Commercial Reference Building Energy Models [39]. In

the second case, the prototypical building energy models for religious worship buildings

complement the existing simulation datasets.

(6) Chapter 6: Impacts of Energy Savings on EEM Selection. This chapter intro-

duces one of the applications for the standardized computational framework and conducts

sensitivity analyses to identify EEMs. The DOE Commercial Prototype Building Models

for U.S. medium office buildings are used as the starting point of this research [45]. Three

global sensitivity analysis methods were used for selection of EEMs based on the building

energy savings. Furthermore, the impacts of different baseline models on the selection of

EEMs are also discussed.

(7) Chapter 7: Impacts of Electricity Pricing Programs on EEM Selection. This

chapter introduces another application for the standardized computational framework and

analyzes the impacts of electricity pricing programs on EEM selection. The DOE Commer-

cial Prototype Building Models for U.S. medium office buildings are used as the starting

point [45]. Five electricity pricing programs are involved in this research. In addition, this
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chapter further discusses the impacts of different baseline models on the selection of EEMs.

(8) Chapter 8: Conclusion and Future Research. This chapter makes a conclusion about

the research completed in this dissertation and proposes possible future research based on

the results.

Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 3: Standardized Computational 
Framework

Chapter 4: Methodology to Create 
Prototypical Building Energy Models

Chapter 5: Creation of Prototypical
Building Energy Models

Chapter 6: Impact of Energy Savings on 
EEM Selection

Chapter 7: Impact of Electricity Pricing 
Programs on EEM Selection

Chapter 8: Conclusion

Objective 1: Develop a
Standardized Computational 
Framework

Objective 2: Create
Prototypical Building 
Energy Models by using the
Standardized Computational
Framework

Objective 3: Analyze the
impact of energy and cost 
on EEM selectionby using 
the Standardized
Computational Framework

Religious WorshipMedium Office

Figure 1.1: Structure of the dissertation



Chapter 2

Literature Review

2.1 Introduction

Before developing the standardized computational framework, it is essential to conduct a

comprehensive review about the existing data sources related to building energy consumption.

Based on the review, the rules can be designed to select right data sources for different applications

related to prototypical building energy model creation and building energy analyses. This chapter

summarizes the existing data sources for energy-related data of U.S. commercial buildings and pro-

vide a guideline to select right data sources for specific applications based on the existing research

about building energy analyses. First, this chapter summarizes the main survey and simulation

data sources for energy usage of U.S. commercial buildings, and compares the data sources in terms

of their data collection methods, released information, and features. Then this review analyzes the

applications for different survey and simulation data sources. Based on the different features, this

chapter categorizes the applications of data sources into five categories, including energy perfor-

mance benchmarks, energy usage forecasts and predictions, energy use contributions of building

components, supports of energy policies and standards, and urban-scale energy use analysis, along

with several cases to show how to use these data sources. Further, this chapter introduces the Key

Performance Indicators (KPIs) and guide users to select the databases for specific applications. The

summary of this chapter provides a reference to develop the standardized computational framework

for prototypical building energy model creation and various building energy analyses, which will

be introduced in Chapter 3.
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2.2 Overview of Existing Data Sources

There are many varied data sources for energy-related data about U.S. commercial buildings.

This section focuses on the data sets where the data is easy to obtain and can be used for new

research, and classifies these data sets into two categories: survey data sets and simulation data sets.

Survey data sets in this section collect the raw data mainly from surveys of building respondents

and energy providers, on-site meters, utility bills, or other survey data sets. Then databases are

created using the data. Simulation data is generated by building energy simulation programs [31].

Model developers collect the building model inputs from survey data, energy standards, and expert

knowledge. Then building energy simulation programs produce the results based on the building

model inputs. This section defines both building model inputs and simulation results as simulation

data.

This section introduces the main data sources in the U.S., including three survey data sources

and six simulation data sources. It compares the features of each data source. The introduction

and comparison will provide a broad picture of the data sources and preferences to select the data

sources for different objectives.

2.2.1 Survey Data

Based on the coverage area, survey data sources about energy consumption in commercial

buildings can be classified into local and national sources. Based on the number of samples and

information recorded from each sample, survey data sources can also be divided into in-depth and

large-scale sources. The in-depth sources can provide detailed building characteristics and energy

use data, such as building geometry, building schedules, and end-use energy consumption, for each

building sample. The large-scale sources usually only provide several key building characteristics

and energy data for each building samples, but consist of rich sets of building samples. This section

introduces three typical survey data sources. The California Commercial End-Use Survey (CEUS)

is one of the representative state’s energy survey data sources for U.S. commercial buildings which
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can be considered as local and in-depth survey data sources [22]. The Commercial Buildings Energy

Consumption Survey (CBECS) is a national comprehensive survey belonging to national and in-

depth survey data sources [59]. The last one, the Building Performance Database (BPD), is one of

the largest survey data sources for energy consumption in U.S. buildings, and it is a national and

large-scale data source [107].

The three survey data sources were developed for different purposes. CEUS primarily aims

to support the California Energy Commission’s (CEC) energy demand forecasting activities. To

gain the data for hourly end uses, CEUS utilized the building energy program to conduct the

post-procession for the survey data [22, 116, 144]. CBECS data is a national-level sample survey

of commercial buildings [59]. Its target is to display the distribution of the energy performance of

the commercial building sector; thus, it provides a statistical design for sampling. The goal of BPD

is not to achieve a representative national sample, such as CBECS. Instead, BPD is developed as

a national-level decision-support platform. The BPD’s purpose is to generate plenty of building

samples, which makes it valid to use to conduct research at the local level [117]. BPD can be used to

assess building energy efficiency, forecast building energy performance, and quantify the uncertainty

of building energy consumption. Due to different purposes, the three survey data sources provide

different procedures to collect, process, and generate data. Figure 2.1 summarizes the procedures

for developing the three survey data sources.

CEUS conducted a comprehensive on-site survey and collected the information about the

energy usage of samples from five utility companies [22]. Then DrCEUS (a simulation program

developed based on SitePro and eQUEST) cleaned the data and generated hourly end-use energy

data [41, 96, 119]. Finally, the CEUS data set was formed and developed based on the survey data

and simulation end-use energy data.

As a national commercial building energy survey, the scope of CBECS is significantly larger

than CEUS, which is focused on California. To reflect the change of building energy performance

over time, The Energy Information Agency (EIA) updated the CBECS data continuously since

1979. The analysis of this chapter focuses on the two latest and most used versions: the 2003 and
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Figure 2.1: Procedures of developing the data sets

the 2012 CBECS [51, 57]. The 2003 and 2012 CBECS used an area frame portion and a list frames

portion to select building samples [53]. The area frame portion ensures that the distribution

of building samples is representative of all U.S. commercial buildings. The list frames portion

optimizes the combination of large and small buildings to reflect their weighted impacts on the

nation’s energy consumption. Next, CBECS collected data about selected building samples from

respondents and energy suppliers. In addition, regression models were used if the data could not

be obtained [50, 54, 55]. After that, CBECS processed data to fix errors and fill in missing data.

Another national survey data source, BPD, shows a different way to collect data. Instead of

collecting data through on-site surveys and from energy suppliers, BPD mapped over 25 source data

sets, including CBECS and CEUS, and collected data from these data sets. Then BPD adjusted

the data formats in different data sets into the format following the criteria of the Building Energy
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Data Exchange Specification (BEDES). After that, BPD cleaned the data to fix errors. Finally,

BPD derived its own data and formed the database [40]. Moreover, based on the data set, BPD

created an online analysis tool which includes peer group analyses and performance comparison

[21]. The online analysis tool makes it convenient for users to analyze the data and make decisions.

Besides the various data collection and procession methods adopted by the three survey data

sources, they also published different information about building energy consumption. Table 2.1

summarizes the available information provided by the three survey data sources. The data of in-

dividual building samples in CEUS is not available to the public. Instead, CEUS provides the

analysis results for end-use energy consumption for the entire commercial building sector in Cal-

ifornia. Meanwhile, DrCEUS supports a variety of commercial end-use energy analyses [22]. On

the contrary, CBECS provides the building characteristics and energy data for individual building

samples. Users can estimate locations of building samples based on the climate zones and census

divisions [59]. Although BPD does not provide the details of each building sample either, users can

easily analyze and compare the distribution of building energy-related features, such as energy use

intensities (EUIs) and total floor areas at the local levels via BPD’s user interface [21].

Since survey data sources are created for specific purposes, they have their own features and

are suitable for different applications. To help readers select the right data source which suits their

application needs, this paragraph discusses and compares the features of the three typical survey

data sources. Table 2.2 lists the comparisons of the three survey data sources’ features. First, CEUS

uses building energy simulations to complement the data collected by surveys. Thus, it is able to

characterize the changes of energy end uses caused by occupants. It can also provide hourly data

via DrCEUS. However, it is a state-level data source and lacks publicly available data, which limits

the usefulness of the study [78]. Second, CBECS is a comprehensive energy related data source for

U.S. commercial buildings that provides the details of building characteristics and energy data for

each sample. Thanks to the adoption of the area frame and list frames portions to select building

samples, CBECS is considered to be the best data source to reflect the distribution of the energy

performance of the U.S. commercial building sector. However, CBECS cannot provide the hourly
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Table 2.1: Information provided by the three survey data sources

CEUS CBECS BPD

Year
Published

2006
1979, 1983, 1986, 1989,
1992, 1995, 1999, 2003,
2012

Started from 2014

Number of
Building
Types

12

Principal Building Activity:
20
More Specific Building
Activity: 511

Commercial Building
Classification: 26
More Detailed Commercial
Building Classification: 83

Location
California
(Divided by
climate zone)

U.S. (Divided by the
CBECS climate zone and
census division)1

U.S. (Divided by the
ASHRAE climate zone,
state, city, and zip code)

Number of
Samples

2,800
Over 5,200 (2003 CBECS)
Over 6,700 (2012 CBECS)

Over 75,000

Available
Information

End-use energy
consumption

Each sample building’s
characteristics, yearly
expenditures, and end-use
energy usages1

Distribution and comparison
of yearly energy usages,
building types, and ratings

1 The information is only for the 2003 and 2012 CBECS.

data. Due to the high cost of data collection, CBECS has a relatively small sample size and the

data updates infrequently [29]. The sample set maybe insufficient when the analysis only focuses

on a specific building type at a specific location. At the last, BPD is the largest energy related

data source for U.S. commercial buildings. Its online analysis tool is a decision-support platform

which provides probabilistic risk analysis [21]. However, it does not provide detailed information of

each building sample [117]. Moreover, building samples’ energy-related data is collected in different

periods and one building in different periods could be recorded as different building samples.

2.2.2 Simulation Data

Thanks to the fast computing speed, low cost, and easy modification, building energy simu-

lations become more and more popular and provide rich energy-related data sets for broad appli-

cations. There are various building energy simulation programs, such as DOE-2 and EnergyPlus,

with different features for model inputs, calculation methods, and model outputs [33, 42, 189].

Several literatures summarized and compared the major building energy simulation programs
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Table 2.2: Comparisons of the three survey data sources’ features

Feature CEUS CBECS BPD

Use the building energy programs to post-process the
survey data

Yes No No

Provide the hourly end-use energy consumption Yes No No

Reflect the distribution of the energy consumption of
commercial building sector

Only
California

U.S. U.S.

Collect energy consumption of given periods Yes Yes No

Provide the characteristics for each building sample Limited Detailed Limited

Provide enough data to conduct large-scale analyses or
analyze energy performance at the local levels

Only
California

Limited
locations

Many
locations

Provide probabilistic risk analysis and decision-support
platforms

No No Yes

[4, 15, 31, 32, 152]. This section introduces six commonly used simulation data sources gener-

ated by building energy simulation programs as shown in Figure 2.2.
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Figure 2.2: Summary of the six simulation data sources

First, Huang and Franconi [88] developed 36 commercial building models by using DOE-2

based on the previous researches [33, 87, 157, 178, 189]. Derived from the 1992 CBECS [49], the

U.S. commercial building population was estimated by 36 building models which cover 12 main
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building types, two vintages, and two regions (six building types was only studied for one region).

The building models were used to analyze the contributions of building components to heating and

cooling loads in U.S. commercial building stocks and calculate the efficiencies of typical commercial

heating and cooling systems to meet the loads.

Second, Griffith et al. [78] created a set of building energy models to simulate the existing

commercial building sector. Based on the building samples in the 2003 CBECS, 4,820 building

models were developed by using EnergyPlus [42]. The authors also introduced the procedure for

creating the building models based on the limited survey data. By changing the model inputs

of these building models, over 100,000 simulations were performed to analyze different scenarios

of energy consumption in U.S. commercial buildings. For example, Griffith et al. [77] used the

simulation results to analyze the net-zero energy (NZE) potential of the U.S. commercial building

sector. Benne et al. [14] assessed the energy impacts of outside air in the commercial building

sector.

In order to represent the U.S. commercial building stock with a small number of typical

buildings, DOE created the Commercial Reference Building Models by using EnergyPlus [36, 39].

The inputs for the Commercial Reference Building Models came from several sources, such as the

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard

90.1, ASHARE Standard 62.1, and CBECS data. There were 768 building models consisting of 16

building types, 3 vintages, and 16 locations, which represented nearly 70% of the U.S. commercial

building floor area. The technical report also discussed the methodology to create those building

models and description of each model [36]. The building models are open-source available at

https://www.energy.gov/eere/buildings/commercial-reference-buildings.

Based on the Commercial Reference Building Models, the Commercial Prototype Building

Models were developed by using EnergyPlus, which represented around 80% of the U.S. commercial

building floor area and over 70% of the energy consumed in U.S. commercial buildings [45, 173]. The

building models consist of 16 building types and 17 ASHRAE climate zones. The building models

aimed to simulate the commercial buildings that meet the requirements of ASHRAE Standard

https://www.energy.gov/eere/buildings/commercial-reference-buildings
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90.1 and the International Energy Conservation Code (IECC). So far, the Commercial Prototype

Building Models have nine versions to match the different versions of the ASHRAE Standard 90.1

and IECC. The building models are open-source available at https://www.energycodes.gov/

development/commercial/prototype_models.

With the increased number of users for OpenStudio, which is a collection of software tools to

support building energy modeling with EnergyPlus [79], there is an increasing need to enable the

Commercial Reference Building Models and the Commercial Prototype Building Models in Open-

Studio. However, the input file of EnergyPlus (.idf) cannot be directly transferred into the input

file of OpenStudio (.osm), which limits users to use the Commercial Reference Building Models

or the Commercial Prototype Building Models. Thus, the National Renewable Energy Laboratory

(NREL) developed OpenStudio-Standards gem, a library created using the Ruby programming

language [133, 150, 27]. By using the OpenStudio-Standards gem, users can automatically gener-

ate the OpenStudio versions of the Commercial Reference Building Models and the Commercial

Prototype Building Models. In addition, NREL created many varied measures by using Ruby

to enable the easy modification of model inputs [132]. The OpenStudio-Standards gem library

is open-source available at https://github.com/NREL/openstudio-standards and measures are

available at https://bcl.nrel.gov/.

Recently, DOE created an open-source multi-purpose building energy simulation database

named as DEnCity [130, 131, 151]. The DEnCity database collects OpenStudio simulation inputs

and results uploaded by users. Then using the large-scale simulation data stored in the database,

DEnCity can provide users a quick analysis of building energy consumption for their simulation in-

puts without running the building energy simulation. The scripts of DEnCity are open source avail-

able at https://github.com/NREL/dencity-webandhttps://github.com/NREL/dencity-gem.

Each simulation data source has its own features, which are suitable for specific applica-

tions. To guide users to select proper data sources for their applications, Table 3 compares three

major features of six simulation data sources, including model availability, building status, and

extendibility. In terms of model availability, Huang and Franconi [88] and Griffith et al. [78] do

https://www.energycodes.gov/development/commercial/prototype_models
https://www.energycodes.gov/development/commercial/prototype_models
https://github.com/NREL/openstudio-standards
https://bcl.nrel.gov/
https://github.com/NREL/dencity-web and https://github.com/NREL/dencity-gem
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not provide their models for individual buildings. Thus, users can not repeat or extend their work.

However, users can still utilize their conclusions on the contributors to building heating and cooling

loads, and their methodology to create building models based on the insufficient information from

the survey data. On the other side, users can obtain all the inputs and outputs of the individual

building models in the Commercial Reference Building Models, Commercial Prototype Building

Models, and OpenStudio-Standards gem [39, 45, 133]. Thus, users can change the model inputs

and generate new building models based on their specific requirements.

2.2.3 Comparison between Survey Data and Simulation Data

There are discrepancies in energy data between survey and simulation data sources [110]. For

example, Turner and Frankel [179] found that simulated energy use deviated from actual energy

use by 25% or more in many buildings. Another example is the study of [78]. Although they

provided great efforts to create the building energy models to simulate the energy consumption of

building samples in the 2003 CBECS, the total site EUIs from the simulations and survey still have

huge gaps in some building types. For instance, there is a nearly 40% average relative error for

the site EUIs of food services between the simulation results and the 2003 CBECS data. There are

four attributes to the differences between the survey data and simulation data: (1) difficulties to

account for occupant behavior [153], (2) interactive effects between systems [25], (3) uncertainty in

model inputs [63], and (4) inefficiencies in actual buildings [122, 135].

Despite their differences, the survey data and simulation data have their own advantages and

disadvantages. On one hand, the survey data has shortages in aspects where the simulation data

is excellent. First, the survey data does not contain details, such as system efficiency, insulation

information, operating schedules, and hourly energy consumption, while the simulation data sources

usually include the information [42, 88, 189]. Also, it is difficult to predict the broad impacts or

energy saving potentials of individual components (e.g. a new HVAC equipment or window) by

using survey data, which can be easily done by using simulation data [63, 74, 77, 88]. Moreover,

it is time consuming and costly to conduct the building survey, and it is difficult to perform the
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survey and update the survey data frequently. However, users can easily generate sample data

under different situations by running simulations.

On the other hand, the survey data has advantages over the simulation data and it has

been used to improve the simulation data. The survey data provides the references to determine

the model inputs, which ensures that the simulation data can reflect the actual building features

[186, 188, 187]. Also, the energy data recorded in the surveys shows the actual energy consumption

of existing buildings, and is widely used to calibrate and validate the simulation data [26, 64, 135].

2.3 Overview of Applications by Using the Data Sources

Based on the previous discussion and comparison of survey and simulation data, Section 2.3

summarizes the applications for the three survey data sources and six simulation data sources, and

provides examples of the applications.

2.3.1 Applications of Survey Data

Energy-related survey data provides a rich set of useful information for different users [60].

This section classifies the applications into four categories: (1) energy performance benchmarks,

(2) energy usage forecasts and predictions, (3) recognition of building energy contributors, and

(4) developments of energy policies and standards. Table 2.4 summarizes the recommended data

sources for different applications and provides some cases to demonstrate the usages of the data

sources.

First, building energy performance benchmark is to evaluate the energy performance of a

single building by comparing with other similar buildings [43]. The survey data sources provide the

representative databases of building samples for building energy performance benchmarking. CEUS

and CBECS have a large number of representative sample data. Thus, they are suitable to create

energy performance benchmarks for U.S. commercial buildings. For example, based on CEUS, the

Lawrence Berkeley National Laboratory (LBNL) developed Cal-Arch, which is a California-based

distributional benchmarking model [101, 102]. Moreover, Mathew et al. [116] created a bench-
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Table 2.4: Recommended survey data sources for various applications

Energy
Performance
Benchmarks

Energy Usage
Forecasts and
Predictions

Energy Use
Contributions of

Building
Components

Supports of
Energy Policies
and Standards

CEUS X X X X
CBECS X X X

BPD X

Case

Kinney and Piette
[101],

Mathew et al.
[116],

EPA [66],
Yalcintas and Aytun

Ozturk [193],
Sharp [158],
Sharp [160],

Matson and Piette
[118]

Porras-Amores and
Dutton [141],

EIA [58],
EIA [61],

Kelso [100],
Robinson et al.

[149],
Walter and Sohn

[182]

Ma et al.
[112],

Stader et al.
[162]

Sharp [159],
ASHRAE [8]

marking tool that enabled users to perform the end-use and component-level benchmarking by

using CEUS database. On the other hand, based on CBECS, the U.S. Environmental Protection

Agency (EPA) developed Energy Star National Energy Performance Rating System, which is a

national regression-based benchmarking model [66]. Also, Yalcintas and Aytun Ozturk [193] devel-

oped benchmarks by using Artificial Neural Network (ANN) method. Moreover, existing research

developed benchmarks for energy uses in offices and schools [158, 160]. To evaluate the performance

of benchmarks created by CEUS and CBECS, Matson and Piette [118] compared the results from

the Energy Star National Energy Performance Rating System and Cal-Arch. The results from

the two sources validated each other, and both benchmarking tools had the excellent performance.

Brown et al. [21] pointed out that the objective of BPD is “not to achieve a representative national

sample”. Thus, it is better to create the building energy performance benchmarks by using CBECS

and CEUS.

Second, building energy usage forecasts and predictions display the future trend of building

energy consumption. The survey data sources provide the building characteristics and energy use of
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existing commercial building samples. By using the regression models, the future building energy

consumption can be estimated. All the three survey data sources can be used to forecast the

trend of the commercial building sector and predict energy retrofit savings. With thousands of

existing building samples in California, CEUS is a suitable source to predict the trend of energy

consumption for the California’s commercial building sector. For example, Porras-Amores and

Dutton [141] assessed the energy and indoor air quality potentials in office buildings based on

the CEUS data. By using the CBECS data, many analyses were conducted. EIA [58, 61] and

Kelso [100] provided the prediction of energy consumption in the commercial building sectors in

the next decades by using the data from CBECS. Also, based on the CBECS data, Robinson et al.

[149] estimated commercial building energy consumption with machine learning. On the other

hand, BPD can perform both national scale analysis and small-scale analysis for a giving type

of building. For example, Walter and Sohn [182] predicted energy retrofit savings of commercial

buildings based on the large-scale building energy data from BPD. Since BPD contains enough

data to approximate the distribution for specific location and building type [21], it can be also used

to predict energy retrofit savings for narrowly defined sets.

The third application category is recognition of building energy contributors to quantify their

contributions to building energy consumption and energy saving potentials. To do so, the data

sources should provide enough sampling data. It should also be able to adjust one or several building

characteristics and keep the others as default values. Survey data usually have limited details of

building characteristics and energy data. Therefore, it is difficult to decompose the contributions

of components to energy consumption only based on the survey data. However, CEUS provides

hourly end-use information based on the on-site survey and modeling. Thus, CEUS is the best

choice among the three survey data sources to identify the contributions of components to energy

consumption in commercial buildings. For instance, Ma et al. [112] and Stadler et al. [162]

introduced the possibility to analyze the decomposition of components to end-uses serving for the

demand response researches.

The fourth application category is developments of energy policies and standards. To make an
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informed decision on energy policies and standards, policymakers need to understand the building

characteristics and energy performance of existing building stocks in a given period as well as predict

the potential impact of the new policy and standards. Thus, the survey data serving for policies

and standards needs to be representative and be recorded in given periods. For the California’s

commercial building energy-related policies and standards, CEUS is one of the best choices. For

the national energy-related policies and standards, CBECS is one of the survey data sources that

are usually selected. For instance, ASHRAE Standard 100 used the CBECS data as reference to

create EUI targets [8, 159]. Usually, survey data is not used for urban-scale energy analyses directly

because it is difficult to increase a large number of building samples in a short period. Thus, the

urban-scale energy analyses are usually conducted based on simulation data, which is introduced

in Section 2.3.2.

2.3.2 Applications of Simulation Data

This section introduces the five main applications of simulation data: (1) energy performance

benchmarks, (2) energy usage forecasts and predictions, (3) recognition of building energy contrib-

utors, (4) developments of energy policies and standards, and (5) urban scale modeling. Table 2.5

summarizes the recommended data sources for different applications and provides some cases to

demonstrate their usages.

First, simulation data can be used as building energy performance benchmarks [43]. The

advantage of the simulation-based benchmarks is that the energy performance evaluation of target

buildings will not be affected by the different operating assumptions. There are many successful

examples to create building energy performance benchmarks by using the simulation data. For

example, to estimate the potential cost saving of energy efficient commercial properties, Deru

et al. [37] developed the prototypical building models based on the Commercial Reference Building

Models. Similarly, Commercial Prototype Building Models and OpenStudio-Standards gem are

also capable of quantifying the potential energy savings of different energy efficient measures. For

larger scale analysis, DEnCity can perform the similar analysis with higher granularity as it can
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contain simulation results under higher granularity of inputs. Roth et al. [151] provided a case

study that illustrates the satisfying performance for energy performance benchmarks. Due to lack

of available building energy models and the limited available simulation data in the studies of

Huang and Franconi [88] and Griffith et al. [78], these two data sources are not recommended for

building energy benchmarks. The operations and weather conditions are different between survey-

based benchmarks and target buildings while the simulation-based benchmarks can use the same

operations and weather conditions as the target buildings. Thus, by comparing with survey-based

benchmarks, simulation-based benchmarks can conduct a pure evaluation of the building energy

performance.

Second, simulation data sources can be used for energy usage forecasts and predictions. By

changing prototypical model inputs based on new devices or improved technologies, users can

predict their energy saving potentials. Griffith et al. [77], Griffith et al. [78], and Benne et al.

[14] predicted the technical potentials for achieving NZE buildings in the commercial building

sector and calculated the impact factors by simulating thousands of building models. Also, Glazer

[74] researched on the maximum of technically achievable energy targets for commercial buildings

based on the Commercial Prototype Building Models. Moreover, EnCompass (Energy Impact

Illinois) identified retrofit opportunities in Chicago office buildings by running 278,000 EnergyPlus

simulations based on the Commercial Reference Building [94]. For the U.S. commercial buildings,

DEnCity can do the same work as EnCompare with the similar procedure [151]. Survey data is

usually used to forecast the energy consumption trend of the whole commercial building sector

while simulation data has the ability to predict the energy consumption trend and energy saving

potential of a typical building or building type.

The third application is recognition of building energy contributors. Because most of the

popular building energy simulation programs are able to change the building model inputs and

generate the hourly energy end-uses, it is easy to decompose impacts of components to building

loads and energy consumptions. Field et al. [71] mentioned the possibilities to analyze the impact

of single building component on building energy consumption. Based on the decompositions of
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building energy models, the building components having great energy impacts can be identified

[71, 88, 184, 183, 185]. For example, Huang and Franconi [88] provided a case to identify the building

components that have great impacts on the heating and cooling loads in the U.S. commercial

buildings. DEnCity can help users identify the building energy contributors quickly by alternating

the model inputs and showing their impacts on energy consumption. Generally, the simulation

data is a better option to recognize the building energy contributors by comparing to survey data.

The simulation data can be applied for the developments of energy policies and standards. For

instance, Field et al. [71] introduced that NREL used Commercial Reference Building Models to

estimate the aggregate savings of ASHRAE Standard 189.1 compared to 90.1-2004 and 90.1-2007.

Recently, the Commercial Reference Building Models were not updated. Thus, it is recommended

to develop energy policies and standards by referring to energy-related data from Commercial

Prototype Building Models, which are updated to meet the different versions of ASHRAE Standard

90.1 and IECC. For instance, Thornton et al. [173] used the Commercial Prototype Building Models

to validate whether the new ASHRAE Standard can achieve the energy and cost saving goals by

comparing to the old standard. Moreover, Roth et al. [151] stated that policymakers can investigate

the effects of proposed changes on building stocks by running thousands of simulations, which is

an application of DEnCity. It is worth to mention that survey data is more appropriate to make

policymakers understand the energy performance of existing building stocks while simulation data

is more proper to evaluate the building energy saving potentials by using the new standards.

The fifth application is urban scale modeling, which is a popular topic recently. Based on the

GIS, database, and urban-scale energy calculator, many researches were conducted [84, 114, 148].

The urban-scale energy calculators are usually developed based on EnergyPlus or OpenStudio. It is

necessary to create some prototypical building energy models based on the survey data or building

energy standards. For the U.S. commercial building sector, Commercial Reference Building Mod-

els, Commercial Prototype Building Models, and OpenStudio-Standards gem are the appropriate

candidates.
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2.3.3 KPIs of Survey and Simulation Data

To guide users to select survey or simulation databases, Table 2.6 lists the KPIs for the five

applications. Each KPI has the same weight to evaluate whether the database is suitable for a

specific application. Users will provide scores for individual KPIs. The high score means that the

database meets the description of KPI. Then users are recommended to select the database with

the highest aggregated score, which is the most suitable to be used for the specific application.

Figure 2.3 and 2.4 show the case to select the survey and simulation databases for the

five applications. As the applications were analyzed in Section 2.3.1 and 2.3.2, it is necessary

to determine the advantages and disadvantages for each candidate database based on the KPIs

and then score the KPIs for each database. The left sub-figures of Figure 2.3 and 2.4 respectively

show the scores for individual KPIs for each survey database and simulation database. The right

sub-figures of Figure 2.3 and 2.4 respectively show the aggregated scores with the same weight.

The vertical dot dash lines are the thresholds of the recommended databases. The databases with

the higher score are recommended. For example, the CEUS and CBECS are recommended for the

energy performance benchmarks. It is worth noting that this chapter adjusts the aggregated scores

for Huang and Franconi [88] and Griffith et al. [78], and recommended these two databases because

their reports respectively provide data for energy use contributions of building components, and

energy usage forecasts and predictions. This section provides a general guideline. Based on the

KPIs and guideline, users still need to provide their own judgments to select the suitable databases.

2.3.4 Combined Applications of Survey and Simulation Data

Due to the complement of two data types, combined applications of survey and simulation

data make the results more robust and accurate for special purposes [22, 78, 105, 120]. The building

energy simulation can generate more samples based on the survey data. On the other hand, the

survey data can be used to validate and calibrate the building energy simulation, and then improve

the quality of the simulation results.
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Figure 2.3: Key performance indicators and Aggregated scores for survey data

Figure 2.4: Key performance indicators and Aggregated scores for simulation data
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On one hand, the simulation data, fast and inexpensively generated by building energy sim-

ulation programs, complements the shortages of the survey data. First, the simulation data can

normalize the weather conditions and building characteristics in survey databases, which can avoid

the errors to evaluate energy performance caused by different conditions. For example, DrCEUS

adjusted the on-site survey data in CEUS from actual historical weather data to normalized weather

data [22, 144]. Second, the simulation data can generate more details of energy uses. For example,

the CBECS data can only provide yearly energy data for the whole building. The simulation data

can provide the details, such as hourly energy data for major components. Since CEUS combines

the survey and modeling methods, hourly end-use energy consumptions can be identified [22]. Fur-

thermore, the simulation data can consider various possible situations and broaden the sample sizes

in survey data sources. Griffith et al. [78] developed over 4,000 building energy models based on

the 2003 CBECS. Then based on the models, Griffith et al. [77] and Benne et al. [14] changed the

settings of the models to analyze the potential for achieving NZE buildings and assess the energy

impacts of outside air. Finally, it is easy to conduct the uncertainty and sensitivity analyses by

using simulation data [63, 155, 156, 174]. The energy data from surveys is affected by ambient con-

ditions, building characteristics, and operating. Therefore, it is difficult for survey data to analyze

the uncertainty of energy consumption due to the variances of some inputs and identify sensitive

inputs to energy consumption. The simulation data can complement this shortage of the survey

data. For instance, Eisenhower et al. [63] provided a successful case to conduct uncertainty and

sensitivity analyses, and decomposition of building energy models.

On the other hand, the survey data can also help to improve the quality of the simulation

data. First, survey data provide some important model input data, although not all, for developing

building energy models. For instance, several studies provided a methodology how to use the 2003

CBECS to model envelopes and system [186, 188, 187]. Griffith et al. [78] provided a procedure

to develop building energy models based on the 2003 CBECS data. Also, survey data can validate

and calibrate the building models and improve the simulation results. As the discussion in Section

2, there are differences in energy data between survey and simulation data [78, 179]. Since survey
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data or measured data reflects the actual cases, they can be used to evaluate the quality of building

energy models. Many researches provided methodologies to validate and calibrate the building

energy models based on the survey data or measured data [82, 127, 135, 145, 146, 147, 167]. After

validation and calibration, the simulation data is more persuasive.

2.4 Summary

This section conducts a critical review of energy-related data for U.S. commercial buildings

along with their applications. Three typical survey data sources and six representative simulation

data sources are summarized and compared.

Due to different objectives, the three survey data sources have different collecting methods

and features. CEUS is a state-level in-depth survey data source, CBECS is a national in-depth

source, and BPD is a national large-scale source. Thus, CEUS and CBECS provide detailed energy-

related data. Even, by using DrCEUS, the hourly end-use energy consumption can be obtained in

CEUS. BPD has the largest sample size among the three survey data sources. Among simulation

data sources, Huang and Franconi [88] and Griffith et al. [78] do not provide their models for

individual buildings, which limits users to repeat or extend their work. Commercial Reference

Building Models, Commercial Prototype Building Models, and OpenStudio-Standards gem are

open sources for their building energy models. Users can change model inputs and conduct new

simulations. DEnCity, a multi-purpose building simulation database, provides users a quick analysis

of building energy consumption without running the building energy simulation.

Both survey data and simulation data can be used for energy performance benchmarks, energy

usage forecasts and predictions, recognition of building energy contributors, and developments of

energy policies and standards. In addition, simulation data can be used to conduct urban scale

modeling. Further, this chapter provides the KPIs to guide users for selections of databases.

Because of the advantages and disadvantages of the survey data and simulation data, the combined

applications of both data types are also selected in some researches. By doing so, the two types of

data can complement each other.
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Various users can use the section for their own work. Building owners and managers can select

data sources for benchmarking and use the existing cases for applications as references. Energy

modelers can follow the research mentioned in this section to forecast the energy consumption in

U.S. commercial buildings. Product developers can use this guideline to gauge the market potential.

Policy makers can update and validate the building energy standards by using data sources and

the related applications mentioned by the section as reference.

This chapter is the basis for the standardized computational framework. Based on the com-

prehensive literature review about existing data sources and applications for these data sources,

Chapter 3 develops the framework, which is able to create prototypical building energy models and

conduct building energy analyses.



Chapter 3

Standardized Computational Framework

3.1 Introduction

This chapter develops a standardized computational framework for prototypical building

energy model creation and building energy analyses. By reviewing the existing research, both

prototypical building energy model creation and building energy analyses consist of four steps:

(1) provide requirements of specific applications, (2) select data sources for these applications, (3)

process data from different data sources, such as data cleaning and building energy simulations,

and (4) achieve objectives. Figure 3.1 shows the general workflow for existing research. By using

this general workflow, a rich set of research has been conducted.

Data Source 
Sets

Application
Requirements

Process Data
Achieve

Objectives

Req.1

Req.2

Req.n

…

Set 1

Set 2

Set m

Method 1

… …

Method 2

Method k

Req.1

Req.2

Req.n

…

Figure 3.1: Current general workflow for prototypical building energy creation and building energy
analyses
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However, it is possible to select inefficient methods for data source selection, simulations,

data analyses, and result generation by using this current workflow. Furthermore, the results may

not meet the requirements or evenly are wrong. Generally, there are three main reasons to cause

these potential problems:

(1) There is no time to conduct a comprehensive literature review before selecting methods

for prototypical building energy model creation or building energy analyses. The limited

references are insufficient to conduct deep analyses and generate high-quality results.

(2) It is complex to design the suitable workflow and write clear scripts to systematically

and automatically create prototypical building energy models and conduct building energy

analyses. Furthermore, the new research is sometimes conducted by using the workflow

and scripts from previous research. However, it is possible that these workflow and scripts

are not proper for new specific cases.

(3) It is difficult to consider all details to select data sources, process the data, conduct simu-

lations, and analyze the results. If partial work is conducted manually, some mistakes are

possible to be caused by carelessness. Furthermore, if some decisions are made based on

arbitrary judgments, some biases may lead to the inaccurate or evenly wrong results.

Thus, it is meaningful to design a standardized computational framework based on a com-

prehensive review about existing related research. Based on the literature review summarized in

Chapter 2, this chapter develops a new standardized computational framework. Figure 3.2 shows

the general workflow to create prototypical building energy models and conduct building energy

analyses by using this new framework.

This new workflow has three nodes (P1, P2, and P3), which are used to identify the best

procedures to achieve objectives provided in the application requirements. First, the node, P1,

is used to identify the most suitable data sources for specific application requirements. Second,

the node, P2, is used to identify the best methods to process the data from the selected data
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Data Source 
Sets

Application
Requirements

Process Data
Achieve

Objectives

Req.1

Req.2

Req.n

…

Set 1

Set 2

Set m

Method 1

… …

Method 2

Method k

Req.1

Req.2

Req.n

…

Computational Framework

P1 P2 P3

Figure 3.2: New general workflow for prototypical building energy creation and building energy
analyses by using the standardized computational framework

sources. Third, the node, P3, is used to generate and validate the results, which are required in the

application requirements. To develop this standardized computational framework, six questions

need to be answered:

(1) What information need users provide in the forms of application requirements?

(2) Are there sufficient data sources for various building energy analyses?

(3) What are the rules for a standardized computational framework to identify the best data

sources from the sets of the data sources?

(4) How does a standardized computational framework convert data from different data sources

into the required format?

(5) What factors should a standardized computational framework consider when selecting

methods to process data?

(6) What modules should a standardized computational framework include for building energy

analyses based on the simulation results?
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The following sections answer these six questions and detail this standardized computational

framework. Section 3.2 shows the structure of this framework. Section 3.3 makes a discussion about

the potential applications of this framework. Section 3.4 makes a conclusion and briefly introduces

the following research by using this framework.

3.2 Structure of the Standardized Computational Framework

This section introduces the structure of the standardized computation framework for proto-

typical building energy model creation and building energy analyses. This framework is developed

by using a programming language, Python, which automatizes the whole process and is used to

identify the best procedures to generate results. This framework consists of six steps, which are

shown in Figure 3.3 with red numbers and dash outlines. They are (1) requirements for applica-

tions, (2) data source selection, (3) data pre-processing, (4) simulations, (5) data post-processing,

and (6) result generation.

Application 
Requirement

Data Source
Selection

Database for
Data Sources

Data Source

Data-Driven
Model

Simulation and Analysis Tools

Cloud Local

Simulation and Analysis Containers

Pre-
processing

Simulation

Tool Selection Container Selection

Post-processing
Results for 
Application

Standardized Computational Framework

Updated Data Source

OR

Selected Container

OR OR

Selected Tool

Result Package Store Results
Database for 

Simulation Results

Extract Needed Data Needed Data

1 2

3

5

4

6

Figure 3.3: Structure of the standardized computational framework
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In Step 1, users provide application requirement forms with all necessary information. For

example, the forms have to include the specific types of applications: prototypical building energy

model creation or building energy analyses. In Step 2, based on the requirements of applications,

the framework selects data sources from the database, which is the work for the P1 node shown in

Figure 3.2. In Step 3, the framework pre-processes the data from the data sources and prepares the

required data for simulations. In Step 4, the tools and containers for building energy simulations

are selected. The simulations are conducted by using the selected tools and containers. All key

parameters and simulation results are stored into another database, which is used to avoid loss of

the data. Furthermore, the data in this database can be used for future related research. In Step 5,

the key parameters and simulation results are extracted. By using these parameters and results, the

standardized computational framework completes to create prototypical building energy models or

conduct building energy analyses. The method for these steps are the work for the P2 node shown

in Figure 3.2. In Step 6, the results are processed and sent back to the users, which is the work

for the P3 node shown in Figure 3.2. Figure 3.4 shows the six highlights in the standardized

computational framework. Based on these six highlights, the following sections will answer the six

questions asked in Section 3.1.

3.2.1 Application Requirement Form

The application requirement form requests users to provide a table with all requirements for

their specific applications. Table 3.1 lists the necessary information for different requirements. The

items 1 to 7 show the basic information that needs to be provided. If the users have specific needs,

they should put details into the eighth item. Then the standardized computational framework will

transfer the information from the table into the inputs of the framework, which are readable for

Python.
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Application 
Requirement

Data Source
Selection

Database for
Data Sources

Data Source

Data-Driven
Model

Simulation and Analysis Tools

Cloud Local

Simulation and Analysis Containers

Pre-
processing

Simulation

Tool Selection Container Selection

Post-processing
Results for
Application

Standardized Computational Framework

Updated Data Source

OR

Selected Container

OR OR

Selected Tool

Result Package Store Results
Database for

Simulation Results

Extract Needed Data Needed Data

1. Application 
Requirement Form

2. Data Source Database

3. Selection of Data
Sources

4. Data Pre-
Processing 5. Simulation Process

6. Data Post-Processing

Figure 3.4: Highlights in the standardized computational framework

3.2.2 Data Source Database

This database stores main survey and simulation energy-related data sources for U.S. com-

mercial buildings, such as the 2003 Commercial Buildings Energy Consumption Survey (CBECS),

2012 CBECS, DOE Commercial Reference Building Models, and DOE Commercial Prototypical

Building Models [51, 57, 39, 45]. Since current prototypical building energy models only repre-

sent limited types of buildings in certain countries, the standardized computational framework is

creating new models for the missing types, such as college/university buildings [195], auto service

and repair shops [196], and religious worship buildings [194]. To implement the database, these

models are stored as the starting point for future research. The methodology to create prototypical

building energy models will be introduced in Chapter 4. By using this methodology, Chapter 5

creates the prototypical building energy models for the missing types.
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Table 3.1: Necessary information for the application requirement form

No. Item Description

1 Type of Applications

It consists of five options:
1) Energy Performance Benchmarks;
2) Energy Usage Forecasts and Predictions;
3) Energy Use Contributions of Building Components;
4) Supports of Energy Policies and Standards;
5) Urban Scale Modeling.

2 Building Type
The types of the researched commercial buildings need to be
provided.

3 Location/Climate
The typical cities or ASHRAE climate zones need to be
provided.

4
Type of Data Sources

Preferred

It consists of four options:
1) Survey data sources;
2) Simulation data sources;
3) Combined both survey and simulation data sources;
4) No preference.

5 Tools Preferred

It consists of four options:
1) EnergyPlus;
2) OpenStudio;
3) Data-driven model;
4) No preference.

6 Container Preferred

It consists of three options:
1) Local;
2) Cloud;
3) No preference.

7
Researched Variables/

Model Inputs

For survey data, users need to provide the researched
variables;
for simulation data, users need to provide the researched
model inputs.

8 Specific Requirements
The users also need to provide specific requirements, such as
sampling method, uncertainties of variables or model inputs,
and number of the samples.

3.2.3 Selection of Data Sources

This highlight is objective to select the most suitable data sources for specific applications. If

a table for the application requirements provides the preference of the data sources, the standard-

ized computational framework will select data sources based on this preference. Otherwise, the

framework will select data sources based on the key performance indicators (KPIs) and aggregated

scores of different data sources. Figure 2.3 have already showed the KPIs and aggregated scores
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for the three main survey data sources; Figure 2.4 have already showed the KPIs and aggregated

scores for the six main simulation data sources. The data source, which has the highest score, tends

to be selected. For example, if the research is support of the energy policies and standards by using

the survey data, the standardized computational framework will select the CBECS, which has the

highest aggregated score.

3.2.4 Data Pre-Processing

Data pre-processing aims to collect and clean data from the selected data sources, and then

convert the data from data sources into the required formats. Figure 3.5 shows the workflow to

pre-process the data. The standardized computational framework firstly identifies whether the

selected data sources include survey data.

If there is no survey data included, based on the information in the application requirement

forms, the framework will decide whether it needs to modify the model inputs. If model inputs

do not need to be modified, the framework will use the models as baselines; otherwise, the model

inputs will be modified by following the requirements and then use the new models as baselines.

If the selected data sources include survey data, the framework will collected related data

and clean data firstly. Then the data will convert the data formats. If the data is used to create

EnergyPlus or OpenStudio models, the data will be converted into model inputs; otherwise, the

data will be converted into the formats required by regression models.

The building energy simulations also needs the uncertainties or values of the researched

variables or model inputs. Thus, the outputs of the data pre-processing consist of two parts: (1)

training data for regression models or baseline models, and (2) uncertainties or key values for the

researched variables or model inputs. The key values usually include median, average, and 25%

and 75% percentile values.
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Convert the Format of the 
Data into Format for
Regression Models

Modify the Model Inputs 
Based on the
Requirements

Collect Related Data

Clean the Data

Convert the Data into 
Model Inputs

Data Source

Contain 
Survey Data?

Yes

Create E+/OS 
Models?

Yes

No

Modify Model 
Inputs?

No

Yes

Determine the 
Uncertainties or Values

for the Researched
Variables/Model Inputs

No

1. Training Data for Regression Models/Baseline Models
2. Uncertainties or Values for the Researched Variables/Model Inputs

Figure 3.5: Workflow for the data pre-processing

3.2.5 Simulation Process

Simulation process consists of tool selection, container selection, and simulation. In this

highlight, three questions needs to be answered for specific applications: (1) Which tool does the

standardized computational framework select for simulation? (2) Are simulations run locally or on

the cloud? (3) Are simulations run in parallel or in succession? Figure 3.6 shows the flow chart,

which answers these three questions. The framework firstly identifies whether there are EnergyPlus

or OpenStudio models in the outputs of the data pre-processing.

If there is no EnergyPlus or OpenStudio model, the framework will develop regression mod-
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els by using the training data. Since the development of regression models usually needs short

computational time and limited computing sources, the simulations will be conducted locally. The

framework includes a rich set of Python packages to develop regression models, such as scikit-learn

and XGBoost [138, 23]. If application requirement forms do not specify the methods to develop re-

gression models, the framework will try all methods in the set. Then the methods that have simple

structure and can generate accurate results are selected to create regression models. After that,

the framework will randomly select some data to test the performance of the regression models. If

more than one regression methods are selected, the simulations will be run in parallel.

If the EnergyPlus or OpenStudio models are used, the framework then identifies whether

uncertainties of model inputs are provided. If only the values of the selected model inputs are

provided, the number of building samples is small, which usually costs the short computational

time and limited required computational sources. Thus, the simulations will be run in succession

locally.

If the uncertainties of model inputs are provided, the first step is to estimate the sample size.

If the sample size is small (sample size is no larger than m), the framework will select samples

and run EnergyPlus or OpenStudio simulations in succession locally. If the sample size is large

(sample size is larger than m and no larger than n, which n is larger than m), the framework

will select samples and run EnergyPlus or OpenStudio simulations in parallel on the cloud. If the

sample size is super large (sample size is larger than n), the framework will select a small building

sample sets in the spare grid firstly and run EnergyPlus or OpenStudio simulations in parallel on

the cloud. Based on the simulation results, the framework conducts sensitivity analysis to identify

the sensitive model inputs. Then the framework only focuses on these sensitive inputs. After this

process, the dimensions of the problems are reduced. For example, assuming that there are 20

model inputs at first and only 10 inputs are sensitive, if three values are select for each values and

all possible combinations are considered, the new sample size is only 1
310

times by comparing with

the former one. To continue reducing the computational time, the framework uses the results of the

small sample size to train meta-model and use the meta-model to run large-scale building energy
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simulations. Table 3.2 provides an example about the comparison of the computational time by

using EnergyPlus and meta-model. In the example, the computational time of meta-model is only

3× 10−5 times of the EnergyPlus models.

In this highlight, the framework usually consumes high computational time to conduct thou-

sands of simulations by using full-scale building energy simulation tools, such as EnergyPlus and

OpenStudio. To avoid duplicating the process, it is important to save all important data. Thus,

after completing the large-scale building energy simulations, the framework stores the key variables,

model inputs, and energy data into a database. The data in the database will be extracted in the

next step. Furthermore, the data can also be used for future research.

Table 3.2: Comparison of computational time by using EnergyPlus and meta-model

Sample Size: 1,000,000
Number of Cores for the Computer: 4

EnergyPlus Meta-Model

1.9 years 30 min

3.2.6 Data Post-Processing

Data post-processing is used to process the results of simulations and generate the required

data for different applications. The standardized computational framework consists of four mod-

ules for data post-processing, which are shown in Figure 3.7. The first module, named as ”Data

Analysis Module”, can conduct four types of simple data analyses: (1) comparison of energy data;

(2) classification/clustering/regression; (3) correlation analysis; and (4) sensitivity analysis. The

results for comparison of energy data can be used to quantitatively evaluate the energy savings

by conducting building energy retrofits or upgrading building energy standards. The results of

classification, clustering, and regression can be respectively used to identify which building type a

building belongs to, group similar buildings into sets, and predict the future energy consumption.

The results of correlation analysis can be used to identify the relationship between different vari-

ables or model inputs. The results of sensitivity analysis can be used to identify the relationship
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between building characteristics, building operations, and building energy consumption. A rich set

of methods are included for these four types of analyses and this dissertation will provide several

examples in the following chapters.

The second module, named as ”Model Calibration Module”, is used to calibrate EnergyPlus

or OpenStudio models based on the empirical data and users’ criteria. There are two calibration

strategies. The first strategy is for the building models representing specific buildings. Users need

to provide the monthly energy data from utility bills and hourly data from sensors. The workflow

to calibrate these buildings is developed based on a rich set of existing research [82, 124, 143, 136].

The second strategy is for the prototypical building energy model. The data is mainly collected

from survey data and existing research [39, 45, 51, 57, 78, 186, 188]. Usually, in this case, the data

only provides the yearly end use energy data. A new methodology is needed and it will be detailed

in Chapter 4.

The third module, named as ”Validation Module”, is used to validate the performance of

results calculated by using the standardized computational framework. Users can provide either

criteria based on calibrated data from on-site measurements and existing data sources, or rule-

based criteria for model validation. The last module, named as ”Visualization Module”, is used

to provide readable result summary. The standardized computational framework can provide the

various types of chart, such as bar chart and boxplot. If users only need to output the raw data,

they can skip this module.

3.3 Potential Applications by Using the Standardized Computational Frame-

work

This section discusses the applications by using the standardized computational framework.

Section 3.3.1 discusses the applications for prototypical building energy model creation by using

this framework. Section 3.3.2 discusses the applications for building energy analyses by using this

framework.
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Database for Large-
Scale Results

Model Calibration Module

Validation Module

Data Analysis Module

Sensitivity Analysis

Correlation Analysis

Energy Data Comparison

Classification/Clustering/Regression
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Empirical-based Validation

Rule-based Validation

Visualization Module

Results for
Application

Post-processing

Figure 3.7: Four modules in the data post-processing

3.3.1 Application for Prototypical Building Energy Model Creation

The prototypical building energy models provide the starting point for research on building

energy analyses [36]. These models represent realistic building characteristics, building assets, and

building operations. Furthermore, these models have the representative energy performance. By

reviewing the existing sets of prototypical building energy models, some building types in some

counties are missing. However, these missing models are required for building energy analyses.

This standardized computational framework can create prototypical building energy models for

these missing building types, which implements the existing sets of prototypical building energy

models.

Figure 3.8 shows the application for prototypical building energy creation. First, in the re-



46

quirement for applications, the framework provides the related information for creating prototypical

building energy models. Second, this framework selects survey data sources for the model creation.

Third, the framework collects and cleans the data from the selected survey data sources. Then the

data is converted into model inputs. It is noticeable that some required data is not provided by

survey data sources and needs to be provided by users in the application requirement forms. The

data is usually collected from the existing related research and building energy standards. Fourth,

the framework identifies the possible building samples and conducts simulations for these samples.

In Step 5, the framework calibrates the prototypical building models based on the simulation results

and then validates the results by using the empirical data. Finally, the prototypical building energy

models are generated and they are the outputs for this application. The new prototypical building

energy models will be stored into the database for simulation data sources. These new models will

be used for future research. Chapters 4 and 5 will detail this procedure and create prototypical

building energy models for four U.S. commercial building types.

3.3.2 Application for Building Energy Analyses

Based on the data sources, various building energy analyses can be conducted. The existing

research related to building energy analyses has already been reviewed in Section 2.3. The stan-

dardized computational framework can systematically conduct different types of building energy

analyses.

Figure 3.9 shows the applications for building energy analyses by using the framework. First,

in the requirement for applications, the framework provides the related information for specific

building energy analyses. Based on literature review in Section 2.3, there are five main types of

applications. Currently, this framework mainly focuses on the building-level analyses. Thus, the

framework can conduct analyses for energy performance benchmarks, energy usage forecasts and

predictions, energy use contributions of building components, and supports of energy policies and

standards. However, for urban scale modeling, the framework is only able to do preparation and

conduct building-level simulations. In the future, the framework will be updated and include the
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urban scale modeling. Second, the survey data or simulation data is selected based on the different

requirements. Third, if survey data is selected, the framework will collect and clean data, and

then convert data into required formats; if simulation data is selected, the framework will identify

whether model inputs need to be modified. Fourth, based on the requirements and data provided

in Step 3, regression models are created or simulations are conducted. Fifth, the framework decides

which modules are used for the data post processing. Finally, the required results of building energy

analyses are generated and sent to the users. Chapters 6 and 7 will provide two examples for the

building energy analyses by using this framework.

3.4 Summary

This section details the structure of the standardized computational framework, and intro-

duces potential applications of this framework about prototypical building energy model creation

and building energy analyses. Chapter 4 provides the detailed methodology for prototypical build-

ing energy model creation. By using the framework, Chapter 5 creates prototypical building energy

models for four U.S. commercial building types. The medium office buildings and religious worship

buildings are used as two case studies to details the procedures of model creation. After that,

Chapters 6 and 7 analyze the impacts of energy savings and electricity pricing programs on energy

efficiency measure (EEM) selection. The models for U.S. medium office buildings are used as an

example to analyze these impacts.
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Chapter 4

Methodology to Create Prototypical Building Energy Models

This chapter proposes a new methodology to create prototypical building energy models. This

methodology can be implemented by using the standardized computational framework developed

in this dissertation.

4.1 General Description

Prototypical building energy models of existing buildings should contain the typical building

characteristics, include relevant operating schedules, and reflect the typical energy performance

of that building type for a certain vintage at a given climate zone. This section proposes a new

methodology to systematically create prototypical building energy models to meet the above re-

quirements. To create prototypical building energy models, data analytics is applied to a rich set of

building energy data sources. Figure 4.1 illustrates the six key steps of the proposed methodology

for determining model inputs, and calibrating and validating the building energy models with the

available data sources. Step 1 is to identify the requirements for model inputs based on the selected

building energy simulation program. In order to determine the model input values, Step 2 is to

collect data for the specific building type, location, and vintage from several data sources. Step

3 is to clean the data to exclude atypical and erroneous data. Because some data cannot directly

be used as model inputs, Step 4 converts the data into model inputs. Steps 1 through 4 will be

introduced in Section 4.2 in detail. After that, Step 5 calibrates the prototypical building energy

models to obtain the energy results that represent the energy performance of typical buildings,
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which will be introduced in Section 4.3. Finally, Step 6 validates the energy results by using the

empirical data, which will be introduced in Section 4.4.

Step 4:Step 1: Step 2: Step 3: Step 5:

Identify the 
model inputs

Collect related
data Clean the data

Convert the
data into

model inputs

Calibrate the
building

energy models

Step 6:

Validate the 
energy results

4.2. Uncertainties 
of Model Inputs

4.3. Model
Calibration

4.4.Model 
Validation

Figure 4.1: Workflow of the proposed methodology in creating prototypical building energy models

4.2 Model Inputs (Steps 1 - 4)

4.2.1 Step 1: Identify the Model Inputs

Figure 4.2 summarizes the possible model inputs of prototypical building energy models from

high level frameworks to low level frameworks. The top level of the model inputs can be divided

into the following six categories: Weather Condition, Geometry, Envelope, Schedule, Internal Load,

and System. First, the Weather Condition consists of the ambient parameters, such as ambient

temperature and wet bulb temperature. The hourly ambient parameters are needed if model

developers plan to simulate hourly energy consumption of the buildings. Second, the Geometry

contains dimensional and shape parameters, including total floor area and window location. Next,

the Envelope is composed of two sub-levels; the upper sub-level contains the types of envelopes and

the construction layers for specific envelope types, while the lower sub-level contains the detailed

envelope parameters, including the thickness of each layer and R-value of insulation layers. Then,

the Schedule is needed for occupants, lighting, plug loads, and building systems. To obtain the

hourly energy consumption of the buildings, energy modelers need to provide the hourly schedules

for model input files. Although the schedules of system operations and the occupants are related,

they are not the same. For example, the HVAC system usually operates before the first person
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enters a building and stops after the last person leaves the building. After schedules, the Internal

Loads are required as model inputs, which are comprised of power and occupant densities. Finally,

the System category consists of the HVAC system, domestic hot water system, and refrigeration

system. After determining the specific type of each system for an individual building, energy

modelers then need to identify the parameters of all the components in each system.

Weather Condition

Geometry

Envelope

Schedule

Internal Load

System

Ambient Parameters
e.g. Ambient Temperature, Ambient Wet Bulb Temperature

Dimensional and Shape Parameters
e.g. Total Floor Area, Building Shape, Window-to-wall Ratio

Envelope Types
e.g. Type of Exterior Walls

Envelope Parameters
e.g. Insulation R-value of Exterior Walls

Hourly Schedules (Workday, Weekend, Holiday)
e.g. Lighting Schedule, HVAC Operation Schedule, Cooling Temperature Setpoint Schedule

Default Power Density, Default Occupant Density
e.g. Plug Load Density, Lighting Power Density

System Types
e.g. Cooling System Type

System Parameters
e.g. Component Efficiency, Water Tank Capacity

Figure 4.2: Inputs of prototypical building energy models from high level frameworks (left) to low
level frameworks (right)

4.2.2 Step 2: Collect Related Data

Based on the required model inputs identified in Step 1, the related data can be collected

from building energy databases, literature, and current building energy models of other building

types. First, building energy databases provide building characteristics, operating schedules, and

energy data of existing buildings. There are several commonly used databases for U.S. commercial

buildings, such as Commercial Buildings Energy Consumption Survey (CBECS), Building Perfor-

mance Database (BPD), and California Commercial End-Use Survey (CEUS) [59, 107, 22, 197].
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The data in these databases is mainly collected from surveys and field measurements. However,

the data availability varies depending on the databases. For example, CBECS, a national in-depth

sample survey for the stock of U.S. commercial buildings, provides the building characteristics,

operating schedules, and detailed energy data for individual building samples [59, 197]. On the

other side, BPD gives the distributions of characteristics and energy data for different categories

of commercial buildings [107]. Huang and Franconi [88] separated the model inputs into three

categories: (1) the physical building characteristics, (2) the HVAC system characteristics, and (3)

the building’s internal conditions and operational patterns. Based on their analysis, the difficult

levels to obtain the information of the model inputs in these three categories are:

(1) The physical building characteristics - EASY: They are static, observable and relatively

straightforward to record and verify. The survey data is usually able to provide some

information about these model inputs, such as total floor area and window-to-wall ratio.

(2) The HVAC system characteristics - DIFFICULT: They are affected by the control, op-

erations, and maintenance, which are difficult to be recorded by survey data. The survey

data is only able to record some simple information, such as system types.

(3) The building’s internal conditions and operational patterns - VERY DIFFICULT: They

are impossible to verify without detailed on-site monitoring and they greatly impact on

the building energy consumption. Based on the methods to collect data, the survey data

usually does not include the information of model inputs in this category.

Based on the categories provided in Figure 4.2 and the extent that data is available, this

chapter evaluates the possibility of obtaining relevant data for model inputs from the databases. Ta-

ble 4.1 summaries the possibility of related data for model inputs provided by the above-mentioned

U.S. commercial building energy databases.

The sites and total floor areas of buildings are often readily obtained from the databases, while

the details of envelopes, systems, and hourly operating schedules are sometimes either not available
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or require significant processing. For example, CBECS provides building characteristics, operating

schedules, and energy data for individual building samples [59]. CBECS also provides detailed

information on weather conditions, building geometries, and energy consumption for individual

energy sources and end-uses. However, it is challenging to record the hourly schedules for thousands

of building samples. Instead, CBECS provides information on total weekly work hours and whether

the building is operated on weekdays and weekends. The general types of envelopes and building

systems are also collected in CBECS; however, their details – such as insulation R-values, exterior

wall thicknesses, and cooling and heating system efficiencies – are not included. Even if geometry

information is included in detail, it is still difficult to obtain all the required data for model inputs,

such as window-to-wall ratio and window location. Measured data collected from sensors can relieve

this problem. However, using measured data for prototypical building energy models is not always

feasible, since data from many similar buildings are required, and including many buildings can be

prohibitive in terms of cost and time.

One solution to address the missing data in databases is to consult other sources, such as

building energy-related papers, reports, building energy standards, and existing energy models for

other building types. For example, the DOE Commercial Reference Building Models used some

data from building energy-related papers, reports, and standards to implement the data related to

the envelopes and equipment [36]. In addition, Griffith et al.[78] determined the values of model

inputs by collecting data from various building energy-related papers and reports.

4.2.3 Step 3: Clean the Data

Before using the data collected in Step 2 to create building energy models, it is necessary to

clean the data that is not suitable for model inputs and contains errors. Figure 4.3 displays the

workflow to clean the related data, which begins with checking whether the data is representative

for the typical buildings. Five aspects need to be inspected:

(1) Are there typical building characteristics in the data set? The data set usually
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provides either categories or numerical values for different building characteristics. If the

building characteristics are categorical, then building samples with features that fall under

those categories are assumed to be typical. If the building characteristics are numerical,

then the building samples with characteristics between the 25th and 75th percentiles for

the given building type are assumed to be typical. For atypical building characteristics,

engineering judgment or on-site survey should be used to clean the data, such as special

building shapes, extremely high total floor areas, and extremely high window-to-wall ratios.

Building samples with atypical characteristics are deleted from the data sets directly.

(2) Do the locations of the building samples and the prototypical building energy

models have similar weather conditions? Climates impact the values of some data,

such as insulation of the envelopes. Thus, if the building samples have different weather

conditions from the models, the data that is easily influenced by the climate must be

cleaned. In these building samples, the climate-sensitive data is changed into the data

from other building samples, which have required weather conditions and have similar

building features.

(3) Are there typical building assets of building samples in the dataset, and are

the assets from representative building models? The typical building assets have the

same definition as the typical building characteristics. For example, high energy-efficient

equipment should not be selected for models of old buildings, where the technology did

not yet exist. In these building samples, the assets are changed into the data from other

building samples, which have qualified assets and have similar building features.

(4) Are there typical operating schedules present? For instance, the data needs to be

cleaned for the building samples with extremely low operating time. In these building

samples, the schedules are changed into the data from other building samples, which have

qualified schedules and have similar building features.
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(5) Is the energy consumption per area no much higher or lower than the median

value? If it is much higher or lower, the data will be cleaned. For the unchanged building

samples, the samples are deleted if the values are three standard deviations away from

the median value; for the building samples being modified based on aspects 2 through 4,

the energy consumption is adjusted based on the rules. If the values are still 3 standard

deviations away from the median value, the samples are deleted.

If the building energy databases provide the data for individual building samples, it is nec-

essary to check whether there are missing data or errors. The recommended sequence to check

data is: (1) energy data, (2) weather conditions, (3) geometries, (4) schedules, and (5) others. The

erroneous data should be deleted. On the other hand, if a building sample is only missing a few

data points, the remaining data can still be used for identifying the model inputs after the data

adjustment based on expert knowledge. For example, even if the data of operating schedules for

one building sample is not provided by the database, the geometry and envelope data are still useful

to create the prototypical building energy models and can be used to determine model inputs in

the subsequent steps.

4.2.4 Step 4: Convert the Data into Model Inputs

Not all the collected data can be directly used as model inputs; as such, this step converts the

collected data into model inputs. The data are classified into four categories based on their sources

and situations. Table 4.2 lists the methods to convert data into model inputs for each category.

Building energy databases provide the data for individual building samples or analysis data.

If the data can be directly used as model inputs, this chapter selects median values for numerical

data and the most frequent category for categories as model inputs, which is described in method

M1 of Table 4.2. For example, the 2003 CBECS provides the total floor areas for individual building

samples; the median total floor area will be used as the model input.

If the data cannot be directly used as model inputs, procedures need to be designed to convert
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Typical building 
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Figure 4.3: Inputs of prototypical building energy models from high level frameworks (left) to low
level frameworks (right)

data into model inputs based on existing methods in literature as method M2. For instance,

Winiarski et al. [186] and Winiarski et al.[187] determined the model inputs of envelopes and

HVAC systems based on the 2003 CBECS. Further, the 2003 CBECS provides the building shapes

for individual building samples instead of aspect ratios. However, the aspect ratio is required for

model inputs. Thus, Winiarski et al. [186] identified the building shape category with the highest
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frequency and determined the aspect ratio based on the building shape. In addition, Griffith et al.

[78] created over 4,000 building energy models to simulate the energy performance of individual

building samples in the 2003 CBECS and introduced several methods to convert the survey data

into model inputs. For instance, because the 2003 CBECS data only contains limited information

on schedules (such as the total weekly operating hours or general workday/weekend operation),

Griffith et al. [78] designed a workflow to identify the work hours every day, which is needed for the

model. After that, the ranges of these model inputs are determined based on the converted model

inputs and the best values of these model inputs will be identified by calibrating models (Step 5).

In addition to building energy databases, the data in Step 2 may also be collected from

literature and existing model sources. Literature provides summaries of measured data or simulation

data, which can be directly used as model inputs. Data in literature should be recorded from

existing buildings when the prototypical building energy models represent the energy performance

of existing buildings as described in method M3. For instance, Persily [140] provided the data for

infiltration rate, which can be used for existing building models. Then, based on the data provided

by literature, the ranges of the model inputs in this type are determined. The best values of these

model inputs will be identified by calibrating models (Step 5).

Furthermore, inputs of existing building energy models for other building types, such as office

and primary school models in the DOE Commercial Reference Building Models, can be used as

reference, which is named as method M4. For example, the types of envelopes can be collected from

the CBECS. The types of envelopes in the new models are usually used in some existing building

energy models for other building types. Thus, the envelope details, such as insulation R-values,

can be obtained from these existing building energy models. Based on the values in these existing

building energy models, the ranges of the model inputs in this type are determined. The best values

of these model inputs will be identified by calibrating models (Step 5).
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4.3 Model Calibration (Step 5)

Section 4.2.2 has evaluated the possibility of related data for model inputs provided by the

U.S. commercial building energy databases. The results shown in Table 4.1 indicate that the values

of some model inputs are not able to be obtained from the data sources. Table 4.2 proposes the

methods to convert related data into model inputs. For the model inputs, which are not provided

by building energy databases directly, the ranges of model inputs are determined. This section

introduces the method to calibrate the models and identify the best values among the ranges of

these model inputs.

Before calibrating the prototypical building energy models, it is necessary to identify how

to evaluate the performance of calibrated models. The criteria to evaluate the performance will

be introduced in Section 4.4 in detail. Generally, there are two types of criteria, which are listed

below:

(1) If there are a large set of the building samples after data cleaning, the empirical baselines

are developed by using regression models, which are created by using the cleaned data. The

criterion is that the coefficient of variation of the root-mean-square deviation (CV(RMSD))

between the prototypical building energy models and regression models is lower than 0.05.

(2) If there are only a small set of the building samples after data cleaning, the performance

metrics based on engineering judgment are developed to evaluate the calibrated prototypical

building energy models.

After determining the criteria to evaluate the performance of model calibration, it is necessary

to identify which model inputs need to be calibrated. Figure 4.4 shows the rules to determine the

values and ranges of model inputs for model calibration. First, by reviewing existing research or

conducting sensitivity analysis among the ranges of model inputs identified in Step 4, the model

inputs can be divided into two categories: insensitive model inputs and sensitive model inputs.

Based on Table 4.2, the model inputs in both categories contain data that is directly provided
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by data sources (M1) and data that is not directly provided by data sources (M2, M3 and M4).

If the data is directly provided by data sources, the median value or highest category of data is

selected. If the data is not provided by data sources but it is insensitive, the values provided by the

literature or adjusted by existing building energy models for other building types are used as the

model inputs. For the rest model inputs, which is not provided by data sources and is sensitive,

the models are calibrated among the ranges of model inputs identified in Step 4. By calibrating

the models, the best values of these model inputs are identified and the calibrated prototypical

building models are the results for the application of prototypical building energy model creation.

Sensitive Model Inputs

Data is Provided by 
Data Sources

Data is NOT Provided
by Data Sources

M
od

el
In

pu
ts

Insensitive Model Inputs

Data is Provided by 
Data Sources

Data is NOT Provided
by Data Sources

Median Value or Highest 
Frequent Category in the
Data Sources as Model

Input

Data in the Literature or 
Adjusted by Existing

Building Energy Models
for Other Types as Model

Input

RANGE Developed Based
on Literature or Existing
Building Energy Models

for Other Types

Model Calibration
(Identify the Best Values

for RANGES)

Calibrated 
Prototypical Building

Models

Figure 4.4: Rules to determine the values and ranges of model inputs for model calibration

After determining the values and ranges of model inputs, there is another question that needs

to be solved. Since empirical databases, such as CBECS [59], only provides the yearly energy use

intensity (EUI), it is unable to calibrate models by using the traditional method, which is based

on monthly utility bills and sensors’ data. Thus, a new methodology needs to be developed for

calibrating prototypical building energy models, which is shown in Figure 4.5.

Though only yearly energy data is provided, there are relationships of model inputs between

the prototypical building energy models in different climate zones and vintages. Thus, the pro-

totypical building energy models in different climate zones and vintages are assembled into an



63

A Set of Sensitive Model Inputs for 
Baseline Model in Climate Zone1 

and Vintage 1

A Set of Sensitive Model Inputs for 
Baseline Model in Climate Zonem 

and Vintage n

…
Relationship

between Inputs in
Different Models

Energy Data for 
Climate Zone 1 and

Vintage 1

Energy Data for 
Climate Zone m
and Vintagen

…

Meta-Model

Meta-Model

Assembled Model Inputs Assembled Model Outputs

Improved
Genetic

Algorithm

Empirical Energy Data for All Climate Zones and Vintages

Eva
luate 

the 

models

Adjust model 

inputs

Full Scale BEM

Full Scale BEM

Figure 4.5: Methodology to calibrate the building energy models

assembled model. The relationships of models inputs become the links of the different prototypical

building energy models in the assemble model. Table 4.3 shows an example about the relationships

for prototypical building energy models for U.S. commercial buildings, which use ASHRAE climate

zones and have two vintages (Pre- and post-1980).

For example, if the model input belongs to Type 1 of relationship, the values of this model

input in all climate zones and vintages are the same. Thus, when a model input belonging to Type

1 is changed in one prototypical building energy model, this model input in all other prototypical

building energy models has to be modified into the same value.

Based on these relationships, the samples of assemble model are selected, and full scale

building energy modeling programs and meta-models are used to calculated energy data for each

prototypical building energy model. In Figure 4.5, the empirical energy data is used as the indicator

to evaluate the performance of model calibration.
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Table 4.3: Example about relationships between inputs in different models

No. Type of Relationship Example Index

1 Values are the same in all climate zones and both vintages Aspect Ratio Type 1

2
Values are the same in all climate zones;
Values for post-1980 models are no higher than pre-1980
models

Electric
Equipment

Power Density
Type 2

3
Values are the same in all climate zones;
Values for post-1980 models are no lower than pre-1980
models

Cooling COP Type 3

4
Values in climate zones 5∼8 are no higher than the other
climate zones

Window U-
factor

Type 4

5
Values in climate zones 5∼8 are no lower than the other
climate zones

Exterior Wall
Insulation R-

value
Type 5

Finally, the improved genetic algorithm (GA) is used to calibrate the assembled model and

generate calibrated prototypical building energy models. Figure 4.6 shows the schematic diagram

of improved GA. In improved GA, each sample for the assemble model has three dimensions: (1)

model inputs, (2) climate zones, and (3) vintages. There are rule-based relationships between model

inputs in different climate zones and vintages. The improved GA provides constraints to generate

new populations by considering these relationships. In one loop, the improved GA conducts four

steps: selection of samples based on rules, crossover, mutation, and new population generation. Till

the energy results meet the requirements or the number of loops are larger than the setting value,

the process will be stopped. Then some model inputs will be adjusted based on the engineering

judgment. For example, U-factor and Solar Heat Gain Coefficient (SHGC) of window are discrete

values in the real world based on the window types. Thus, the final values of U-factor and SHGC of

window in the model are selected from the closest values in the set of existing window types. After

that, the calibrated assemble model will be recorded. The prototypical building energy models are

obtained from the calibrated assemble model.
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Figure 4.6: Schematic diagram of improved GA

4.4 Model Validation (Step 6)

As mentioned in Section 4.3, there are two types of criteria to evaluate the performance of

calibrated prototypical building energy models. The first type of criteria are used when there are

a large set of the building samples after data cleaning. The method provided by ENERGY STAR

Portfolio Manager is used to create empirical baselines [66]. Figure 4.7 shows the methodology to

create empirical baselines. First, the data is collected from data sources and filtered based on the

rules. The objective to filter the data is to clean the atypical building samples or building samples

with errors, which has been introduced in Section 4.2.3. Second, the sensitive variables need to

be identified by conducting sensitivity analysis. Then the regression model is developed based on

the sensitive variables in the filtered building samples. Finally, the typical values of these sensitive
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variables are used to calculate the energy data, such as empirical site EUIs by using the regression

model. The median values are usually used as the typical values of the sensitive variables.

Develop regression model

Collect and filter the data

Identify the sensitive variables

Calculate the empirical site EUIs by using the regression model

Figure 4.7: Methodology to create empirical baselines

After identifying the energy data for the empirical baselines, an indicator to evaluate baseline

models needs to be selected. The indicator needs to be a value, which is able to evaluate the perfor-

mance of the prototypical building energy models in all climate zones and vintages. As mentioned

in Section 4.3, the CV(RMSD) is selected as the indicator to evaluate whether the baseline models

have consistent energy estimation with empirical baseline. To calculate the CV(RMSD), the first

step is to calculate root-mean-square deviation (RMSD). To illustrate the method to calculate the

CV(RMSD), the empirical site EUI is used as energy data here, and two vintages (pre- and post-

1980) and 15 climate zones are considered for the prototypical building energy models. Thus, the

RMSD is calculated by using the following equation:

RMSDV int =

√√√√∑15
i=1

(
ˆEUIi,V int − EUIi,V int

)2
15

(4.1)

where Vint is vintages, which consists of pre- and post-1980; i is climate zone i, i = 1, 2, ...,

15 ; EUI is the empirical site EUI; ˆEUI is the modeled site EUI.

Based on the results of RMSD, the CV(RMSD) can be calculated by using the following

equation:



67

CV (RMSDV int) =
RMSDV int

max (EUIi,V int)−min (EUIi,V int)
(4.2)

where max(EUIi,V int) is the maximum value of the empirical site EUI in the vintage Vint ;

min(EUIi,V int) is the minimum value of the empirical site EUI in the vintage Vint.

Usually, when the CV(RMSD) is lower than 0.05, the prototypical building energy models

have consistent energy estimation with the empirical baseline. Section 5.2.4 will use this type of

criteria to validate the prototypical building energy models for U.S. medium office buildings.

The second type of criteria are used when the building samples are limited. The rule-based

criteria are developed based on the engineering judgment. Due to limitations in available survey

data, the survey values do not always accurately represent the required model cities. Thus, the

heating degree days (HDD) and cooling degree days (CDD) for the building samples from sur-

veys and models are used to judge whether the models should have higher energy consumption for

heating and cooling than the sample data. Section 5.3.4 will use this type of criteria to validate

the prototypical building energy models for U.S. religious worship buildings. Finally, the proto-

typical building energy models will be stored into the database for simulation data sources in the

standardized computational framework and will be used in the future research.

4.5 Summary

This section introduces the methodology to create prototypical building energy models in

detail. The creation of prototypical building energy models consists of six steps: (1) identifying

the model inputs, (2) collecting related data, (3) cleaning the data, (4) converting the data into

model inputs, (5) calibrating the building energy models, and (6) validating the energy results.

To implement the methodology, Section 5 will create prototypical building energy models for the

four building types of U.S. commercial buildings: (1) medium office buildings, (2) religious worship

buildings, (3) college/university buildings, and (4) mechanical shops. The medium office buildings

and religious worship buildings will be used as two case studies.



Chapter 5

Creation of Prototypical Building Energy Models

By using the standardized computational framework, this chapter implements the method-

ology introduced in Chapter 4 and create prototypical building energy models for four types of

U.S. commercial buildings: (1) medium office buildings, (2) religious worship buildings, (3) col-

lege/university buildings, and (4) mechanical shops. The medium office buildings and religious

worship buildings are used as two case studies.

5.1 Introduction

Both commercial and residential buildings consume large amount of energy, and the Inter-

national Energy Agency (IEA) stated that the global buildings sector was responsible for approx-

imately 30% of primary energy consumption in 2017 [139, 2, 3]. Moreover, energy consumption

of buildings all over the world is still rapidly growing. Conducting building energy analyses pro-

vides a quantitative understanding of building energy performance, which assists building owners

and managers to avoid using energy inefficiently and to reduce energy consumption of buildings.

Prototypical building energy models are the starting point in conducting these analyses for both

existing and new buildings. The prototypical building energy models for existing buildings need

to contain typical building features; meanwhile, the models for new buildings need to meet the re-

quirements of building energy standards. Previous research has applied some current prototypical

building energy models for various purposes. Field et al. [71] provided a variety of application

examples of prototypical building energy models, such as evaluation of building energy standards
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and comparison of energy performance for buildings of different vintages. Glazer [74] analyzed

the maximum technically achievable energy targets for commercial buildings by using prototypical

building energy models as baselines. Similarly, Thornton et al. [173] evaluated the performance of

energy and cost savings of the American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE) Standard 90.1-2010 based on prototypical building energy models.

Building energy simulation programs are frequently used to create prototypical building en-

ergy models and conduct building energy analyses. Brackney et al. [15] provided a history of

building energy simulation program development. DOE-2 and EnergyPlus are two of the most

popular building energy simulation programs [33, 42]. They can analyze the hourly energy con-

sumption year-round for individual energy sources and end-uses. To simplify the model creation and

perform detailed analyses for the buildings with complex characteristics and operations, graphical

user interfaces eQUEST and OpenStudio were developed based on DOE-2 and EnergyPlus, respec-

tively [41, 79]. Because of the various calculation methods, different building energy simulation

programs have their own requirements for model inputs and varying accuracy of simulating results

for building energy consumption. To compare the abilities and performance of popular building en-

ergy simulation programs, Crawley et al. [31] contrasted the capabilities of 20 simulation programs,

which provides a valuable reference for energy modelers.

To facilitate building energy-related analyses, the U.S. Department of Energy (DOE) pub-

lished several sets of prototypical building energy models. For example, to improve energy efficiency

of commercial buildings, it is crucial to have a set of building energy models, which can represent

the majority of U.S. commercial building types. Thus, the U.S. DOE created DOE Commercial Ref-

erence Building Models with EnergyPlus [39]. The models represent new and existing commercial

buildings in the U.S. and can be used for various applications, including assessing new technolo-

gies, optimizing designs, and conducting studies of building components. The building models

include three vintage categories: pre-1980, post-1980, and new construction. With these prototyp-

ical models, the U.S. DOE quantified the potential energy savings of U.S. commercial buildings

with improving energy codes, such as ASHRAE Standard 90.1 [7, 9, 10, 11, 12] and the Interna-
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tional Energy Conservation Code (IECC) [90, 91, 92, 93]. Accordingly, the U.S. DOE has been

continuously updating the building models based on different editions of ASHRAE Standard 90.1

and IECC. The updated building energy models were then called the DOE Commercial Prototype

Building Models [45]. Recently, the U.S. DOE developed a library called OpenStudio-Standards

gem, which includes OpenStudio’s version of the DOE Commercial Reference Building Models and

the DOE Commercial Prototype Building Models [134, 150].

Although there is a rich set of existing prototypical building energy models in the U.S., there

are still some building types missing, such as religious worship buildings, mechanic shops, and

college or university buildings. Those missing building types still account for over 20% of the total

energy consumption in the U.S. commercial building sector and approximately 20% of the floor

space [173, 36]. Some researchers are currently working to create models of these missing building

types, but overall, this work is not receiving sufficient attention [195, 196]. For example, religious

worship buildings are approximately 25% of the total floor area and 13% of the total site energy use

among the U.S. commercial building sector [51, 57]. Despite these relatively significant percentages,

existing U.S. religious worship buildings have received minimal energy analysis attention, and there

is a lack of prototypical building energy models [170, 171, 172]. Therefore, creating appropriate

models for U.S. religious worship buildings is essential [194]. Furthermore, the existing prototypical

building energy models may not be suitable for some specific building energy analyses, which has

been discussed in Section 2.3.1.

Thus, based on the methodology to create prototypical building energy models introduced

in Chapter 4, this chapter creates prototypical building energy models for four types of U.S. com-

mercial buildings by using the standardized computational framework introduced in Chapter 3:

(1) medium office buildings, (2) religious worship buildings [194], (3) college/university buildings

[195], and (4) mechanical shops [196]. The medium office buildings and religious worship buildings

are used as two case studies. The first case is to create prototypical building energy models for

U.S. medium office buildings, which is introduced in Section 5.2. The energy performance of these

models is compared with the existing prototypical building energy models. The second case is
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to create prototypical building energy models for U.S. religious worship buildings, which is intro-

duced in Section 5.3. This case is complemented the database for data sources in the standardized

computational framework.

5.2 Case Study 1: Model Creation for Medium Office Buildings

This section creates the prototypical building energy models for existing U.S. medium office

buildings by using the methodology introduced in Chapter 4. The results are compared with the

existing prototypical building energy models in the DOE Commercial Reference Building Models

[39].

5.2.1 Model Inputs (Medium Office Buildings)

By using the methodology shown in Section 4.2, this section collects the model inputs for the

prototypical building energy models of existing U.S. medium office buildings. First, the required

model inputs are listed and the model inputs are classified into six categories, which have been

shown in Figure 4.2. The first category is the Weather Condition and the 15 main climate zones in

the U.S. are identified. Based on these climate zones, 15 typical cities are selected as the location of

the prototypical building energy models. The 2003 historical weather data for these 15 typical cities

is used. The standardized computational framework still needs to determine the values of model

inputs in the other five categories. In the second step, the 2003 Commercial Buildings Energy

Consumption Survey (CBECS) is selected from the database [51] and the related data is collected

from the 2003 CBECS. Third, the selected data is cleaned based on the method introduced in

Section 4.2.3. Then the selected data is converted into model inputs. Sensitive model inputs are

identified based on the literature [74, 77, 184, 183, 185]. Based on the rules described in Figure 4.4,

the framework determines the values or ranges of the model inputs. Table 5.1 provides examples

to show the method for determining the values or ranges of sensitive model inputs in the other five

categories.

The column of type of relationship has been introduced in Table 4.3. For the both sensitive
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Table 5.1: Determine the values or ranges of sensitive model inputs

Category
Sensitive Model

Input

Whether Data
Provided by the

2003 CBECS

Range/
Value

Type of
Relationship1

Geometry

Total Floor Area Yes Value
Aspect Ratio No Range Type 1
Floor to Floor Height No Range Type 1
Window-to-Wall Ratio Yes Value
Glazing Sill Height No Range Type 1

Envelope

Exterior Wall Insulation
R-value

No Range Type 5

Roof Insulation R-value No Range Type 5
Window U-factor No Range Type 4
Window SHGC No Range Type 5
Foundation Insulation
R-value

No Range Type 1

Infiltration Rate No Range Type 1

Schedule Hourly Schedule
Design the

schedule based
on Figure 5.1

Value

Internal Load

People Density No Range Type 1
Lighting Power Density No Range Type 2
Electric Equipment
Power Density

No Range Type 2

System

Cooling COP No Range Type 3
Burner Efficiency No Range Type 3
Fan Total Efficiency No Range Type 3
Ventilation No Range Type 1
SWH Heater Thermal
Efficiency

No Range Type 3

1 Type of relationship is introduced in Table 4.3.

and insensitive model inputs provided by the 2003 CBECS, such as total floor area, the median

values or highest frequent categories of the selected data from the 2003 CBECS are used as model

inputs [51]. For the rest sensitive model inputs, the 2003 CBECS does not provide values. Thus, the

ranges are determined based on the literature. Table 5.2 provides examples for ranges of sensitive

model inputs in all five types of relationship. For example, the 2003 CBECS does not include

information about the aspect ratio, but Winiarski [186] provides the values of the aspect ratio for

office buildings. Furthermore, the Type 1 in Table 4.3 is that values are the same in all climate

zones and both vintages. Thus, based on the engineering judgment, the range for the aspect ratio
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is [1.6, 2.4] and the value after calibration is 2.01 for all climate zones and both vintages.

Table 5.2: Examples for the ranges of sensitive model inputs

Type of
Relationship

Sensitive Model Input Range

Type 1 Aspect Ratio [1.6, 2.4] for all climate zones and both vintages

Type 2
Electric Equipment
Power Density

Pre-1980: [9.24, 14.81] W/m2

Post-1980: [7.98, 13.34] W/m2

Type 3 Cooling COP
Pre-1980: [2.52, 3.39]
Post-1980: [2.61, 3.50]

Type 4 Window U-factor

Pre-1980:
Climate Zones 1∼4: [4.67, 7.00] W/m2-K
Climate Zones 5∼8: [2.82, 4.23] W/m2-K
Post-1980:
Climate Zones 1∼4: [3.27, 7.00] W/m2-K
Climate Zones 5∼8: [2.36, 4.03] W/m2-K

Type 5
Exterior Wall
Insulation R-value

Pre-1980:
Climate Zones 1∼4: [0.61, 1.18] m2-K/W
Climate Zones 5∼8: [0.89, 1.69] m2-K/W
Post-1980:
Climate Zones 1∼4: [0.76, 2.26] m2-K/W
Climate Zones 5∼8: [1.72, 4.69] m2-K/W

It is noticeable that Griffith et al. [78] provides a methodology to design the hourly operating

schedules based on the 2003 CBECS data. Based on the methodology, the hourly schedule is

designed and thus, this case does not provide uncertainty of schedules here. Table 5.3 lists the four

variables in the 2003 CBECS that are used to determine the operating schedules for the models,

and Figure 5.1 shows the workflow to determine the modeled operating hours every day based on

the 2003 CBECS data.

Table 5.3: Determine the values or ranges of sensitive model inputs1

No. Variable Name Variable Description Variable Type

1 WKHRS8 Total weekly operating hours Numerical Data (0∼168)

2 OPEN248 Open 24 hours-a-day Category (Yes/No)

3 OPNMF8 Open during the week
Category (Open all five days/Open
some of these days/Not open at all)

4 OPNWE8 Open on weekends Category (Yes/No)
1 The information is provided by the document of All Layout Files and Format Codes in the 2003 CBECS [52]
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Figure 5.1: Workflow to determine operating hours for models (medium office buildings)

In Figure 5.1, the numbers shown above boxes and ovals are the quantities of remaining

building samples in the 2003 CBECS after being classified. Based on the workflow, the models

should open all five workdays as evenly as possible. Then the median value of total weekly operating

hours (WKHRS8) is 50 hours for the selected building samples in the 2003 CBECS [51]. After that,

the operating schedules are arranged by using DOE Commercial Reference and Prototype Building

Models and engineering judgment [39, 45]. Finally, this case estimates that the occupants stay in

the buildings from 8am ∼ 18pm and the system is operated from 7am ∼ 19pm, which are used for

all prototypical building energy models of medium office buildings.

For the rest model inputs, which are all insensitive, the values provided by literature or

adjusted based on other building energy models are used as the model inputs. After identifying the

uncertainties of model inputs, it is necessary to calibrate and validate the models. Section 5.2.2

shows the workflow to develop the evaluation criteria for the prototypical building energy models of

medium office buildings. Section 5.2.3 describes the prototypical building energy models of medium
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office buildings after being calibrated. Section 5.2.4 shows the results of the model validation.

5.2.2 Evaluation Criteria (Medium Office Buildings)

Based on the methodology introduced in Section 4.4, this case creates the evaluation criteria

for the prototypical building energy models of medium office buildings. This case creates the

empirical baselines to evaluate the performance of the models. After collecting and filtering the

data from the 2003 CBECS [51], this case selects approximately 300 building samples for both

pre- and post-1980 medium office buildings. Then, the site energy use intensities (EUIs) for these

building samples are calculated. After that, the sensitivity analysis is conducted to identify the

sensitive variables to the site EUIs. The seven variables are selected as the sensitive variables,

which are listed below (The variable names and descriptions refer to the 2003 CBECS codebook

[52]):

(1) SQFT8: Square footage;

(2) WKHRS8: Total weekly operating hours;

(3) NWKER8: Number of employees during main shift;

(4) PCNUM8: Number of computers;

(5) HDD658: Heating degree days (base 65 ◦F);

(6) CDD658: Cooling degree days (base 65 ◦F);

(7) PBAPLUS8: More specific building activity.

By referring to the ENERGY STAR Portfolio Manager [66], the sensitive variables are mod-

ified. The final version of the sensitive variables are listed as follow, which are used to create the

regression model for the empirical baseline:

(1) Total floor area (SQFT8);
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(2) Total weekly operating hours (WKHRS8);

(3) Number of employees per area (NWKER8/SQFT8);

(4) Number of computers per area (PCNUM8/SQFT8);

(5) Percent heated × Heating degree days (HEATP8 × HDD658);

(6) Percent cooled × Cooling degree days (COOLP8 × CDD658);

(7) Whether it is a bank (If PBAPLUS8 = 3, it is a bank; else, it is not a bank).

Then the regression model is created by using Equation 5.1:

SiteEUI =
∑

aif (V ariablei) + b (5.1)

where Site EUI is the site EUI for each building sample; Variablei is the value of each sensitive

variable in each building sample; ai is the coefficient for variable i; b is the residual value of the

regression model.

The objective of this step is to find out the values of all ai and b, which minimizes the

distance between the real values of site EUIs and the estimated values calculated by the regression

model. After determining the values of all ai and b, this case uses the heating degree days and

cooling degree days in the typical cities, and the median values or the highest categories for the rest

selected variables to calculate the site EUIs for the empirical baselines. The results are summarized

in Table 5.4.

ASHRAE Standard 90.1-2004 Climate Zones and two vintages (Pre- and Post-1980) are used

for this research [17, 18, 88]. The climate zone 1 is the hottest area while the climate zone 8 is the

coldest area. The character, ”A”, represents humid area; the character, ”B”, represents dry area;

the character, ”C”, represents marine area. Table 5.4 shows that the hot and cold areas, such as

climate zones 1A and 8, usually consume more energy than the mild area, such as climate zones

3 and 4. It is because the hot and cold areas usually use more energy for heating or cooling by
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Table 5.4: Empirical baselines

Climate Zone: Site EUI (Unit: MJ/m2 − yr)

Pre-1980

1A:
908.83

2A:
886.99

3A:
851.66

4A:
894.70

5A:
940.47

6A:
1,032.64

7:
1,132.51

8:
1,375.41

2B:
935.48

3B:
863.82

4B:
868.40

5B:
897.18

6B:
939.41

3C:
726.35

4C:
786.81

Post-1980

1A:
726.15

2A:
701.28

3A:
695.41

4A:
747.91

5A:
808.07

6A:
914.88

7:
995.50

8:
1,215.80

2B:
736.86

3B:
689.42

4B:
682.56

5B:
734.53

6B:
804.76

3C:
569.30

4C:
646.08

compared with the mild area. Furthermore, the cold area usually consumes more energy than hot

area, which is because the energy efficiency of cooling system is usually higher than 1 while the

heating system is lower than 1. Moreover, the marine area usually consumes less energy than the

humid and dry areas.

5.2.3 Model Description (Medium Office Buildings)

Figure 5.2 shows the geometry and thermal zones of the prototypical building energy models

of medium office buildings. The models have three floors and there are five thermal zones in each

floor.

Then Table 5.5 lists all key model inputs of the prototypical building energy models for U.S.

medium office buildings. The first column shows the name of each model input. The second column

shows the values of each model input. Since there are 30 building energy models (15 climate zones

× 2 vintages), the values are provided if the model inputs have the same value in all climate zones,

such as the total floor area; otherwise, the ranges are provided, such as the insulation R-value of

exterior walls. The third column shows the methods to convert related data into model inputs,

which has been introduced in Table 4.2. Some model inputs are identified by using more than

one method. It is because the 2003 CBECS only provides limited information for these model
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Figure 5.2: Geometry and thermal zones of the prototypical building energy models for the U.S.
medium office buildings

inputs and the detailed information needs to be collected from other sources. For example, the

2003 CBECS provides the types of the exterior walls and roof. However, the prototypical building

energy models need more detailed information, such as the insulation R-value. Thus, by using the

method, M2, this case converts the types of the exterior walls and roof, which are used in the 2003

CBECS, into the types used by ASHRAE [186]. Then, based on the existing prototypical building

energy models for various commercial building types, the ranges of the R-values for these types

of the exterior walls and roof can be estimated [39, 45]. Then the models are calibrated in these

ranges and obtain the best values of the insulation R-values, which are summarized in Table 5.5.
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Table 5.5: Model inputs of prototypical building energy mod-

els for U.S. medium office buildings

Input Value Method 1

Location

1A, Miami, FL

2A, Houston, TX

2B, Phoenix, AR

3A, Atlanta, GA

3B, El Paso, TX

3C, San Francisco, CA

4A, Baltimore, MD

4B, Albuquerque, NM

4C, Seattle, WA

5A, Chicago, IL

5B, Denver, CO

6A, Minneapolis, MN

6B, Helena, MT

7, Duluth, MN

8, Fairbanks, AK

M4

Vintage
Pre-1980

Post-1980
M4

Geometry

Total floor area: 3,130 m2

Building shape: Wide rectangle

Aspect ratio: 2.01

Window fraction: 27.5%

Window locations: Equal percentages on all sides

Number of floors: 3

Shading: No

Floor-to-ceiling height: 4.47 m

(Include the height of plenum)

M1, M2,

M3

Schedules Calculated based on Figure 5.1 and engineering judgment M2, M4
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Input Value Method 1

Envelope

Exterior walls: steel frame walls

- Insulation R-value of exterior walls (m2-K/W):

- Pre-1980: [0.76, 1.37]

- Post-1980: [0.83, 1.56]

Roof: Insulation Entirely Above Deck (IEAD)

- Insulation R-value of roof (m2-K/W):

- Pre-1980: [1.80, 2.31]

- Post-1980: [2.55, 2.88]

Windows: hypothetical window

- U-value of glazing (W/m2-K):

- Pre-1980: [3.80, 5.96]

- Post-1980: [3.52, 6.13]

- SHGC of glazing (unitless):

- Pre-1980: [0.40, 0.77]

- Post-1980: [0.25, 0.49]

M2, M4

Plug and process

loads

Pre-1980: 14.74 W/m2

Post-1980: 11.83 W/m2 M2

Occupant density 20.48 m2/person M2

Lighting power

density

Pre-1980: 16.34 W/m2

Post-1980: 11.95 W/m2 M3

Infiltration rate
0.00031 m/s for the whole building (Flow per exterior surface

area)
M3

Ventilation

requirement
0.0242 m3/s-person for the whole building M4

HVAC system

Cooling: packaged A/C units

- Rated COP:

- Pre-1980: 3.11

- Post-1980: 3.17

Heating: furnaces

- Efficiency:

- Pre-1980: 0.68

- Post-1980: 0.78

M3

Water heating

equipment
Natural gas centralized water heater M1, M4

1 The explanation of the index of the method column is in Table 4.2 and the main data sources consist of:

M1: EIA [51];

M2: EIA [51], Griffith et al. [78], Winiarski et al. [186];

M3: Griffith et al. [78], Winiarski et al. [186], Deru et al. [36];

M4: DOE [39], NREL [134].
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5.2.4 Model Evaluation (Medium Office Buildings)

This section evaluates the performance of the prototypical building energy models of medium

office buildings. The building models from the DOE Commercial Reference Building Models are

used as reference [39]. Figure 5.3 shows the values of site EUIs for the reference and new models.

The black bars are the site EUIs for the reference building models and the white bars are the new

building models created in this chapter. The red “X”s are empirical baselines listed in Table 5.4.

Figure 5.3: Comparison of site EUIs for the reference and new prototypical building energy models

The results show that the site EUIs of the new models are much closer to the empirical

baselines. Then it is necessary to calculate CV(RSMD) and quantitatively evaluate the performance

of the new models. The results are shown in Table 5.6.

Table 5.6: Evaluation of the new baseline models

Evaluation Index Unit
Pre-1980 Post-1980

Ref Model New Model Ref Model New Model
CV(RSMD) - 0.194 0.016 0.123 0.009
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The CV(RSMD) of both pre- and post-1980 new models are lower than 0.05, which meets

the requirement provided in Section 4.4. By compared with the reference models, the values of

CV(RSMD) is only approximately 0.075 times for the new models. Furthermore, this case compares

the EUIs for heating and cooling in the reference and new models. The modeled EUIs are compared

with the EUIs of building samples in the 2003 CBECS. To make the models and the 2003 CBECS

data comparable, the 15 typical cities are put into the 2003 CBECS Climate Zones based on the

cooling degree day 65 ◦F (CDD65) and heating degree day 65 ◦F (HDD65). Equations 5.2 and 5.3

express the method to calculate CDD65 and HDD65:

CDD65 =
365∑

Day=1

(
1

24

24∑
hr=1

Thr − 65

)+

(5.2)

where Thr is the ambient temperature in ◦F at a given hour in a day, and the + means that

only the days with positive values for
(

1
24

∑24
hr=1 Thr − 65

)
are included in the annual summation.

HDD65 =
365∑

Day=1

(
65− 1

24

24∑
hr=1

Thr

)+

(5.3)

where, similarly to CCD65, Thr is the ambient temperature in ◦F at a given hour in a day,

and the + means that only the days with positive values for
(

65− 1
24

∑24
hr=1 Thr

)
are included in

the annual summation.

Figure 5.4 shows the results of comparison. By using the similar procedure of model creation,

the data in the 2003 CBECS is cleaned [51]. Then the EUIs are adjusted by considering the impacts

caused by some factors, such as the operating hours, occupant density, and plug load density. After

that, for both pre- and post-1980 data, to evaluate the EUIs for heating, this case divides the data

into five categories based on the HDD65; to evaluate the EUIs for cooling, the data is divided into

five categories based on the CDD65. The boxplots are created and the red horizontal lines in the

figure are the median values for boxplots. The red circles for Ref Model in the figure are the EUI

for DOE Commercial Reference Building Models (reference models) while the blue triangles for

New Model are the EUI for the new prototypical building energy models created in this case.
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The results show that, in most of cases, the EUIs for heating and cooling in the new models

are closer to the median values of the 2003 CBECS data. For example, in the figure, EUI for

Heating (Pre-1980), one case for a reference model in the red box has much lower EUI than the

most of the 2003 CBECS data for building samples with the similar HDD65. Furthermore, the

pre-1980 reference models tend to have lower EUIs for cooling in the cases with 47 ∼ 1194 CDD65

by compared with the 2003 CBECS data. Moreover, the post-1980 reference models tend to have

higher EUIs for heating in the area with low HDD65 and higher EUIs for cooling in the are with

high CDD65. The new models have a better performance for these problems.

Furthermore, Table 5.7 shows the differences between the DOE Commercial Reference Build-

ing Models (Ref Model) and the models created in this chapter (New Model) by using pre-1980

building model in climate zone 5A as an example. The column, “Material or Equipment for New

Model”, also provides some potential materials or equipment, which can be used to match the

values of model inputs. Table 5.7 shows that the changes of geometry and system make great

contributions to increase the site EUI of this model while the changes of envelope and schedule

reduces the site EUI based on the Ref Model.

This section evaluates the performance of the new prototypical building energy models and

shows that the new models meet the requirement. The next two chapters will provide two use

cases about the building energy analyses for the U.S. medium office buildings. The models created

in this section will also be used in these analyses to identify whether the new models will cause

different analysis results.

5.3 Case Study 2: Model Creation for Religious Worship Buildings

This section creates the prototypical building energy models for existing U.S. religious worship

buildings by using the methodology introduced in Chapter 4. The models are complemented the

database for data sources in the standardized computational framework.
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5.3.1 Model Inputs (Religious Worship Buildings)

Based on reviewing the existing prototypical building model sets [39, 45, 134], this section

selects one typical city for each ASHRAE Climate Zone. The existing prototypical building model

sets for existing buildings, such as DOE Commercial Reference Building Models and OpenStudio-

Standards gem [39, 134], use the ASHRAE Standard 90.1-2004 Climate Zones [17, 18]. To be

consistent with their settings, the same version of ASHRAE Climate Zones is used in this section,

and 15 typical cities are selected for the 15 climate zones based on the typical cities selected in the

existing data sets and engineering judgments. Because empirical energy data is used to evaluate the

modeled energy results, 2003 historical weather files of the typical cities are used for the prototypical

building energy models. Based on the methodology described in the Chapter 4, model input files

are created for the 30 models by using SketchUp for the geometries and OpenStudio, and the

uncertainties of sensitive model inputs are identified.

Based on the methodology introduced in the Chapter 4, the model inputs are determined by

using the 2003 CBECS data, the data provided by building energy-related papers and reports, and

model inputs of DOE Commercial Reference Building Models [39, 51, 170, 171, 172, 78, 186, 187].

This case collects these data into a data set. Then the data set needs to be cleaned. For example,

approximately 50% religious worship building samples have wide-rectangle shape while lower than

1% samples have “E” shape. Thus, the samples with “E” shapes should be deleted. Furthermore,

only 25% religious worship building samples are smaller than 235 m2, and only 25% samples are

bigger than 4,000 m2. Thus, the samples smaller than 235 m2 or bigger than 4,000 m2 are deleted.

Since the 2003 CBECS data only provides 311 samples for religious worship buildings, which is

insufficient to develop the building models, some building samples are implemented by selecting

from other survey data sources, such as the 2012 CBECS data [57]. The buildings constructed after

2003 are not selected. Ultimately, the initial sample size is approximately 550 buildings, and after

cleaning, there are approximately 300 samples remaining. Over 200 samples were modified based

on the rules introduced in Section 4.2.3. Since most of the building samples come from the 2003
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CBECS data set, this case uniformly refers to the survey building samples by this name. After

cleaning the related data, the data is classified into four categories and converted into model inputs

by using various methods identified in Table 4.2. For example, through method M1 introduced in

Table 4.2, the median total floor area of the religious worship building samples is used as the modeled

total floor area. Because the total floor area is not impacted by the climate, the same settings are

applied to all models regardless of the climate zone, which avoids the problem of insufficient building

samples. Next, by using methods M2 and M4, operating schedules in the models are determined.

Just as with total floor area, the models have the same profiles for operating schedules in all the

climate zones. By using the same procedure shown in Figure 5.1, Figure 5.5 shows the workflow to

determine the modeled operating hours every day based on the 2003 CBECS data.

Open 24 
hours/day?

Open on 
workdays?

Yes No

Open all 
five days?

Open on 
weekends?

Yes

Yes

Open 24 
hours/day

Open on 
weekends?

No

Total weekly 
operating hours>20?

Open the same hours 
on Sat. and Sun.

Yes

Open 2~15 hours on Sat. 
and Sun. (Sun. favored)

No

Yes

No

Total weekly 
operating
hours<10?

Open 2~5 hours on Sat. and 
Sun. (Sun. favored), and

open all fivework days as
evenly as possible

Yes

No

Total weekly 
operating
hours>70?

No

Open 10~24 hours on Sat. and 
Sun., and open all fivework 
days as evenly as possible

Yes

Open 2~15 hours on Sat. and Sun. 
(Sun. favored), and open all five
work days as evenly as possible

No

Open all five 
work days as

evenly as possible

Yes

Total weekly 
operating
hours<10?

Open 2~5 hours on Sat. 
and Sun. (Sun. favored),
and open all 1~4 work

days as evenly as
possible

Yes

No

Total weekly 
operating
hours>60?

No

Open 10~24 hours on Sat. and 
Sun., and open all fourwork 
days as evenly as possible

Yes

Open 2~15 hours on Sat. and Sun. 
(Sun. favored), and open all 1~4
work days as evenly as possible

No

Open all four 
work days as

evenly as possible

6 305

279 26

164 115

157 7

2 155

39 116

Figure 5.5: Workflow to determine operating hours for models (religious worship buildings)

In Figure 5.5, the numbers shown above boxes and ovals are the quantities of remaining

building samples in the 2003 CBECS after being classified. Based on the workflow, the models

should operate 2∼15 hours each weekend and all five workdays as evenly as possible. After that,
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the operating schedules are adjusted by using DOE Commercial Building Models and engineering

judgement. Then by using method M3 in Table 4.2, the models’ infiltration rate is identified

[78]. Finally, the 2003 CBECS provides the general types of exterior walls and roofs for individual

building samples, but it does not give the details of the envelopes; thus, the method M4 is used

to identify the details of the envelopes in the models. Winiarski et al. [186] provided the matchup

of envelope types between the 2003 CBECS and ASHRAE Standard. Since the classification of

envelope types in DOE Commercial Reference Building Models follows ASHRAE Standard, the

insulation R-values of exterior walls and roof in DOE Commercial Reference Building Models can

be used as references to create the prototypical building energy models of existing U.S. religious

worship buildings [39]. Finally, this section identifies the values or ranges of model inputs for the

prototypical building energy models of religious worship buildings.

5.3.2 Evaluation Criteria (Religious Worship Buildings)

It is essential to evaluate the performance of prototypical building energy models by using the

energy data of building samples with the similar weather conditions. Due to the limited building

samples in the 2003 CBECS, this case uses the rule-based criteria to evaluate the performance of

the prototypical building energy models of religious worship buildings. ASHRAE classifies the U.S.

into 15 climate zones [17, 18], which are used to select the 15 typical cities; however, since the 2003

CBECS divides the U.S. into 5 climate zones [56], a method is required correlate these different

zone identifications. To accomplish this, the 15 typical cities are put into the 2003 CBECS Climate

Zones based on the cooling degree day 65 ◦F (CDD65) and heating degree day 65 ◦F (HDD65).

Equations 5.2 and 5.3 express the method to calculate CDD65 and HDD65.

To allocate the 15 typical cities across the 5 climate zones available in the 2003 CBECS

dataset, the 2003 historical weather files of the typical cities are used to identify CDD65 and

HDD65. Figure 5.6 shows the location distribution of typical cities and building samples in the

2003 CBECS.

Due to limitations in available survey data, the survey values available do not always ac-
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Figure 5.6: Location distribution of building samples in CBECS climate zones and prototypical
building energy models

curately represent the required model cities. Figure 5.6 shows that the most building samples in

the 2003 CBECS are located in areas with HDD65 less than 9,000, and there is a lack of building

samples in locations over 9,000 HDD65. However, two model cities, Duluth, MN and Fairbanks,

AK, have HDD65 over 9,000. Thus, it can be expected that the building energy models in 2003

CBECS Climate Zone 1 will have higher energy consumption for heating than the building samples.
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Similarly, the CDD65 of San Francisco, CA is far lower than the median value of building samples

in the 2003 CBECS Climate Zone 4, and the CDD65 of Seattle, WA is lower than median value

in the 2003 CBECS Climate Zone 3. Because of this, the models in the San Francisco, CA and

Seattle, WA probably consume less energy per area for cooling compared to the building sample

data. Thus, based on these rules, the performance of the models will be evaluated.

5.3.3 Model Description (Religious Worship Buildings)

Based on the values and ranges of model inputs, and criteria for model validation, the proto-

typical building energy models of religious worship buildings are calibrated. Figure 5.7 shows the

geometry of the calibrated models.

Figure 5.7: Geometry of the building energy models for the U.S. religious worship buildings

To perform the energy analysis of religious worship building, the geometry is created based

on the information provided by the 2003 CBECS and several relevant papers [51, 170, 171, 172].

The total floor area of the building energy model is 1,300 m2 with a wide rectangular shape and

1.93 aspect ratio. It contains three space types and three thermal zones. The perimeters are offices

and classrooms, and the core is a meeting area. The window-to-wall ratio is 11.5%, and windows

are distributed with equal percentages on all four sides. The front of religious worship model faces

to west. The floor-to-ceiling heights of offices and classrooms are both 3 m, while the height of

meeting area is 6∼9 m.

Then, the models are calibrated in the ranges of uncertainties of sensitive model inputs. This
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case selects more than 10 sensitive model inputs with their uncertainties for the model calibration,

such as electrical equipment power density, lighting power density, insulation R-value of envelopes,

and rated COP for cooling system. The ranges of the sensitive model inputs for prototypical

building models have been determined in Section 5.3.1. These ranges are decided based on the

CBECS data, literature, DOE Commercial Reference Building Models, and engineering judgment

[39, 51, 170, 171, 172, 36, 78]. The building models with different vintages in various climate zones

have their own specific ranges for individual inputs, and this case assumes normal distributions for

all inputs. Furthermore, the links of these model inputs in different models are considered.

In total, there are approximately 107 possible combinations for each prototypical building

model. Although the genetic algorithm (GA) can identify the global best solution much faster

than exhaustive simulations, it is still time consuming to conduct simulations. Thus, to reduce

computational time, the Latin Hypercube Sampling (LHS) method is used to select the building

samples and the simulations are conducted for all samples by using OpenStudio. Next, the values

of sensitive model inputs and site EUIs for individual building samples are used to train and test

the Support Vector Regression (SVR) meta-models. Then this case conducts simulations by using

meta-models and use genetic algrithom to identify the best solutions. Finally, based on the rule-

based criteria, the standardized computational framework selects the best combinations as the

prototypical building models with the two vintages in the 15 climate zones. By comparing the

simulation results with the survey data, the average difference between the modeled site EUIs and

the 2003 CBECS median site EUIs is reduced by approximately 10%. However, there are still

differences between the modeled site EUIs and the 2003 CBECS median site EUIs. The reason will

be analyzed in Section 5.3.4. Table 5.8 lists the inputs of prototypical building energy models for

existing U.S. religious worship buildings after model calibration. The Method column shows the

relevant method index corresponding to those listed in Table 4.2.
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Table 5.8: Model inputs of prototypical building energy mod-

els for U.S. religious worship buildings

Input Value Method 1

Location

1A, Miami, FL

2A, Houston, TX

2B, Phoenix, AR

3A, Atlanta, GA

3B, El Paso, TX

3C, San Francisco, CA

4A, Baltimore, MD

4B, Albuquerque, NM

4C, Seattle, WA

5A, Chicago, IL

5B, Denver, CO

6A, Minneapolis, MN

6B, Helena, MT

7, Duluth, MN

8, Fairbanks, AK

M4

Vintage
Pre-1980

Post-1980
M4

Geometry

Total floor area: 1,300 m2

Building shape: Wide rectangle

Aspect ratio: 1.93

Window fraction: 11.5%

Window locations: Equal percentages on all sides

Number of floors: 1

Shading: No

Floor-to-ceiling height:

- Meeting area: 6 - 9 m

- All other areas: 3 m

M1, M2,

M3

Schedules Calculated based on Figure 5.5 and engineering judgment M2, M4
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Input Value Method 1

Envelope

Exterior walls: mass walls

- Insulation R-value of exterior walls (m2-K/W):

- Pre-1980: [0.35, 0.99]

- Post-1980: [0.10, 3.32]

Roof: Insulation Entirely Above Deck (IEAD)

- Insulation R-value of roof (m2-K/W):

- Pre-1980: [1.56, 2.74]

- Post-1980: [2.18, 5.48]

Windows: hypothetical window

- U-value of glazing (W/m2-K):

- Pre-1980: [3.53, 5.84]

- Post-1980: [2.96, 5.84]

- SHGC of glazing (unitless):

- Pre-1980: [0.41, 0.54]

- Post-1980: [0.25, 0.62]

M2, M4

Plug and process

loads
2.5 W/m2 for the whole building M2

Occupant density
7.00 m2/person for meeting area

23.22 m2/person for other area
M2

Lighting power

density

10.00 W/m2 for meeting area

15.10 W/m2 for other area
M3

Infiltration rate
0.00027 m/s for the whole building (Flow per exterior surface

area)
M3

Ventilation

requirement
0.0094 m3/s-person for the whole building M4

HVAC system
Cooling: packaged A/C units (Rated COP: 3.27)

Heating: furnaces (Efficiency: pre-1980: 0.78, post-1980: 0.8)
M3

Water heating

equipment
Natural gas centralized water heater M1, M4

1 The main data sources consist of:

M1: EIA [51];

M2: EIA [51], Griffith et al. [78], Winiarski et al. [186];

M3: Griffith et al. [78], Winiarski et al. [186], Deru et al. [36], Terrill et al. [170], Terrill and Rasmussen [172];

M4: DOE [39], NREL [134].

5.3.4 Model Evaluation (Religious Worship Buildings)

After calibrating the building energy models, the site EUIs of models are compared with the

EUIs of building samples for each climate zone. Figure 5.8 shows the site EUIs of the prototypical
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building energy models and the building samples in the 2003 CBECS.

Figure 5.8: Site EUIs of building samples and prototypical building energy models (religious worship
buildings)

While the site EUIs of the prototypical building energy models are mainly in the 25th∼75th

percentiles of building samples’ site EUIs (Figure 5.8), some discrepancies between model and sam-

ple EUIs exist due to misalignment in locations available and low sample sizes in some categories.

Typical cities in the 2003 CBECS Climate Zone 1 have higher HDD65 than the locations of most

building samples; as a result, the models in these cities consume more energy per area for heating,

and the site EUIs of these models will also be higher than the building samples in this climate

zone. In addition to misalignments such as this, some discrepancies between the model and build-

ing sample EUIs are caused by low sample sizes. The total number of both pre-1980 and post-1980

building samples in the 2003 CBECS is around 300; however, the number of building samples is
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insufficient for some climate zones and vintages. For example, only 14 post-1980 building samples

are in 2003 CBECS Climate Zone 3. The median site EUI is easily affected by individual building

samples when there are insufficient samples. To address these limitations and avoid over-fitting,

this case compares the energy performance of prototypical building energy models to the building

samples from the CBECS data using engineering judgments.

Table 5.9 summarizes the performance metrics for select cities to exemplify how this case

uses engineering judgment to evaluate the calibrated typical building models. These selected cities

demonstrate median and extreme cases when comparing the typical models and CBECS sample

buildings. As can be seen in Figure 5.7, Houston has average CDD65 and HDD65 among the

building samples in the 2003 CBECS Climate Zone 5. As such, pre-1980 and post-1980 religious

worship building models in Houston have similar EUIs for cooling and heating compared to the

survey median data, as shown in Table 5.9. Conversely, Phoenix has higher cooling EUIs compared

to the survey data. This difference is due to the higher CDD65 in Phoenix than the median level

of building samples in the 2003 CBECS Climate Zone 5. Thus, the Phoenix prototypical building

energy model is qualified after being calibrated. Another example is that the models in Fairbanks

have higher HDD65 than the survey buildings, as can be seen in Figure 5.7; both pre-1980 and

post-1980 models have higher EUIs for heating compared to the corresponding median empirical

EUIs. Repeating this process for all 15 typical cities, it is confirmed that the calibrated building

energy models meet the criteria based on engineering judgment. Therefore, the developed models

of existing U.S. religious worship buildings are good representations of prototypical building energy

models. However, it is noted that due to the limited number of building samples, it is necessary to

avoid over-fitting and accept large variation between the survey and simulation data.

5.4 Summary

Based on the methodology introduced in Chatper 4, this chapter creates the prototypical

building energy models for U.S. medium office and religious worship buildings. Since there are

enough building samples for the medium offices in the 2003 CBECS [51], the prototypical building
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energy models for U.S. medium office buildings are validated by using the regression model created

based on the 2003 CBECS data. However, there are not enough building samples for U.S. religious

worship buildings in the 2003 CBECS. Thus, the second case provides the loose rule-based criteria

to validate the energy performance of the models for U.S. religious worship buildings. Furthermore,

the performance of these models are compared with the existing models from the DOE Commercial

Reference Building Models [39]. The new models of religious worship buildings are stored into the

database in the standardized computational framework.

Besides creation of prototypical building energy models, the standardized computational

framework is also able to conduct different types of building energy analyses. Chapters 6 and 7

will provide two case studies to research on two types of the building energy analyses. Chapters 6

will study the impacts of the energy savings on energy efficiency measure (EEM) selection while

Chapters 7 will study the impacts of the electricity pricing programs on energy efficiency measure

(EEM) selection. The medium offices are used to do the research. Furthermore, this dissertation

will discuss about the impact of the baseline models on the results and will compare the prototypical

building energy models created in this chapter with the models from existing data sources.



Chapter 6

Impacts of Energy Savings on EEM Selection

This chapter provides one example for the standardized computational framework about

building energy analyses and analyze the impacts of building energy savings on the selection of

energy efficiency measures (EEMs). The DOE Commercial Prototype Building Energy Models

for medium office buildings are used as the baseline models [45]. Three global sensitivity analysis

methods are used: Standardized Regression Coefficients (SRC), Morris, and Sobol. Furthermore,

this chapter also discusses how different baseline models impact the energy saving in relationship

to the EEM selections.

6.1 Introduction

The 2012 Commercial Buildings Energy Consumption Survey (CBECS) showed that U.S.

office buildings consume over 3 × 106 GJ of primary energy annually, and approximately 50% of

this is from medium office buildings, which have total floor areas from 1,000 m2 to 10,000 m2 [57].

With over 80% of all medium office buildings constructed before 2000, there is a great potential to

reduce energy consumption by conducting existing building retrofits [74, 77, 173].

Detailed building energy models are usually used in the retrofit projects for the large build-

ings. However, these are often not cost-effective for small retrofit projects, such as medium office

buildings. Instead, small retrofit projects typically rely on prescriptive methods for energy re-

duction strategies, which have their limitations. First, building owners often make independent

retrofit decisions, but their knowledge may be limited in selecting EEMs that are most effective
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while minimizing cost. Second, building engineers have potential biases when selecting EEMs based

on previous experience. Without comprehensive analyses, they tend to select some high-efficiency

measures, which from past projects demonstrated strong energy saving performance with the short

payback periods; however, these techniques may not be suitable for the current project. Fur-

thermore, by using prescriptive methods, it is possible to neglect some important factors, such as

climates or occupancy schedules, and interactive relationships between EEMs. Therefore, the actual

payback period of energy retrofit of medium office buildings may be longer than the expectations.

To identify which measures have the highest energy saving potentials, it is useful to have

readily-available knowledge about which EEMs are most effective for the target building type

and climate zone. A priori knowledge can help various types of users – such as building owners,

architects, and engineers – select prioritized EEMs in specific climate conditions. Furthermore, the

knowledge provides focused EEMs to streamline the building energy modeling process. A detailed

building energy model usually contains hundreds of EEM-related data. In order to develop accurate

predictive models within budgeted timeframes, a priori knowledge can inform modelers which EEMs

need the most attention and, more importantly, which EEMs they can suitably assign default or

estimated values with minimal impacts to building energy consumption. Moreover, a streamlined

building energy modeling process for medium office buildings can help designers achieve creative

energy-saving designs; energy modeling provides greater flexibility in evaluating EEM combinations

than other methods and can be used to quantitatively investigate advanced design strategies [126].

Energy performance indicators (EPIs) are often used to quantify the impacts of the EEMs

on building energy consumption. Source and site energy use intensities (EUIs) are the two most

common EPIs. While EUI is defined as the energy use per area in a year, the system boundary where

that energy is evaluated changes between site and source methods. Site energy is the combination of

primary (typically natural gas and fuel oil) and secondary energy (electricity) that is used directly

at a building [67]. Expanding out from the building level (site), source energy is the total amount

of raw fuel that is consumed through the building’s operation. As such, the transmission, delivery,

and production losses are also included in the calculation. There are various pros and cons to using
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site or source energy as the basis for evaluation. For example, site EUI is metered directly and

contains less uncertainty, while source EUI is not fully metered, contains greater uncertainty, and is

inherently more complex. On the other hand, source EUI considers all of the energy use through its

encompassing scope, while site EUI does not fully represent the true energy cost. Since the energy

costs are important considerations for building owners and these costs accrue at the site utility

meters, this chapter selects site EUI to quantify EEM impacts on building energy consumption.

There are multiple methods to guide EEM selection in retrofit applications, such as engineer-

ing judgment, building energy codes, and published guidelines. While these methods are frequently

used and often effective, their effectiveness can be limited by human biases and their generalized

nature. To this end, a guideline based on large-scale simulations and sensitivity analysis can pro-

vide unbiased recommendations that are appropriate for the target climate. Furthermore, such

recommendations allow us to identify the interactive relationships between various EEMs. Existing

research provides a rich set of references to identify effective EEMs for individual buildings by

conducting large-scale simulations and sensitivity analysis [126, 63, 89, 34, 161, 16]. For example,

based on 100,000 energy model simulations, the New Buildings Institute (NBI) developed a pre-

scriptive guide for small to medium sized new construction projects that can achieve up to 40%

energy savings over ASHRAE 90.1-2007/IECC 2009 [126].

One popular method to quantitatively guide EEM development at a large scale is sensitivity

analysis. Using sensitivity analysis to conduct building energy analyses is well studied [63, 34, 161,

16, 137, 28, 81, 82, 128, 154, 174, 175, 142]. In the existing research, different sensitivity analysis

methods have been applied. To provide a guideline to select sensitivity analysis methods, Table 6.1

summarizes the advantages and disadvantages of individual sensitivity analysis methods.

Generally, sensitivity analysis methods can be classified as either local or global approaches,

and the global approach can be further classified into four categories: regression, screen, variance

based, and meta-model. Although the local sensitivity analysis method is straightforward and has

low computational cost, the sensitivity levels are only for the input factors around certain base

cases, and interactions between inputs cannot be detected [174]. Furthermore, self-verification is
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not available to support the results generated by local sensitivity analysis methods, which makes the

results fragile. Most of the global sensitivity analysis methods avoid these disadvantages. However,

they still have some limitations for specific situations. For example, Standard Regression Coefficient

(SRC), Morris, and Sobol are three popular global sensitivity analysis methods used in building

energy analyses. The SRC method has the lowest computational cost among the three methods

and good interpretability [165, 166]. However, it has a poor performance where the underlying

relationship is far from linear. The computational cost of the Morris method is also low among the

global sensitivity analysis methods, but it does not have self-verification; this is similar to the local

sensitivity analysis method [174]. Furthermore, the Sobol method demonstrates relatively good

performance analyzing nonlinearity and interaction effects. However, it has high computational

costs and is weak for models with a large number of inputs or complex model structure [174, 123].

With these considerations in mind, this chapter proposes using these three different types of global

sensitivity analysis methods (SRC, Morris, and Sobol) in order to avoid biases from individual

sensitivity analysis methods.

This chapter aims to evaluate the energy saving potential of several EEMs for retrofits of

U.S. medium office buildings through large-scale simulations and sensitivity analyses. This a priori

knowledge can help building owners identify promising EEMs in their given climate and engineers

develop predictive models to evaluate the energy savings in retrofit applications. The remainder of

this chapter is structured as follows. Section 7.2 describes the methodology. Section 6.3 presents the

analysis results for medium office buildings in 15 climate zones and provides climate-specific EEM

evaluations. Section 6.4 compares the selection of EEMs by using the prototypical building energy

models created in Section 5.2 and the models from the DOE Commercial Reference Building Models

[39]. Finally, Section 7.5 makes a conclusion of this chapter and discusses the potential applications

for the results.
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6.2 Methodology to Evaluate the Impacts of Energy Savings on EEM Se-

lection

As shown in Figure 6.1, the methodology consists of four sections: (1) model preparation,

(2) large-scale simulation, (3) sensitivity analysis, and (4) energy impact evaluation. The first step

develops baseline models and selects EEMs with their range of uncertainties. The second step

generates large-scale building samples by using sampling methods, conducts uncertainty analysis of

site EUIs, and develops a meta-model. The third step calculates the energy savings by individual

EEMs and the interactive effects of two EEMs on energy savings. Furthermore, this chapter

identifies the sensitive EEMs based on the aggregated results calculated by three sensitivity analysis

methods. The last step provides the recommendations for building modeling and retrofits of existing

buildings.

Step 1:
Model Preparation

Step 2:
Large-scale Simulations

Step 3:
Sensitivity Analysis

Step 4:
Energy Impact Evaluation

Figure 6.1: Methodology to generate recommendations

6.2.1 Step 1: Model Preparation

Model preparation consists of two tasks: developing baseline models and selecting EEMs.

There are many sets of prototypical building energy models, which can be used as baseline mod-

els [39, 45, 134, 195, 196, 194]. For example, the DOE Commercial Reference Building Models,

Commercial Prototype Building Models, and OpenStudio-Standards gem provide many prototypi-

cal building energy models for various U.S. commercial buildings [39, 45, 134]. Furthermore, some

researchers created prototypical building energy models for other commercial building types to com-

plement the existing datasets, which are also suitable to be used as baseline models [195, 196, 194].

Based on the required building types, vintages, and areas, the computational framework selects
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the prototypical building models from these sets. For instance, it is recommended to select mod-

els from the DOE Commercial Reference Building Models if existing U.S. medium office buildings

constructed in 1980s need to be analyzed.

Existing research conducted data analyses for subsets of EEMs of buildings with various

characteristics under different climates. The research is used to select possible sensitive EEMs

and identify the uncertainty ranges that can be expected for these EEMs. Some existing research

conducts analyses for energy saving potentials of existing buildings [74, 103, 184, 183, 185]. The

sensitive EEMs need to be identified before analyzing the energy saving potentials, which are used as

references to select the EEMs. Furthermore, the DOE Commercial Reference Building Models and

Commercial Prototype Building Models are developed according to different editions of building

energy standards or codes [173, 45, 39, 36]. The values of the selected EEMs in these models are

used to determine the ranges of these EEMs. Uniform distributions are assumed for all EEMs.

6.2.2 Step 2: Large-scale Simulations

The large-scale simulations conduct thousands of building energy simulations, which prepares

for the sensitivity analysis. The large-scale simulation methods consist of six sub-steps (Figure 6.2).

In Step 2.1, based on the uncertainties of the selected EEMs, this chapter selects building samples

by using the Latin Hypercube Sampling (LHS) method [163]. In Step 2.2, full-scale building energy

models of these samples are developed by using EnergyPlus. By including detailed inputs in the

model, accurate outputs can be generated.

In Step 2.3, this chapter conducts uncertainty analysis to evaluate the ranges of site EUIs

of the building samples caused by the uncertainties of the selected EEMs. If the ranges of site

EUIs are too narrow, this chapter considers that there are no sensitive EEMs. In other word, the

building energy consumption is not impacted by the selected EEMs. As a result, the standard-

ized computational framework will have to restart Step 1 to select other EEMs. Otherwise, the

framework will move to Step 2.4.

A large number of building samples is needed for the sensitivity analysis, especially when
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using the Sobol method. For instance, approximately 20,000 samples are needed if eight EEMs are

considered in each climate zone. Thus, Step 2.4 is to create a meta model to reduce the computation

time. This study adopts a Booted-Trees meta-model. The Boosted-Trees meta-model is developed

based on the building samples and results generated in Steps 2.1 and 2.2. The objective of Boosted

Trees is to generate a model that can capture all the useful information with minimal complexity.

To achieve this objective, the function consists of two parts:

obj (θ) = L (θ) + Ω (θ) (6.1)

where L(θ) is training loss, represented by the difference between the training values and the

real values, and controls the accuracy of the model; the Mean Squared Error (MSE) is used as the

criterion to minimize L(θ); Ω(θ) is the regularization term, which controls the complexity of the

model and is used to avoid over-fitting.

Step 2.5 generates building samples based on the requirements of individual sensitivity anal-

ysis methods. At the end, Step 2.6 calculates energy results of these samples generated by Step 2.5

by using the meta-model.

6.2.3 Step 3: Sensitivity Analysis

Figure 6.3 shows the methodology to conduct sensitivity analysis and evaluate the potential

energy impact, which are Steps 3 and 4. In Step 3, first, it is needed to calculate the energy

savings caused by improving individual EEMs and the interactive effects of two EEMs. After

that, this chapter identifies sensitive EEMs. As mentioned in the introduction, to avoid bias of

an individual method, three sensitivity analysis methods (SRC, Morris, and Sobol) are selected

to identify sensitive EEMs. The methodology, shown in Figure 6.3, depicts the unique sampling

method for each sensitivity analysis method. For sampling methods, LHS is used to select building

samples in the SRC method [163]; Morris provides its own sampling method; and the Saltelli’s

sampling scheme is used to select building samples in the Sobol method [83]. Based on the sensitivity

analysis results, Step 4 conducts the energy impact evaluation, which will be described further in
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Section 2.4. The energy savings for individual EEMs, the interactive effects of multiple EEMs, and

the three sensitivity analysis methods will be explained in further detail in the following subsections.

6.2.3.1 Energy Savings for Individual EEMs and Interactive Effects

Before identifying the sensitive EEMs by using global sensitivity analysis methods, it is

necessary to calculate the energy savings caused by improving individual EEMs and interactive

effects of two EEMs on energy savings. First, the standardized computational framework uniformly

selects five values for each EEMs in the ranges of EEMs. Second, based on the baseline models, a

one-at-a-time (OAT) method is used to calculate the energy savings caused by improving individual

EEMs. Then this chapter changes values of two EEMs at the same time. The interactive effects

are calculated by using the following equation:

DiffEEMi+j = EEMi+j − EEMi − EEMj , i 6= j and i, j = 1, 2, · · · , 11 (6.2)

where i and j are the number of the EEM for each option; EEM is the percentage of energy

saving. Thus, EEMi+j is the percentage of energy saving by using ith and jth EEMs, and EEMi

or EEMj is the percentage of energy saving by only using ith or jth EEM. If the DiffEEMi+j is

positive, it means that the two EEMs have a positive effect on energy saving; a negative value

means a negative effect; and zero is no interactive effect.

6.2.3.2 SRC Method

The SRC method provides a measure to evaluate the importance of EEMs for EUIs. It uses a

linear regression model to identify the relationship between EEMs and EUIs. The regression model

is expressed as:

(
ˆEUIi − ¯EUI

)
/ŝ =

m∑
j=1

(bj ŝj/ŝ)
(
EEMij − ¯EEM j

)
/ŝj =

m∑
j=1

SRCj

(
EEMij − ¯EEM j

)
/ŝj

(6.3)
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where m is the quantity of the EEMs; ˆEUIi is the estimated site EUI of sample i, calcu-

lated based on the regression model; and EEMij is the value of EEM j in the sample i. The

sample mean ¯EUI corresponds to the site EUIs, where ¯EUI = 1
n

∑n
i=1EUIi , and n is the

quantity of the building samples. The value ¯EEM j is the mean of EEM j in all the sam-

ples, where ¯EEM j = 1
n

∑n
i=1EEMij . The standard deviation for EUIs is represented by ŝ,

where ŝ =
√

1
n−1

∑n
i=1

(
EUIi − ¯EUI

)2
. Lastly, ŝj is the standard deviation for EEMj , where

ŝj =
√

1
n−1

∑n
i=1

(
EEMij − ¯EEM j

)2
.

The regression model for SRC aims to minimize the Root Mean Square Error (RMSE) between

estimated site EUIs from regression models and samples’ EUIs from the meta-model developed

in Step 2.5. The SRC of EEM j is bj ŝj/ŝ, and |bj ŝj/ŝ| can be used as a measure of variable

importance. This chapter refers to bj ŝj/ŝ as the SRC sensitivity index and |bj ŝj/ŝ| as the absolute

SRC sensitivity index. The range of the SRC sensitivity index is -1 to 1. If the absolute value is

close to 1, the EEM is sensitive; if it is close to 0, the EEM is insensitive. To enhance the accuracy

of the SRC results, the bootstrap method is used to re-sample the building samples [175]. Based on

the original sample set created with the meta-model, the standardized computational framework

generates 1,000 sample sets by randomly sampling from the original sample set with replacement.

Then, each bootstrap sample set will obtain a vector of SRC sensitivity indices. The set of such

vectors shows the sensitive ranges of individual EEMs, while avoiding sampling biases.

6.2.3.3 Morris Method

As a popular sensitivity analysis method for building energy analyses [34, 28, 81, 82, 154],

the Morris method classifies the EEMs into the three groups – negligible effects, large linear and

non-interaction effects, and large non-linear and/or interaction effects. Several steps are followed

to calculate two indices for sensitivity in Equation 6.4, 6.5, and 6.4. First, the spaces of individual

EEMs need to be discretized into n grid levels. Then, a given number of One-At-A-Time (OAT)

designs need to be performed before the experiment designs are randomly chosen in the EEM

spaces. After that, the elementary effects are calculated. The elementary effect of the variable j
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obtained at the repetition i is expressed as:

E
(i)
j =

EUI
(
EEM (i) + ∆ej

)
− EUI

(
EEM (i)

)
∆

(6.4)

where ∆ is a pre-defined trajectory, and ej is a vector of the canonical base. Finally, the two

sensitivity indices are obtained as follows:

µ∗j =
1

r

r∑
i=1

∣∣∣E(i)
j

∣∣∣ , (6.5)

σj =

√√√√1

r

r∑
i=1

(
E

(i)
j −

1

r

r∑
i=1

E
(i)
j

)2

(6.6)

where E
(i)
j is the elementary effect, and r is the number of trajectories. The quantity of

building samples is r×(m+ 1), where m is the quantity of EEMs being evaluated.

It is worth mentioning that, as a qualitative method, the Morris method cannot quantify

the sensitivity of the EEMs. The indicator µ∗j shows whether the EEM is sensitive to site EUIs or

not. If µ∗j is a high value, the EEM is more sensitive to site EUIs, while lower values imply that

the EEM is less sensitive to site EUIs. σj is the indicator to show whether the EEM has a linear

relationship with site EUIs. If σj is low, the EEM follows a close linear relationship with site EUIs,

while high values indicate that either the EEM has a nonlinear relationship with site EUIs or that

the site EUI is dependent on other EEMs.

6.2.3.4 Sobol Method

The Sobol method is another common approach employed in building energy analyses. While

computationally intensive, this method can determine the sensitive variables when the model is non-

linear and non-monotonic. The first-order and total Sobol indices, expressed in equations (5) and

(6), respectively, are typically used to evaluate the sensitivity of the variables.

Si =
Di (EUI)

V ar (EUI)
(6.7)
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For index i, Var(EUI) is the total variance of EUI and Di(EUI) represents partial variance

caused by the uncertainty of EEMi, where Di(EUI) = V ar[E(EUI|EEMi)]. The total Sobol

index, STi , is expressed as:

STi = Si +
∑
j 6=i

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + · · · =
∑
l∈#i

Sl (6.8)

where #i represents all subsets of {1, . . . , m} including i, and m is the quantity of the EEMs.

The ranges of both Si and STi are 0 to 1. The EEM is sensitive when both values are close

to 1, while the insensitive EEMs have Si and STi values near 0. The Si of an independent factor is

lower than or equal to STi , but it is possible that the Si of a dependent factor is larger than STi .

6.2.4 Step 4: Energy Impact Evaluation

In order to assist the EEM selection for medium office retrofits, this chapter evaluates the

energy saving potentials and sensitivity of the EEMs for retrofit projects and for streamlining pre-

dictive model development. Based on the results calculated in Step 3, two metrics are used. First,

in support of building energy retrofit projects, this chapter provides the energy saving potentials

for individual EEMs and the interactive effects of two EEMs on site EUIs. Engineers can calculate

the payback period by combining the energy-related information provided by this chapter and cost

information obtained from the market. Then they can select EEMs for the building energy retrofit

projects.

Second, to assist the development of predictive energy models, this chapter calculates the

weighted indices for EEM sensitivity as follows:

Sensitivityi =
1

3
×

N∑
j

 Indexi,j −min
i∈M

(Indexi,j)

max
i∈M

(Indexi,j)−min
i∈M

(Indexi,j)

 (6.9)

where i is the index for each EEM; N is the set of the sensitivity analysis methods, where

N ∈ {SRC,Morris, Sobol}; M is the quantity of the EEMs; and Index is the sensitivity index

generated by each sensitivity analysis method (the sensitivity index of SRC is the absolute SRC
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sensitivity index ; the sensitivity index of Morris is µ∗j ; and the sensitivity index of Sobol is Si).

6.3 EEM Selections for Existing U.S. Medium Office Buildings

The methodology described in Section 7.2 is applied in order to provide unbiased and climate-

specific EEM recommendations for retrofits and developing predictive models of medium office

buildings.

6.3.1 Model Preparation

The baseline models of medium office buildings are selected from the DOE Commercial

Prototype Building Models [45]. Figure 6.4 shows the geometry and thermal zones of the baseline

models for medium office buildings. The baseline models have rectangle shape and three stories.

Each story contains five thermal zones (one core zone and four perimeter zones).

Perimeter Zones

Core Zone

(a) Geometry (b) Thermal Zones

Figure 6.4: Geometry and thermal zones of the baseline medium office building models

Table 6.2 lists the key parameters of the baseline models of medium office buildings. One

typical city is selected for each ASHRAE climate zone. Since there are 15 ASHRAE climate zones

in the U.S., 15 baseline models are selected for the 15 typical cities. The total floor area for each

baseline model is 4,980 m2 with a 33% window-to-wall ratio. The models have steel-frame exterior

walls and insulation entirely above deck (IEAD) roofs. Furthermore, the models use packaged air
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conditioning units and VAV terminal boxes.

Table 6.2: Key parameters of the baseline medium office building models

Parameter Name Value

Location
(Climate Zone: Typical City)

1A: Honolulu
2A: Tampa
2B: Tucson
3A: Atlanta
3B: El Paso

3C: San Diego
4A: New York
4B: Albuquerque
4C: Seattle
5A: Buffalo

5B: Denver
6A: Rochester
6B: Great Falls
7: International Falls
8: Fairbanks

Total Floor Area 4,980 m2 (50 m × 33.2 m)

Aspect Ratio 1.5

Number of Floors 3

Window-to-Wall Ratio 33%

Floor-to-Floor Height 3.96 m

Envelope
Exterior Walls: Steel-Frame Walls
Roof: IEAD Roof
Windows: Hypothetical Windows

Lighting Power Density 10.76 W/m2

Plug Load Density 8.07 W/m2

HVAC System
Heating: Packaged Air Conditioning Unit, Gas Furnace
Cooling: Packaged Air Conditioning Unit, DX Cooling
Terminal Units: VAV Terminal Boxes

Service Water Heating Tank-type, Natural Gas Water Heater

Based on the outcomes of existing research [74, 77, 185, 75], this chapter selects eight EEMs,

which potentially have significant impacts on the site energy use intensities (EUIs) for U.S. medium

office buildings across all climate zones. Then, based on the different editions of ASHRAE Standards

and related literature, the standardized computational framework determines the uncertainties of

these EEMs [7, 9, 10, 11, 12, 6, 59].

Table 6.3 lists the uncertainties of the eight selected EEMs, which are all uniformly dis-

tributed. The R-value of Exterior Wall Insulation, R-value of Roof Insulation, and U-value and

SHGC of Glazing are climate-dependent; thus, this chapter provides them with unique ranges

for different climate zones. Lighting power density, electric equipment power density, gas burner

efficiency, and cooling COP are not climate-specific, and as such, the same range of values are

considered in all climate zones.
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Table 6.3: Uncertainties of the eight selected EEMs

NO. EEM Unit Range

1
R-value of Exterior
Wall Insulation

m2-K/W

1A: [0.40, 1.42]
2A: [0.77, 2.10]; 2B: [0.73, 2.10]
3A: [0.78, 2.29]; 3B: [0.77, 2.29]; 3C: [0.79, 2.29]
4A: [0.99, 2.75]; 4B: [0.96, 2.75]; 4C: [1.01, 2.75]
5A: [1.13, 3.21]; 5B: [1.09, 3.21]
6A: [1.22, 3.60]; 6B: [1.22, 3.60]
7: [1.30, 3.60]
8: [1.41, 4.76]

2
R-value of Roof
Insulation

m2-K/W

1A: [1.76, 3.72]
2A: [1.76, 4.57]; 2B: [1.76, 4.57]
3A: [1.76, 4.57]; 3B: [1.76, 4.57]; 3C: [1.76, 4.57]
4A: [2.04, 5.56]; 4B: [1.98, 5.56]; 4C: [2.07, 5.56]
5A: [2.50, 5.56]; 5B: [2.37, 5.56]
6A: [2.85, 5.56]; 6B: [2.85, 5.56]
7: [2.79, 6.33]
8: [2.99, 6.33]

3 U-value of Glazing W/m2-K

1A: [3.36, 5.84]
2A: [3.29, 5.84]; 2B: [3.29, 5.84]
3A: [2.85, 5.84]; 3B: [2.85, 5.84]; 3C: [2.85, 5.84]
4A: [2.37, 5.84]; 4B: [2.37, 5.84]; 4C: [2.25, 5.84]
5A: [2.25, 3.53]; 5B: [2.25, 3.53]
6A: [2.22, 3.53]; 6B: [2.22, 3.53]
7: [1.75, 3.53]
8: [1.75, 3.53]

4 SHGC of Glazing -

1A: [0.23, 0.54]
2A: [0.23, 0.54]; 2B: [0.23, 0.54]
3A: [0.22, 0.54]; 3B: [0.22, 0.54]; 3C: [0.22, 0.54]
4A: [0.36, 0.54]; 4B: [0.36, 0.54]; 4C: [0.37, 0.54]
5A: [0.37, 0.43]; 5B: [0.37, 0.43]
6A: [0.37, 0.43]; 6B: [0.37, 0.43]
7: [0.41, 0.50]
8: [0.30, 0.62]

5
Lighting Power
Density

W/m2 [8.50, 16.90]

6
Electric Equipment
Power Density

W/m2 [8.07, 10.76]

7
Gas Burner
Efficiency

- [0.70, 0.80]

8 Cooling COP - [2.68, 3.23]
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6.3.2 Large-scale Simulations

Over 30,000 building samples are selected by using the LHS method, which this chapter intro-

duced in Step 2.1 of Figure 6.2. As described in the methodology, the standardized computational

framework conducts simulations using EnergyPlus, collect site EUIs, and conduct uncertainty anal-

ysis for the site EUIs in order to quantify the impact of EEM uncertainties on the site EUIs across

all 15 climate zones. The results are shown in Figure 6.5 by using the violin plot. The outer shape

of the violin plot represents all possible results, with the thickness indicating how common the

value is. The highest, middle, and the lowest horizontal lines respectively indicate the maximum,

median, and minimum values.

Figure 6.5: Uncertainties of site EUIs for medium office buildings in the 15 climate zones

The uncertainties of the site EUIs represent the energy saving potential of existing medium

office buildings in different climate zones. Both the climates’ temperatures (correlated to the
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numerical zone listings 1 through 8) and humidity ranges (correlated to the letter keys A through

C) affect site EUIs. In cold climate zones (zones 7 and 8), medium office buildings have the highest

median site EUIs, while the site EUIs in temperate climate zones (zones 3 and 4) and warm climate

zones (zones 1 and 2) are relatively low. This is primarily because more energy will be consumed for

heating in cold areas, and the heating devices have lower efficiency relative to the cooling devices.

In the ASHRAE climate zones, “A” represents the moist locations that are mainly the east and

middle areas of the U.S.; “B” is the dry locations that are mainly the mountain areas; and “C”

is the marine locations that are mainly the west coast areas. Based on Figure 6.5, it is can be

found that medium office buildings in moist areas usually have the highest site EUIs among the

buildings with a similar latitude, while the medium office buildings in marine areas (e.g. 3C and

4C) have the lowest site EUIs. This is primarily caused by the different climate conditions of the

geography. Furthermore, the uncertainties of site EUIs for the buildings in all the 15 climate zones

are in the range of 100 ∼ 200 MJ/m2-yr, which indicates that these eight EEMs notably impact

site EUIs. As such, it is important to understand how EEM changes affect the buildings’ energy

performance, which can be learned through sensitivity analysis. By following the instruction of

Section 6.2.2, the standardized computational framework conducts approximately 500,000 building

energy simulations by using the Boosted-Trees meta-model. Figure 6.6 shows the performance of

the meta-model. The relative errors of site EUIs between the EnergyPlus simulations and meta-

model simulations are mostly lower than 5%. The output data is used to conduct sensitivity analysis

and the results are shown in the next section.

6.3.3 Sensitivity Analysis

The sensitivity analysis results for the eight selected EEMs are as follows. First, this chapter

calculates the energy savings for individual EEMs and interactive effects of two EEMs. While all

15 climate zones are included in the analysis, three climate zones that represent the extreme and

mean climate conditions (1A, 5A, and 8) are selected for demonstration. Then, the sample sizes of

the three sensitivity analysis methods are discussed. Finally, this chapter summarizes the results
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Figure 6.6: Performance evaluation of meta-model

calculated by the SRC, Morris, and Sobel methods.

6.3.3.1 Energy Savings for Individual EEMs and Interactive Effects

To evaluate the energy savings for individual EEMs, this chapter uniformly divides the ranges

of EEMs and select the extreme EEM values for baseline models that result in the highest energy

consumption. Table 6.4 shows the No. of point for EEMs in the three climate zones.

Based on the points selected for EEMs, this chapter evaluates the energy savings for individual

EEMs. The percentage of site EUI reduction for each EEM in each point is evaluated. Figure 6.7

shows the results in the three climate zones.
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1A, Honolulu 5A, Buffalo 8, Fairbanks

-17

-15

-13

-11

-9

-7

-5

-3

-1

1

0 1 2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f 
S

it
e
 E

U
I 
R

e
d
u
c
ti

o
n
 (

%
)

No. of Point for EEMs

R-value of

Exterior Wall

Insulation

R-value of Roof

Insulation

U-value of

Glazing

SHGC of Glazing

Lighting Power

Density

Electric

Equipment Power

Density

Gas Burner

Efficiency

DX Cooling Coil

COP
-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f 
S

it
e
 E

U
I 
R

e
d
u
c
ti

o
n
 (

%
)

No. of Point for EEMs

R-value of

Exterior Wall

Insulation

R-value of Roof

Insulation

U-value of

Glazing

SHGC of Glazing

Lighting Power

Density

Electric

Equipment Power

Density

Gas Burner

Efficiency

DX Cooling Coil

COP
-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f 
S

it
e
 E

U
I 
R

e
d
u
c
ti

o
n
 (

%
)

No. of Point for EEMs

R-value of

Exterior Wall

Insulation

R-value of Roof

Insulation

U-value of

Glazing

SHGC of Glazing

Lighting Power

Density

Electric

Equipment Power

Density

Gas Burner

Efficiency

DX Cooling Coil

COP

Cooling COP

Figure 6.7: Energy savings for individual EEMs in the three climate zones

In climate zones 1A and 5A, lighting power density has the greatest potentials to reduce

energy consumption. It is approximately 15% and 10% of site EUI reduction respectively from the

worst case to the best case. In climate zone 8, the U-value of glazing is more dominant and 8%

of site EUI reduction is obtained by decreasing the U-value of glazing. Furthermore, some EEMs,

such as lighting power density, has the linear relationship to the site EUI, while the others, such as

cooling COP, has the nonlinear relationship to the site EUI. Thus, it is important for the nonlinear

EEMs to identify the existing value and the proposed value. Moreover, some EEMs are affected by

climate greatly. For example, when decreasing the SHGC of glazing in climate zone 1A, the site

EUI is decreased; when doing so in climate zone 8, the site EUI is increased. Thus, it is important

to consider the impact of climate in the building retrofit projects. After that, it is still needed to

identify the interactive effects between two EEMs on the site EUI. Figure 6.8 shows the interactive

effects in the three climate zones. The Point 0 (baseline) for each EEM is used to represent the
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existing value and Point 5 is used to represent the proposed value.

Positive Effect No Effect Negative Effect

Positive Effect No Effect Negative Effect

Positive Effect No Effect Negative Effect

(a) Percentage of Energy Saving (%) in Honolulu (ASHRAE Climate Zone 1A)

Individual EEMs
Two EEMs 𝑫𝒊𝒇𝒇𝑬𝑬𝑴𝒊+𝒋

EEM8 EEM7 EEM6 EEM5 EEM4 EEM3 EEM2 EEM8 EEM7 EEM6 EEM5 EEM4 EEM3 EEM2

EEM1 3.08 EEM1 9.58 3.08 10.78 17.59 9.48 5.92 3.84 EEM1 -0.42 0.00 0.03 0.08 0.05 -0.04 0.04

EEM2 0.72 EEM2 7.54 0.72 8.41 15.16 7.10 3.63 EEM2 -0.11 0.00 0.01 0.00 0.02 0.03

EEM3 2.88 EEM3 9.43 2.88 10.57 17.42 7.71 EEM3 -0.37 0.00 0.02 0.10 -1.52

EEM4 6.35 EEM4 12.43 6.35 14.06 20.90 EEM4 -0.85 0.00 0.04 0.11

EEM5 14.44 EEM5 20.76 14.44 22.11 EEM5 -0.61 0.00 0.00

EEM6 7.67 EEM6 14.27 7.67 EEM6 -0.33 0.00

EEM7 0.00 EEM7 6.93 EEM7 0.00

EEM8 6.93

(b) Percentage of Energy Saving (%) in Buffalo (ASHRAE Climate Zone 5A)

Individual EEMs
Two EEMs 𝑫𝒊𝒇𝒇𝑬𝑬𝑴𝒊+𝒋

EEM8 EEM7 EEM6 EEM5 EEM4 EEM3 EEM2 EEM8 EEM7 EEM6 EEM5 EEM4 EEM3 EEM2

EEM1 3.55 EEM1 5.18 4.78 8.55 12.85 3.56 6.97 5.21 EEM1 -0.02 0.00 0.09 0.05 0.02 -0.14 -0.03

EEM2 1.69 EEM2 3.31 2.94 6.64 10.92 1.68 5.18 EEM2 -0.03 0.01 0.05 -0.01 0.00 -0.06

EEM3 3.55 EEM3 5.22 4.79 8.56 12.90 3.52 EEM3 0.01 0.00 0.10 0.10 -0.03

EEM4 -0.01 EEM4 1.56 1.31 4.85 9.15 EEM4 -0.08 0.09 -0.04 -0.09

EEM5 9.24 EEM5 10.63 10.80 13.96 EEM5 -0.26 0.32 -0.19

EEM6 4.91 EEM6 6.43 6.25 EEM6 -0.12 0.11

EEM7 1.23 EEM7 2.88 EEM7 0.00

EEM8 1.65

(c) Percentage of Energy Saving (%) in Fairbanks (ASHRAE Climate Zone 8)

Individual EEMs
Two EEMs 𝑫𝒊𝒇𝒇𝑬𝑬𝑴𝒊+𝒋

EEM8 EEM7 EEM6 EEM5 EEM4 EEM3 EEM2 EEM8 EEM7 EEM6 EEM5 EEM4 EEM3 EEM2

EEM1 5.34 EEM1 6.06 8.06 8.19 10.80 4.66 13.03 7.70 EEM1 0.00 -0.05 0.01 -0.03 -0.14 -0.18 -0.02

EEM2 2.38 EEM2 3.09 5.09 5.24 7.89 1.78 10.30 EEM2 -0.01 -0.06 0.02 0.02 -0.05 0.06

EEM3 7.86 EEM3 8.61 10.58 10.77 13.41 7.28 EEM3 0.03 -0.05 0.07 0.05 -0.04

EEM4 -0.55 EEM4 -0.04 2.69 2.14 4.23 EEM4 -0.21 0.47 -0.15 -0.71

EEM5 5.49 EEM5 6.09 8.56 8.25 EEM5 -0.11 0.30 -0.08

EEM6 2.84 EEM6 3.50 5.71 EEM6 -0.05 0.10

EEM7 2.77 EEM7 3.49 EEM7 0.00

EEM8 0.72

# of EEM Name of EEM # of EEM Name of EEM # of EEM Name of EEM # of EEM Name of EEM
1 R-value of Exterior Wall Insulation 3 U-value of Glazing 5 Lighting Power Density 7 Gas Burner Efficiency
2 R-value of Roof Insulation 4 SHGC of Glazing 6 Electric Equipment Power Density 8 Cooling COP

Figure 6.8: Interactive effects of two EEMs in the three climate zones

The energy savings could have positive or negative interactive effects by using two EEMs.

For example, improving cooling COP will counteract part of energy savings obtained by using

higher R-value of exterior wall and roof insulations in climate zone 1A, while the higher-efficiency

lighting fixtures and higher R-value of exterior wall insulation assist each other in climate zone

1A. Furthermore, the interactive effects could be different in various climates. For instance, higher

R-value of exterior wall and roof insulations have positive interactive effects in climate zone 1A
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while they have negative effects in climate zones 5A and 8.

6.3.3.2 Impact of Sample Size for Sensitivity Analysis Methods

Before generating the sensitive indices for individual EEMs, it is necessary to identify the

number of building samples that are needed to minimize the margin of error for each method.

Naturally, when the sample size becomes larger, the sensitivity results become gradually more

stable [128, 123, 95, 121]. Iooss and Lemâıtre [95] estimated the number of samples required for

various global sensitivity analysis. If the total number of variables is d, the number of samples

required is on the scale of 10d for the SRC and Morris methods, while it is on the scale of 1,000d

or greater for the Sobol method. Since there are eight EEMs (d=8 ) in this study, approximately

80 samples for SRC and Morris methods and 8,000 samples for Sobol method will be needed. In

this chapter, the samples sizes were selected for each method based on the point when the standard

deviation of the sensitivity indices stabilized. Our results show that the SRC and Morris methods

need 500 samples for each climate zone, while the Sobol method needs 20,000 samples for each

climate zone. These numbers of samples are higher than the estimated values of 80 and 8,000,

which ensures the sensitivity analysis results are independent of sample size.

6.3.3.3 Results by the SRC Method

To avoid biases caused by random selection of samples, this chapter calculates the SRC

sensitivity index by using the bootstrap method [175]. Figure 6.9 shows the sensitivity analysis

results of the eight EEMs in three climate zones.

The SRC sensitivity indices indicate the relative sensitivity of the eight EEMs. Each boot-

strap sample set generates one value of the SRC sensitivity index for a certain EEM. Thus, based

on multiple bootstrap sample sets, the standardized computational framework will obtain a set of

values for the EEM’s SRC sensitivity index. In Figure 6.9, the circle shows the median value and

the vertical line shows the range of the EEM’s SRC sensitivity index. Positive SRC sensitivity

indices indicate positive relationships between the EEM and the site EUIs, while negative values
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Figure 6.9: SRC sensitivity indices of the eight EEMs in the three climate zones

indicate negative relationships. This chapter uses the absolute SRC sensitivity index to measure

the sensitivity level of each EEM. For example, the lighting power density is the most sensitive

EEM in climate zones 1A and 5A, while the U-value of glazing has the highest sensitivity in cli-

mate zone 8. Both lighting power density and U-value of glazing have positive relationships with

site EUI in the three climate zones. Cooling COP has a negative relationship with site EUI in the

climate zone 1A, while the absolute indices of cooling COP are lower than 0.1 in climate zones 5A

and 8, indicating weak correlations. Furthermore, the electric equipment power density in all three

climate zones and SHGC of glazing in climate zone 1A have relatively high positive effects on site
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EUI, while the R-value of exterior wall insulation has relatively high negative effects on site EUI

in climate zones 5A and 8.

6.3.3.4 Results by the Morris Method

Both µ∗ and σ are the sensitivity indices used in the Morris method. Figure 6.10 displays

the values of Morris sensitivity indices of the eight EEMs in the three climate zones.

Figure 6.10: Morris sensitivity indices of EEMs of the eight EEMs in the three climate zones

The Morris method results are similar to those from the SRC method. The most sensitive

EEMs, which have the highest values of µ∗, are lighting power density in climate zones 1A and 5A

and U-value of glazing in climate zone 8. Furthermore, the Morris method can identify whether the
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relationships between EEMs and site EUIs are linear. For example, cooling COP is not sensitive to

site EUIs but has a near linear relationship with site EUI in climate zone 5A. Contrarily, lighting

power density, electric equipment power density, R-value of exterior wall insulation, and U-value of

glazing have nonlinear relationships with site EUI or are dependent on other EEMs. By comparing

with the sensitivity results of SRC, there are still some minor differences. For example, in Figure 6.9,

the median absolute SRC index for the roof insulation’s R-value (0.0967) is slightly lower than the

index for the cooling COP (0.0974) in climate zone 5A. By using the Morris method, the roof

insulation’s R-value is slightly more sensitive to the site EUI than the cooling COP in climate zone

5A. Since there is no EEM that has the highly nonlinear relationship with site EUIs, the SRC and

Morris sensitivity results do not have significant differences.

6.3.3.5 Results by the Sobol Method

As mentioned in Section 6.2.3, both first-order and total Sobol indices are typical metrics

to evaluate EEM sensitivity. Figure 6.11 shows the values of Sobol sensitivity indices of the eight

EEMs in the three climate zones.

The Sobol method results as similar to the SRC and Morris method results. Since the first-

order and total Sobol indices provide similar values for all EEMs, this chapter uses first-order

indices to evaluate the sensitivity levels of the EEMs. Figure 6.11 shows that the lighting power

density is the most sensitive in climate zones 1A and 5A, while the U-value of glazing is the most

sensitive in climate zone 8. The Sobol sensitivity results tend to distinguish the values of sensitivity

indices for sensitive and insensitive EEMs. Since all the selected EEMs do not have highly nonlinear

relationship with site EUIs and there is no strong correlation between the EEMs, the Sobol method

does not have significant difference compared with the sensitivity results generated by the SRC and

Morris methods.
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Figure 6.11: Sobol sensitivity indices of EEMs of the eight EEMs in the three climate zones

6.3.3.6 Summary for the Sensitivity Analysis Methods

Figure 6.12 summarizes the sensitivity results for the three methods, eight EEMs, and 15 cli-

mate zones. The absolute SRC sensitivity index, µ∗ of the Morris method, and first-order sensitivity

index of the Sobol method are selected to evaluate the sensitivity of the eight EEMs.

The three sensitivity analysis methods generate similar results for all eight EEMs and 15

climate zones. However, there are still some minor differences. For instance, the Sobol method

shows the insensitive EEMs with the lightest colors. This is because the scales and definitions of
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Figure 6.12: Evaluation of sensitivity of the eight EEMs in the 15 climate zones

the sensitivity indices from different sensitivity analysis methods differ. While these differences

are present, they do not influence the primary results. Generally, the EEM sensitivity levels vary

among the climate zones. Noticeably, lighting power density is the most sensitive EEM in most

climate zones. The U-value of glazing and R-value of exterior wall insulation are more sensitive

in cold climate zones, while the SHGC of glazing has greater impacts on site EUI in hot climate

zones. Furthermore, the electric equipment power density has slightly lower impacts on site EUI

in climate zone 8. The other three EEMs have weak impacts on site EUI. However, this chapter

still finds that the gas burner efficiency is more relevant to the site EUIs in cold areas, while the

cooling COP affects site EUIs more in hot areas.

6.3.4 Energy Impact Evaluation

6.3.4.1 Analysis of Energy Savings

Based on the sensitivity results for the eight EEMs in the 15 climate zones, this chapter

evaluates the potential impact on energy consumption to support retrofit decisions of existing U.S.

medium office buildings. To assist the users in selecting EEMs, Figure 6.13 shows the energy savings
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for individual EEMs in the 15 climate zones. Table 6.5 lists the top three positive and negative

interactive effects of two EEMs in the 15 climate zones.

The energy impact information shown in Figure 6.13 and Table 6.5 can help users determine

which of the eight EEMs are appropriate for their climate zone. For example, lighting power den-

sity is one of the most important EEMs to reduce energy consumption in all 15 climate zones. In

cold area, the U-value of glazing is also an EEM with a high energy saving potential. Further-

more, the lighting power density and gas burner efficiency strongly assist each other in cold areas.

Therefore, it is worth considering improving both lighting fixtures and the gas burner at the same

time. Moreover, in hot areas, reducing the U-value and SHGC of glazing at the same time have

counterproductive effects; therefore, building owners and architects need to select windows with

suitable a U-value and SHGC. Based on the information provided by Figure 6.13 and Table 6.5,

and the cost information from the market, users are able to decide which EEMs are appropriate

for retrofit projects in their target climate zone.

6.3.4.2 Sensitivity of EEMs

In addition to identifying the energy saving potentials of EEMs in retrofits, developing build-

ing energy models for retrofit applications can be beneficial to quantify potential energy savings.

The sensitivity of EEMs will provide information for which EEM values significantly impact the

accuracy of the predicted energy consumption. Thus, modelers need to spend more time on identi-

fying the values of these EEMs, while general estimates or typical values for the remaining EEMs

are sufficient. Table 6.6 summarizes the aggregated sensitivity of the eight EEMs.

For developing building energy models, only 43.3% of the selected EEMs have sensitive im-

pacts on site EUIs for all 15 climate zones; thus, using general estimates for the remaining 56.7%

of the selected EEMs can save modelers valuable time and money. Lighting power density is highly

sensitive for all climate zones. Electric equipment power density is also sensitive for all climate

zones. Furthermore, U-value of glazing is sensitive for most climate zones. Moreover, in some cli-

mate zones, R-value of exterior wall insulation, SHGC of glazing, gas burner efficiency, and cooling
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Figure 6.13: Energy savings for individual EEMs in the 15 climate zones
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COP are sensitive.

6.4 Discussion

This section compares the results of sensitivity analysis based on different medium office

building energy models. The prototypical building energy models of U.S. medium office buildings

created in Section 5.2.1 are used to conduct sensitivity analysis. The same workflow is used and

this chapter uses 5A (Buffalo) as an example to show the results. Figure 6.14 shows the comparison

results of sensitivity analysis by using the DOE Commercial Prototype Building Models and new

models created in Section 5.2.1 [45]. The aggregated sensitivity levels of the EEMs are compared.

Figure 6.14: Comparison of sensitivity analysis results by using different baseline models

The results show that the EEMs with the high sensitivity levels are similar in different

models, such as lighting power density. There are some different results for the EEMs with the low

sensitivity levels. The EEMs with the high sensitivity levels are more important for building energy

retrofits and energy savings than the EEMs with the low sensitivity levels. Thus, the results are

summarized in this chapter can be used as reference for the building energy retrofits. Furthermore,
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the rankings of the sensitivity levels of the EEMs are also necessary during the EEM selections.

Table 6.7 shows the rankings calculated by using the different baseline models.

Table 6.7: Rankings of the sensitivity levels of the EEMs by using different baseline models

EEM
Pre-1980

(New Model)
Post-1980

(New Model)
Prototype

Model

R-value of Exterior Wall Insulation 7 4 8

R-value of Roof Insulation 8 6 6

U-value of Glazing 2 3 2

SHGC of Glazing 6 8 7

Lighting Power Density 1 1 1

Electric Equipment Power Density 3 2 4

Gas Burner Efficiency 4 5 3

Cooling COP 5 7 5

1∼3 4∼6 7∼8
Ranking

The results show that U-value of glazing and lighting power density belong to Ranking 1∼3

in all three models. Then electricity equipment power density and gas burner efficiency belongs

to Ranking 1∼3 in some models while Ranking 4∼6 in the other models. The rest EEMs have

low rankings in most situations. It is noticeable that the prototype models are more sensitive

on the insulation of envelopes by compared with the new models while the new models are more

sensitive on system. Thus, when building energy analyses are conducted and the accurate results

are required, it is important to select suitable baseline models as the starting points.

6.5 Summary

This chapter provides the energy saving potentials of eight EEMs to advise EEM selections in

retrofit projects. To fulfill these targets, the standardized computational framework conducts large-

scale simulations and sensitivity analyses of typical U.S. medium office buildings in the 15 climate

zones. This energy impact evaluation can help building owners and architects select EEMs during

existing medium office building retrofits, and help engineers develop predictive models, which are

used to evaluate energy savings in existing medium office building retrofits:
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(1) Support of EEMs Selection for Retrofits. The results in Figure 6.13 and Table 6.5 provide

climate-appropriate energy saving potentials for eight EEMs that can help the owners,

architects, and engineers identify EEMs that can produce deep energy savings for existing

medium office retrofits. Based on the results, users can check the EEMs during the existing

medium office building retrofits. If the EEMs have high energy saving potentials and have

low-efficient energy performance in the existing building, then upgrading them should be

considered. For example, if the lighting power density is the highest priority and the

lighting fixtures in the existing building have low efficacy ratings, such as incandescent

lamps, building owners should consider retrofitting the lighting system with high-efficient

fixtures, such as LED. It is noted that the table only provides suggestions based on the

energy considerations. The users also need to evaluate the payback period of the retrofits,

which is out of the scope of this chapter. Furthermore, in the special situations, the owners,

architects, and engineers still need to use their own judgments based on prior experience. As

an application example, an owner decides to retrofit his medium office building in Denver,

CO, which is in climate zone 5B. Based on the data in Figure 6.13 and Table 6.5, the first

step is to check whether the lighting fixtures and windows have poor energy performance

ratings. If so, they need to consider changing the lighting fixtures into the high-performance

ones, such as LED, and replacing the windows with low U-value windows. Next, they need

to check the insluated R-values of the envelopes. Then, if the initial cost is still lower than

the budget, they can consider upgrading the rest EEMs.

(2) Identification of Critical EEMs for Predictive Modeling. These results in Table 6.6 provide a

guideline for identifying the most important EEMs in the development of predictive models

to estimate the energy savings of retrofits. For small retrofit projects, it is often not cost-

effective for engineers to provide accurate values for all EEMs. To address this, Table 6.6

quantifies EEM importance, which can advise engineers which EEMs need more attention.

If the time is limited to develop models, users can apply the default or evaluated values for
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insensitive EEMs. However, in the special situations, the engineers still need to use their

own judgments based on prior experience. For an application example, building engineers

are creating a predictive model for retrofitting an existing medium office in Miami, FL,

which is in the climate zone 1A. From Table 6.6, it is found that there are four EEMs with

aggregated sensitivity larger than 0.20. Among them, the lighting power density (1.00)

is the most sensitive EEM, followed by the electric equipment power density (0.44), the

cooling coil coefficient of performance (0.29), and the window solar heat gain coefficient

(0.27). If extra energy savings are needed, then the R-value of exterior wall insulation

(0.10) and U-value of glazing (0.08) can also be explored. Thus, the engineers need to

spend more effort on these model inputs in order to achieve an accurate energy model,

while general estimates for the other EEMs are sufficient. This saves the engineers valuable

time and can help make modeling more accessible for building retrofit applications.

Furthermore, this chapter compares the results by using different building energy models as

the baselines. The results indicate that it is necessary to select suitable baseline models for the

building energy analyses with the highly accurate requirements. Moreover, it is noted that the

cost information from the market is also needed to calculate the payback period of retrofit options,

which will be analyzed in Chapter 7.



Chapter 7

Impacts of Electricity Pricing Programs on EEM Selection

This chapter provides one example for the standardized computational framework about

building energy analyses and analyze the impacts of electricity pricing programs on the selection

of energy efficiency measures (EEMs). The DOE Commercial Prototype Building Energy Models

for medium office buildings are used as the baseline models [45]. Five electricity pricing programs

are studied: static, general, critical peak, time-of-use, and high renewable penetration electricity

pricing programs. Furthermore, this chapter also discusses how different baseline models impact

the cost savings in relationship to the EEM selections.

7.1 Introduction

Building energy retrofit has great potential to save energy [80, 181, 74, 77, 173]. For example,

Glazer [74] analyzed 272 buildings and climate combinations, and stated that the energy retrofit of

commercial buildings in the U.S. had the potential to achieve approximately 50% site energy saving

compared to ASHRAE Standard 90.1-2013 [11]. Furthermore, the study by Chen et al. [24] shows

that replacing lighting with LED in office and retail buildings in San Francisco will save more than

300 GWh energy consumption annually. According to simulations conducted by Friess et al. [73],

an appropriate wall insulation strategy is able to save up to 30% of energy consumption. Moreover,

energy saving with improved lighting systems was found to be 8.3% in the research conducted by

Houri and El Khoury [86]. However, energy saving is only one of the considerations for building

owners. They also consider cost saving when selecting EEMs. To optimize energy and cost savings,
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it is crucial to select appropriate EEMs during building energy retrofits.

Currently, a lot of research has studied how to select appropriate EEMs for buildings by

considering various factors, such as energy and cost savings [70, 97, 99, 106, 129]. Taking into

account energy consumption and net present value (NPV), Liu et al. [111] introduced a framework

to optimize the design of building energy systems. Moreover, using energy saving or cost saving as

the main objective, Tan et al. [169] studied how to select the right EEMs for existing buildings.

Mahlia et al. [115] analyzed the life cycle cost and the payback period of lighting retrofit at the

University of Malaya.

The studies mentioned above mainly applies static energy price (or a fixed energy price) to

evaluate the cost performance of building retrofits. However, more and more commercial buildings

adopt dynamic electricity pricing programs instead of static pricing programs [191, 1, 65, 180, 198].

For example, commercial buildings in Colorado, U.S. adopt various dynamic electricity pricing

programs, such as critical peak pricing and time of use pricing [192]. In this case, electricity prices

are different for individual buildings according to the power peak load demanded by each building.

Electricity prices vary during different time periods. Generally, electricity price is higher during

the daytime than at night. Another example is that real time electricity pricing programs are being

adopted in Texas, U.S. [68, 198]. Electricity prices fluctuate over short intervals (typically an hour),

and building users are charged at a specific price for each interval. Dynamic pricing programs can

generate savings if building users respond to the fluctuations in electricity prices and adjust their

usage accordingly.

Apparently, for building adopting dynamic electricity pricing programs, the conventional

approach of selecting EEMs based on static pricing programs may not be valid anymore. The

return on investment (ROI) of EEMs, which could reduce the peak power load or shift the time

period of energy consumption, may be underestimated under static pricing programs. For example,

there is an EEM can shift the electricity consumption from noon to night. This feature does not

bring cost savings under the static pricing program as the energy consumption is the same. However,

it can generate cost saving under the time of use pricing program by shift the load from the peak
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to non-peak period.

To understand how electricity pricing programs impact the selection of EEMs, this chapter

studies the ROIs of EEMs under different pricing programs using U.S. medium office buildings as

an example. This research selected four typical cities with different climate features and designed

five electricity pricing programs. To simplify the research process, the electricity pricing programs

in different cities are similar, which are designed based on a review about existing electricity pric-

ing programs used in the U.S. This chapter is organized as follows: Section 7.2 introduces the

methodology to select EEMs. Section 7.3 provides a case study to select EEMs for U.S. medium

office buildings. The four studied cities and five electricity pricing programs are used for this study.

Furthermore, Section 7.4 analyzes how the selection of EEMs are changed when the medium office

building models created in Section 5.2 are used as baselines. Finally, findings are concluded in

Section 7.5.

7.2 Methodology to Evaluate the Impacts of Electricity Pricing Programs

on EEM Selection

7.2.1 General Description

Figure 7.1 presents a general description of selecting EEMs for an existing building based

on the ROI for different pricing programs. Although this paper focuses on the U.S. medium office

buildings, the methodology presented in this section can be applied for other building types. This

chapter first establishes a baseline model and calculates its energy consumption. Secondly, this

chapter upgrades the baseline models with EEM i. Then, energy costs are calculated based on

energy predictions and different pricing programs. After that, annual cost saving by applying EEM

i can be determined. Finally, ROI for EEM i can be calculated by using initial investment and

annual cost saving. The EEMs can be selected based on a threshold defined the users. A detailed

introduction is shown in Sections 7.2.2, 7.2.3, and 7.2.4.
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Initial Investment

Energy cost
Baseline
model

Upgraded models 
with EEM 𝑖

Energy prediction
ROI

Energy prediction
with EEM 𝑖

Energy cost 
with EEM 𝑖

Annual Cost 
SavingPricing

programs

Selection results

Threshold

Figure 7.1: General description of calculating ROI of EEM for an existing building

7.2.2 Energy Prediction

As mentioned in section 7.2.1, energy consumption is predicted based on (1) baseline models

and (2) upgraded models by adopting individual EEMs. The baseline model can be the model

of the actual building if users are only interested in a single building. For large-scale analysis,

the baseline models can be prototypical building models, such as Commercial Reference Building

Models (Deru et al. 2011; DOE 2019b), Commercial Prototype Building Models [45, 173], other

prototypical models for religious worship[194], mechanical shop [196], and college and university

buildings [195].

The EEMs can be selected by engineering experience or referring to literature. A rich set of

research identified possible sensitive EEMs, which may have great impacts on energy consumption

in buildings [74, 103, 184, 185, 183, 197].

Depending on the pricing programs, different data will be extracted from the building energy

simulations of baseline models and upgraded models with EEM i. This study extracts three types

of data: (1) hourly electricity consumption; (2) monthly peak power load; (3) annual natural gas

consumption.
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7.2.3 Cost Estimation

Cost estimation consists of two types of cost: initial investment and energy cost. Initial

investment is the total cost during the retrofit period, including material cost, installation cost,

and transport cost. Energy cost includes electricity cost and natural gas cost.

7.2.3.1 Initial Investment

The investment estimation of EEMs is an important area of research for building energy

retrofit [35, 125]. Some existing reports provide the estimated values of the initial investment (Ii)

for EEMs. For example, the Advanced Energy Retrofit Guide provides strategies and costs to

retrofit existing office buildings [111]. The RSMeans also provides cost estimations for the initial

investment of EEMs [76]. This study referred the retrofit guides and used RSMeans as a tool to

estimate initial investment.

7.2.3.2 Energy Cost

Energy cost consists of two types of cost: electricity cost and natural gas cost. In order

to analyze the impact of electricity pricing programs on the selection of EEM, electricity cost is

calculated under different pricing programs, while natural gas cost is calculated under one static

pricing program.

There are different ways to define electricity pricing programs [5, 46, 98]. This study con-

sidered electricity pricing programs consist of three types of charge: basic charge, demand charge,

and energy charge. Basic charge is a monthly fixed charge. Demand charge is the charge for each

month’s peak power load. Energy charge is the charge for electricity consumption. Therefore,

annual electricity cost Celectricity under a typical electricity pricing program is:

Celectricity = PB × 12 +
12∑
j=1

PD,j × ED,j +
n∑

k=1

PE,k × EE,k (7.1)

where PB is the basic price for every month; PD,j is the unit price of the peak power and
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ED,j is the peak power load in every month; PE,k is the unit price of electricity consumption for

time period k. EE,k is electricity consumption during time period k. The PB,PD,j , PE,k, and k are

different under different electricity pricing programs. For instance, in a static electricity pricing

program, PB = 0, PD,j = 0, and n = 0 so that Celectricity = PE × EE .

Annual natural gas cost Cgas is:

Cgas = PG × EG (7.2)

where PG is the unit price of natural gas; EG is the annual natural gas consumption.

Therefore, annual energy cost Cenergy is:

Cenergy = Celectricity + Cgas (7.3)

7.2.3.3 Annual Cost Saving

Energy cost saving Ri by applying EEM i is:

Ri = Cenergy,base − Cenergy,upgr,i (7.4)

where Cenergy,base is the annual energy cost before the retrofit; Cenergy,upgr,i is the annual

energy cost after applying EEM i.

7.2.4 Selection of EEMs

The initial investment of an EEM is returned by annual cost saving. The ratio of annual cost

saving and initial investment is termed as ROI, which reflects the economic efficiency of EEMs.

The ROI of EEM i (ROIi) is:

ROIi =
Ri

Ii
(7.5)
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where Ri is annual energy cost saving by adopting EEM i, which can be calculated by using

Equations 7.1, 7.2, 7.3, and 7.4; Ii is initial investment of EEM i, which can be calculated by using

the method introduced in Section 7.2.3.1.

The higher ROI means the shorter payback period, which building owners tend to select for

existing building retrofit projects [69, 113, 168]. In this study, the higher the EEM’s ROI is, the

higher priority it will be selected. The goal of this selection approach is not to maximize energy

saving or cost saving, but to value more profitable EEMs.

7.3 Case Study: U.S. Medium Office Buildings

To evaluate the impact of pricing programs on ROIs, a case study is performed using the

U.S. medium office buildings in four typical cities (Honolulu, Buffalo, Denver, and Fairbanks)

under the five pricing programs (static, general, critical peak, time of use, and high renewable

penetration). The study is conducted in three steps as introduced in Section 7.2: energy prediction,

cost estimation, and selection of EEMs.

7.3.1 Energy Prediction

Figure 7.2 shows the status of state energy code adoption for U.S. commercial buildings

[43]. Based on the status of state energy code adoption, this study selected the medium office

building models for Standard 90.1-2007 from DOE Commercial Prototype Building Models as

baseline models [45]. The geometry and thermal zones have been shown in Figure 6.4. The

description of the models have been listed in Table 6.2. Four typical cities in different climates

were selected. Honolulu in the Climate Zone 1A is hot and humid while Fairbanks in the Climate

Zone 8 is extremely cold. Buffalo (5A) and Denver (5B) are in cold climates, which is relatively

warmer compared with Fairbanks, but cooler than Honolulu. Buffalo is relatively humid while

Denver is dry. Thus, these four studied cities can represent the major climate features in the U.S.

Table 7.1 lists eight selected EEMs based on the literature [75, 77, 185]. To make it convenient,

this chapter provides the abbreviation for each EEM.
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Figure 7.2: Status of state energy code adoption (U.S. commercial buildings) [43]

The baseline values of the selected EEMs are the values in the baseline models. The upgraded

values are the values of the EEMs after the retrofits based on the Advanced Energy Retrofit Guide

[111]. Table 7.2 lists the baseline and upgraded values of the EEMs in the four studied cities.

The EEMs impact building’s monthly maximum power and annual energy consumption.

Figure 7.3 shows the impact of varying a single EEM on average monthly peak power for buildings.

The first six EEMs reduce the average monthly peak power. Since the heating system and hot water

system consume natural gas, HEATING and DHW do not change the average monthly peak power.
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Table 7.1: Description of EEMs

EEM EEM Code Variable

Add wall insulation WALL Wall insulation R-value

Add roof insulation ROOF Roof insulation R-value

Replace windows WINDOW U-factor, SHGC

Replace interior fixtures with higher-efficiency
fixtures

LPD Lighting Power Density

Replace office equipment with higher-efficiency
equipment

PLD Plug Load Density

Replace cooling system with higher-efficiency
system

COOLING COP

Replace heating system with higher-efficiency
system

HEATING Heating Efficiency

Replace service hot water system with
higher-efficiency system

SWH Hot Water Efficiency

Moreover, the greatest reduction is by replacing office equipment with higher-efficiency equipment

(EQUIP) in all four cities. The first four EEMs have moderate impacts on the changes of average

monthly peak power. These four EEMs retrofit the envelopes and lighting fixtures. Because

the efficiency of the cooling system is not significantly improved, the COOLING only has a low

impact on the changes of average monthly peak power. Furthermore, EEM’s impacts on reducing

average monthly peak power varies depending on the climates. For example, improving insulation of

envelopes (WALL, ROOF, and WINDOW) can reduce more peak power in the extremely cold/cold

climate (Denver, Buffalo, and Fairbanks) than the hot climate (Honolulu). Another example shows

that the EQUIP reduces more peak power in the hot climate (Honolulu).

Figure 7.4 shows the changes in annual electricity consumption and natural gas consumption

by applying individual EEMs. The EQUIP leads to the greatest reduction of annual electricity

consumption in all four cities. By using WALL or ROOF, the annual electricity consumption is

reduced while there is also a minor change for the annual natural gas consumption. The COOLING

only impacts the annual electricity use while the HEATING and DHW only change the annual

natural gas consumption. Furthermore, the rest three EEMs (WINDOW, LPD, and EQUIP)

reduce the annual electricity use while they increase the annual natural gas use. For example, the
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Figure 7.3: Changes in average monthly peak power by applying EEMs for buildings

EQUIP reduces the annual electricity use in all four cities while it increases the annual natural gas

use in cold and extremely cold climates (Buffalo, Denver, and Fairbanks). The high-efficiency office

equipment consumes less electricity for internal load. Furthermore, these models use electricity

for cooling and natural gas for heating. By using the EQUIP, the cooling load is decreased and

heating load is increased. In hot climate (Honolulu), the heating load is almost zero. The EQUIP

reduces the annual electricity use for both internal load and cooling, and only has a small impact

on the annual natural gas use. In the cold and extremely cold climates (Buffalo, Denver, and

Fairbanks), the high-efficiency office equipment reduces both internal load and cooling load, but

increases energy consumption for heating. Thus, the electricity consumption is reduced and natural

gas consumption is increased. It is noticeable that the natural gas consumption is increased in cold

and extremely cold climates (Buffalo, Denver, and Fairbanks) after replacing windows (WINDOW).

It is because the Solar Heat Gain Coefficient (SHGC) of the new windows is lower than the windows

in the baseline models, which causes less solar radiation enters into the building.
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Figure 7.4: Changes in annual electricity and natural gas consumption by applying EEMs

7.3.2 Cost Estimation Under Different Electricity Pricing Programs

This section considers five types of electricity pricing programs: static, general, critical peak,

time of use, and high renewable penetration. First, the initial investments of eight EEMs introduced

in Table 7.1 will be estimated in this section. Secondly, energy costing saving contributed by

individual EEMs will be calculated under the five types of pricing programs.

7.3.2.1 Initial Investment Estimation

Using the methodology described in Section 7.2.3.1, the initial investment of each individual

EEM (Ii) in the four studied cities was estimated, as shown in Table 7.3.

This section considers five types of electricity pricing programs: static, general, critical peak,

time of use, and high renewable penetration. First, the initial investments of eight EEMs intro-

duced in Table 2 will be estimated in this section. Secondly, energy costing saving contributed by
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individual EEM will be calculated under the five types of pricing programs.

Table 7.3: Initial investment (Ii) for the EEMs in building retrofits

EEM 1A: Honolulu 5A: Buffalo 5B: Denver 8: Fairbanks

WALL $11,267 $9,556 $8,272 $12,408

ROOF $17,875 $20,557 $19,305 $35,214

WINDOW $155,202 $131,678 $143,634 $166,441

LPD $33,496 $27,658 $25,942 $35,868

EQUIP $64,725 $58,640 $57,352 $66,302

COOLING $11,063 $10,516 $9,776 $11,008

HEATING $2,968 $2,780 $2,678 $2,961

DHW $1,910 $1,864 $1,824 $1,908

It can be seen from Table 7.3 that the initial investment of WINDOW is significantly higher

than the other EEMs in all four studied cities. It is costly to replace all exterior windows into

the new windows with lower U-factor and SHGC. Then EQUIP and LPD are the second and

third expensive EEMs for the initial investment. By compared with these EEMs, it is relatively

cheaper to add insulation for the envelopes (WALL and ROOF) and replace systems (COOLING,

HEATING, and DHW).

Generally, the initial investments of EEMs are similar among four cities, while they are a little

higher in Fairbanks than in the other three cities. But, the initial investment of ROOF in Fairbanks

is significantly higher than that in the other three cities. One reason is that the difference of roof

insulation R-value between baseline and upgraded in Fairbanks is larger than that in other cities.

As shown in Table 7.2, the difference of roof insulation R-value between baseline and upgraded in

Fairbanks is 2.71 m2-K/W, while the difference value in Honolulu, Buffalo, and Denver are 1.36

m2-K/W, 2.03 m2-K/W, and 2.03 m2-K/W, respectively.

7.3.2.2 Energy Cost Saving Estimation

In reference to existing electricity pricing programs [191, 47, 48, 68, 98], this study designed

five electricity pricing programs using Equation 7.1. The parameters of each program are given in

Table 7.4.
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Static: There is no basic charge or demand charge in this program. The unit price of

electricity consumption PE is same during the year. The electricity cost Celectricity is the product

of PE and electricity consumption. Static pricing program provides building users price signal to

reduce energy consumption [47, 48]. In this study, PE is designed by referring the average price of

electricity in the studied cities [62].

General : The electricity prices (PB, PD, and PE) in this program are same during the year

([190]. The electricity cost (Celectricity) is the sum of basic charge, demand charge, and energy

charge. Basic charge is fixed. Demand charge is the product of PD and monthly peak power.

Energy charge is the product of PE and electricity consumption. Therefore, general pricing program

provides building users price signals to reduce peak power and electricity consumption.

Critical Peak : PB and PD in this program are same during the year. But PE is different

during different time period. PE is high during a few critical-peak hours of the day and discounted

during the rest of the day [47, 48]. The critical-peak hours are only designed for a certain number

of days (e.g. 15 days in this study) during a year. Critical peak pricing program gives building

users strong price signals and encourages them to reduce their electricity use during critical-peak

periods.

Time of Use: PB and PD in this program are same during the year. But PE in this program

varies during different times of the day, that is, high during on-peak hours and low during off-peak

hours [47, 48, 177]. The on-peak hours are designed in summer (e.g. from 12:00 pm to 20:00

pm in this study). This program provides building users price signals to reduce their electricity

consumption during on-peak hours and shift electricity consumption to off-peak hours.

High Renewable Penetration: This chapter designs this electricity pricing program for the

scenario of future high renewable energy penetration. Many studies show that Photovoltaic (PV)

power systems will have an important role in electricity generation in the future [38, 199]. Most

buildings will have PV power systems and thus, the peak power load demanded from the power grid

will change in the future. Based on this assumption, a dynamic pricing program is designed, which

is named high renewable penetration. The schematic diagram of this future program is shown in
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Figure 7.5. Based on the one day’s radiation level, the days are divided into three categories: low,

moderate, and high radiation days.

The low radiation days are the 15 days with the lowest radiation levels over a year. In

these days, the PV only generates a small amount of electricity due to the low radiation, and the

critical-peak time period appears in these days (Figure 7.5a). To simplify the process of this study,

it is assumed that the critical-peak time period is from 13:00 pm to 17:00 pm, the on-peak time

period is from 12:00 pm to 13:00 pm and from 17:00 pm to 20:00 pm, and the other time period

is the off-peak. The moderate radiation days (Figure 7.5b) are the 15 days with the 16th ∼ 30th

lowest radiation levels. The PV generates more electricity than it does during the low radiation

days. As a result, the peak powers in moderate radiation days are all lower than the critical-peak

threshold. Here, it is assumed that the on-peak time period is from 12:00 pm to 20:00 pm, and the

other time period is the off-peak. The high radiation days are the rest days (Figure 7.5c). The PV

generate a lot of electricity during the daytime, which can significantly reduce the peak power. It

is assumed that the on-peak time period is from 17:00 pm to 20:00 pm, and the other time period

is the off-peak.

The natural gas price (PG) is designed by referring the natural gas prices released by U.S.

Energy Information Administration [61]. The natural gas prices in Honolulu, Buffalo, Denver, and

Fairbanks are $27.41/kft3, $6.87/kft3, $7.17/kft3, and $9.79/kft3, respectively.

Based on the five electricity pricing programs in Table 7.4, and applying Equations 7.1, 7.2,

7.3, and 7.4, annual energy cost saving (Ri) resulted by each EEM is calculated, as shown in

Figure 7.6. Generally, EEMs have the highest Ri under static pricing program, followed by general,

critical peak, time of use, and high renewable penetration. The EQUIP has the highest Ri under

all pricing programs.

The annual cost savings are generated by the combined effects of power changes, energy

changes, and price (PB, PD, PE and PG). For example, the annual cost savings for using more

efficient office electric equipment (EQUIP) is significantly higher in Honolulu than the other three

studied cities. The reason is that the EQUIP in Honolulu has the greatest reductions for average



151

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time

Power Load On
Peak

Critical
Peak Off PeakOff Peak

On 
Peak

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time

Power Load

On Peak Off PeakOff Peak

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time

Power Load

On 
Peak Off PeakOff Peak

(a) Low radiation day

(b) Moderate radiation day

(c) High radiation day

Figure 7.5: Schematic diagram of high renewable penetration
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monthly peak power and annual electricity consumption, and Honolulu has the highest energy

price among all four cities. The aggregated effect leads to a significant difference in the annual

cost saving for the EQUIP between Honolulu and the other three studied cities. Another example

is that adding roof insulation (ROOF) in Fairbanks reduces a significantly more annual cost than

the other three studied cities. The ROOF in Fairbanks reduces the most average monthly peak

power, and annual electricity and natural gas consumption. Furthermore, Fairbanks has the second

highest price among the four studied cities. Thus, the highest annual cost saving is the aggregated

effect of these two reasons.

Figure 7.6: Annual cost saving (Ri) under the five electricity pricing programs
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7.3.3 Selection of EEMs

After obtaining the initial investment of each EEM i and yearly energy cost saving (Ri) in

Sections 7.3.1 and 7.3.2.1, and by using Equation 7.5, the ROI of the each EEM in the four studied

cities under five electricity pricing programs can be calculated. The results are shown in Figures 7.7

∼ 7.10.

Figure 7.7: ROIs of EEMs under five electricity pricing programs for Honolulu (1A)

As shown in Figure 7.7, EQUIP can result in the highest ROI ( 70%) in Honolulu. This is

largely due to the factors: On one hand, EQUIP has significantly higher annual cost saving (Ri)

than the other EEMs under all pricing programs as previously shown in Figure 7.6. On the other

hand, the initial investment (Ii) of EQUIP is not the highest one as shown in Table 7.3.

The EEM ranking by ROI is the same under five different pricing programs. EEM with the
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highest ROI is EQUIP, followed by LPD, COOLING, and WALL. But the ROIs of these EEMs has

considerable variation. For example, the ROI of EQUIP varies from 35% to 112% under different

pricing programs. And the ROI of LPD varies from 18% to 47%.

For a specific EEM, the pricing program, which can generate higher ROI, is different because

the total ROI is a combined result of electricity demand and electricity energy when the initial

investment is the same. The EQUIP and COOLING can generate the highest ROI under the static

electricity pricing program. The LPD and WALL can generate the highest ROI under the general

pricing program. The total ROI under static pricing program is mainly contributed by electricity

energy, while the total ROI under general pricing program is mainly contributed by electricity

demand.

Figure 7.8: ROIs of EEMs by using the four electricity pricing programs for Buffalo (5A)
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As shown in Figure 7.8, EQUIP and WALL have the highest ROIs in Buffalo, which is about

27% and 23%, respectively. The EQUIP can achieve high ROI because it can significantly reduce

peak power and energy consumption, as shown in Figures 7.3 and 7.4. Although WALL’s impact on

reducing power load and energy consumption is less significantly than EQUIP, its initial investment

is significantly lower than EQUIP. As a result, WALL also has a high ROI.

The EEM ranking by ROI is different under five pricing programs. Under the static pricing

program, EQUIP, LPD, and WALL have higher ROIs than others. Under the general pricing

program, WALL, EQUIP, and LPD have higher ROIs than others. Under the critical peak pricing

program, EQUIP, WALL, and LPD have higher ROIs than others. Under time of use pricing

program, EQUIP, WALL, and LPD have higher ROIs. Under high renewable penetration pricing

program, EQUIP, WALL, and LPD have higher ROIs than others. The EEM with the highest

ROI is WALL under the general pricing program, while it is EQUIP under the other four pricing

programs. It means that the top priority EEM varies under different pricing programs. It is because

the ROI of WALL is mainly contributed by electricity demand, while the ROI of EQUIP is mainly

contributed by electricity energy. The general pricing program has highest demand price compared

with the other four programs. Therefore, the EEM which can reduce peak power significantly has

higher ROI under the general pricing program.

As shown in Figure 7.9, generally, WALL and EQUIP can result in highest ROI in Denver,

which is approximately 23% and 21%, respectively. This result is similar with Buffalo. However,

the ROI of EQUIP in Denver is lower than that Buffalo.

The EEM ranking by ROI is also different under five different pricing programs. The EEMs

with high ROI in Denver is the same with that in Buffalo while the ranking of these EEMs is slightly

different. Under static pricing program, EQUIP, LPD, and WALL have higher ROIs than others.

Under general pricing program, WALL, EQUIP, and LPD have higher ROIs than others. Under

critical peak pricing program, WALL, EQUIP, and LPD have higher ROIs than others. Under

time of use pricing program, EQUIP, WALL, and LPD have higher ROIs than others. Under high

renewable penetration pricing program, WALL, EQUIP, and LPD have higher ROIs than others.
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Figure 7.9: ROIs of EEMs by using the four electricity pricing programs for Denver (5B)

As shown in Figure 7.10, generally, WALL and HEATING can result in the highest ROIs in

Fairbanks, which is approximately 38% and 35%, respectively. Although the annual saved money

(Ri) of WALL and HEATING is not high, the initial investments (Ii) of them are lower than the

other EEMs. Therefore, they have higher ROIs.

Same as Buffalo and Denver, the EEM ranking by ROI in Fairbanks is also different under five

different pricing programs. Under static pricing program, WALL, EQUIP, HEATING, and LPD

have higher ROIs than others. Under general pricing program, WALL, EQUIP, HEATING, LPD

and ROOF have higher ROIs than others. Under critical peak pricing program, WALL, HEATING,

EQUIP, and LPD have higher ROIs than others. Under time of use pricing program, HEATING,

WALL, EQUIP, and LPD have higher ROIs than others. Under high renewable penetration pricing
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Figure 7.10: ROIs of EEMs by using the four electricity pricing programs for Fairbanks (8)

program, HEATING, WALL, EQUIP, and LPD have higher ROIs than others. The EEM with the

highest ROI is WALL under static, general, and critical peak pricing programs, while it is HEATING

under time of use and high renewable penetration pricing programs. The top priority EEM varies

because the ROI of WALL changes under different pricing programs. The ROI of HEATING is

not changed. It is because HEATING reduces natural gas consumption, but HEATING has no

impact on electricity consumption. So, electricity pricing programs has no impact on the ROI of

HEATING.
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7.3.4 ROIs of EEMs in the Four Studied Cities

In order to compare the ROIs among the four studied cities, the total ROIs of EEMs in the

four cities are compared in Figure 7.11.

Figure 7.11: Total ROIs of EEMs in four studied cities

In terms of the EEMs with high ROIs, Honolulu has the highest ROIs (up to 112%) among all

four cities due to its high energy price. LPD, EQUIP, COOLING in Honolulu almost have doubled

ROIs than the other cities. This is because energy used for internal load (equipment operation and

lighting) and cooling plays an important role in total energy consumption in hot areas, such as

Honolulu. HEATING and WALL applied in Fairbanks has higher ROI than the other cities since

heating and insulation plays an important role in total energy consumption in the extremely cold

area, such as Fairbanks. Therefore, retrofitting internal load (e.g. LPD, EQUIP) and cooling is
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more profitable in hot area, while retrofitting heating system and wall insulation is more profitable

in extremely cold area.

In terms of variations of ROIs of an EEM under different pricing program, the ROI of EQUIP

in Honolulu varies most dramatically under different pricing programs. It is because the EQUIP in

Honolulu can generate more energy savings and power reduction. However, the ROI of HEATING

and DHW do not vary under different pricing programs. It is because natural gas is used for heating

and hot water system. The price of natural gas is stable.

In term of high renewable penetration pricing program, the ROIs of EEM in Buffalo, Denver,

and Fairbanks will change slightly while the ROIs of EEM in Honolulu will decrease considerably.

This is because the PV panels generate more electricity power in Honolulu than other three stud-

ied cities and peak power impact will greatly decrease in Honolulu. However, by using the high

renewable penetration pricing programs, the ROI of the EQUIP still has approximately 40% in

Honolulu, which is necessary to conduct building energy retrofits.

7.4 Discussion

Section 6.4 shows that different baseline models could cause various results for the analysis

about the impact of the energy savings on the EEM selection. This section discusses whether

different baseline models are able to change the results about the impact of the electricity pricing

programs on the EEM selection. By using the same strategy shown in Section 7.2, this section

calculates the ROIs of EEMs for the prototypical building energy models of medium office buildings

created in Section 5.2.1 (New Models (Pre- and Post-1980)). To make this discussion, this section

compares the results by using the New Models and generated in Section 7.3 (Prototype Model).

The Time-of-Use electricity pricing program and Buffalo (climate zone 5A) are used for this study.

Figure 7.12 shows the ROIs of EEMs by using New Model and Prototype Model.

The New Models represent the pre- and post-1980 medium office buildings in the U.S. while

the Prototype Model is created based on the ASHRAE Standard 90.1-2007 [9]. Figure 7.12 shows

that the New Model (Pre-1980) has the highest ROIs for the six EEMs and the Prototype Model
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Figure 7.12: ROIs of EEMs by using different medium office models (Time-of-Use; 5A, Buffalo)

has the lowest ROIs: WINDOW, LPD, PLD, COOLING, HEATING, and SWH. The building

energy retrofit directly replace the devices by using these six EEMs, which leads to the same

initial investment for different baseline models. Furthermore, the Prototype Models have better

performance than those in the New Models. Thus, the New Model (Pre-1980) has the greatest

improvement and the Prototype Model has the smallest improvement among the three models.

For the EEMs, WALL and ROOF, this section adds the same insulation based on the existing

exterior walls and roof. Thus, the initial investments are also the same for the three models.

However, many factors affect the improvement of the energy performance in the three models,

such as the values of baseline and upgraded models, and the geometry of models. Based on the

results shown in Figure 7.12, the WALL has the greatest improvement in the New Model (Pre-

1980) while the lowest improvement in the Prototype Model. However, the ROOF has the greatest

improvement in the Prototype Model while the lowest improvement in the New Model (Post-1980),

which is different from the results of WALL.

Furthermore, there are some differences for the rankings of the ROIs. For example, the PLD
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has the highest ROIs for the New Model (Post-1980) and the Prototype Model while the LPD

has the highest ROIs for the New Model (Pre-1980). Another example is that the HEATING has

the second highest ROI in the New Models (Post-1980) while WALL is the EEM with the second

highest ROI in the Prototype Model. Thus, it is necessary to determine which models are suitable

for specific analyses before conducting building energy analyses. The best baseline models for the

analysis in this chapter are the Prototype Models, which have been analyzed in Section 7.2.2.

7.5 Summary

To understand how electricity pricing programs impact the selection of EEMs, this chapter

conducts an analysis of the ROIs of EEMs under the five electricity pricing programs: static,

general, critical peak, time of use, and high renewable penetration. The results reveal that:

(1) The ROIs of EEMs are changed under different pricing programs.

(2) The EEM with higher ROI in hot areas are replacing office equipment with higher-efficiency

equipment, replacing interior fixtures with higher-efficiency fixtures, and replacing cooling

system with higher-efficiency system. But the EEM with higher ROI in cold areas are

adding wall insulation and replacing heating system with higher-efficiency system.

(3) The ROI of EQUIP in Honolulu is affected by electricity pricing programs most significantly,

which varies from 35% to 112%.

(4) Different baseline models are possible to generate different results and thus, it is necessary

to determine which models are suitable for specific analyses before conducting building

energy analyses.

The innovation and contribution of this study mainly lie in the following aspects. Firstly,

it designs a reasonable electricity pricing program for the scenario of high renewable penetration.

Secondly, it reveals the importance of electricity pricing programs on EEMs selection. Finally, it

can help building owners to select optimal EEMs under different electricity pricing programs.
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This study is intended to show the potential impact of electricity pricing programs on the

selection of EEMs. To apply this research to real world practice, one will need to use real pricing

data.



Chapter 8

Conclusion and Future Research

8.1 Conclusion

Current research has three limitations: (1) a standardized computational framework to con-

duct building energy analyses does not exist; (2) current prototypical building energy models only

represent limited types of buildings in certain countries; and (3) the impacts of dynamic electricity

pricing programs for high penetration of renewable energy on the selection of EEMs have not been

fully established. To address these limitations, this dissertation created a standardized computa-

tional framework, applied it to create new prototypical models, and analyzed the impact of dynamic

electricity pricing on these models.

First, this dissertation conducted an extensive review on energy-related data for U.S. com-

mercial buildings. These sources include nine building energy databases total; three from surveys

and six from simulations. This dissertation also detailed their applications for building energy

analyses. This work is the most current and comprehensive review up in the field. The results also

serve the basis for the standardized computational framework.

Next, this dissertation created a standardized computational framework, which can select

the best data sources and methods to create prototypical building energy models and conduct

building energy analyses. This framework regulates the analysis process and automatizes the whole

procedure, which supports users for different analyses. This work allows users to conduct building

energy analyses with a short computational time and accurate results. For example, by using

this framework, the computational time is reduced from 1.9 years to 30 minutes. During this time,
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millions of building energy simulations are run to identify the neutral values for thousands of model

inputs.

Then, by using the framework, this dissertation proposed a new methodology for prototypi-

cal building energy model creation. This methodology standardizes the rules to identify the values

and uncertainties of the model inputs and provides the rule-based links for the models in different

climate zones. Furthermore, the improved genetic algorithm (GA) calibrates the models, which

enables the selection of the best values among the uncertainties of model inputs under the lim-

ited reference energy data. By using this new methodology, this dissertation created prototypical

building energy models for four types of U.S. commercial buildings: (1) medium office buildings,

(2) religious worship buildings, (3) college/university buildings, and (4) mechanical shops. These

models represent over 20% of the 5.6 million commercial buildings in the U.S. and can be used in

a standard for industry applications. This dissertation used medium office buildings and religious

worship buildings as two case studies.

In the first case for medium office buildings, over 300 qualified building samples were provided

by the 2003 Commercial Buildings Energy Consumption Survey (CBECS). The regression models

based on these building samples were used to validate the performance of these new prototypical

building energy models. In order to be considered valid starting points for building energy analyses,

the coefficient of variation of the root-mean-square deviation (CV(RMSD)) between the prototyp-

ical building energy models and regression models had to be less than 0.05. The CV(RMSD) of

these new models is only approximately 0.012. Based on the evaluation results, they are accurate

starting points. Furthermore, the CV(RMSD) of existing models provided by the U.S. Depart-

ment of Energy (DOE) is approximately 0.15. The models created in the dissertation are a better

representation of U.S. medium office buildings.

In the second case for religious worship buildings, the qualified building samples were insuf-

ficient to create the regression models for the model validation. Thus, this dissertation designed

the rule-based criteria to validate the performance of these new models. All models for religious

worship buildings met these criteria, and thus, they are accurate stating points. Furthermore, these



165

models complement the existing models for missing building types provided by the DOE.

Finally, this dissertation used the framework to analyze the impacts of building energy sav-

ings and electricity pricing programs on the selection of energy efficiency measures (EEMs). The

DOE Commercial Prototype Building Energy Models for medium office buildings were the base-

line models in these analyses. Three global sensitivity analysis methods were used: Standardized

Regression Coefficients (SRC), Morris, and Sobol. The results of the EEM selection are similar to

those of other studies.

Moving on to the cost analysis, this dissertation studied the impacts of the five electricity

pricing programs on the selection of EEMs. They are static, general, critical peak, time-of-use, and

high renewable penetration electricity pricing programs. Except for the static electricity pricing

programs, the other four programs are dynamic. The results indicated that the return on invest-

ment (ROIs) of EEMs greatly change under different electricity pricing programs. For example,

in Honolulu, Hawaii, the ROI of improving the efficiency of office equipment ranges from 35% to

112% for different pricing programs. This result shows that, if different electricity pricing programs

were available to commercial buildings, building owners would be more likely to conduct energy

retrofits to take advantage of these savings. This research provides a new perspective about the

selection of EEMs in building energy retrofits and would enable policymakers to design electricity

pricing programs for our future buildings. Furthermore, this dissertation discussed how different

baseline models impact the energy and cost savings in relationship to the EEM selections. By using

different baseline models, both rankings of the sensitivity levels of the selected EEMs and ROIs of

the selected EEMs are varied. Thus, it is important to identify which prototypical building energy

models are suitable for the studied baseline model. The standardized computational framework de-

veloped in the dissertation provides a solution to systematically select prototypical building energy

models.

8.2 Future Research

Based on this dissertation, there are some potential future research, which is listed as follows:
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(1) Extend the scope of the standardized computational framework. First, the database in the

standardized computational framework will be complemented. The existing framework

focuses on the research related to the energy consumption of U.S. commercial buildings.

In the future, the data for buildings in other countries and other building types will be

included into the framework. Second, it is necessary to conduct large-scale building energy

simulations for the urban-scale building energy modeling and building-to-grid integration.

Furthermore, these two studies require to process a rich set of data sources automatically.

The framework is able to conduct large-scale building energy simulation and automatically

process data. Thus, based on existing framework, it is possible to extend the scope of

the research and conduct more types of building energy analyses, such as the urban-scale

building energy modeling and building-to-grid integration.

(2) Improve the existing prototypical building energy models and create models for other miss-

ing building types. First, it is necessary to improve the linkage of the existing prototypical

building models to real systems, which needs to be considered in the future research. Sec-

ond, based on the literature review, there are still some missing building types, which need

prototype building energy models as starting points for various building energy analyses.

Since this standardized computational framework is able to create prototypical building

energy models, it is worth creating prototypical building energy models for the missing

building types.

(3) Conduct a comprehensive analysis about the impact of dynamic electricity pricing programs

on the EEM selection. The analysis in the dissertation was conducted based on EnergyPlus

models. It is necessary to further clarify if current tool is sufficient for this analysis (e.g.

calculate peak power in a building). Moreover, this dissertation studied the impact of

dynamic electricity pricing programs on the EEM selection. The results indicate that there

is a great influence on the EEM selection. It is necessary to provide the prediction about

the impact of various possible dynamic electricity pricing programs for the policymakers.
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Then the policymakers can design new dynamic electricity pricing programs, which can

encourage building owners to continue retrofitting their buildings. Furthermore, the new

programs have potential impact on the strategies of power grid. It could be a preparation

work for the building-to-grid integration.
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