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ABSTRACT 

Recently, a Fast Fluid Dynamics (FFD) method was 

proposed for real-time airflow simulation in buildings. 

As an intermediate model between nodal models and 

Computational Fluid Dynamics (CFD), the FFD is fast 

and informative. This paper reports our efforts on 

improving the accuracy of FFD model. The linear 

interpolation in semi-Lagrangian solver for advection 

equation can cause significant numerical diffusion. To 

minimize numerical diffusion, we proposed a hybrid 

interpolation. Our simulation results show that the 

hybrid scheme can significantly improve the accuracy. 

INTRODUCTION 

Fast and informative flow simulation can be used for 

the design of building ventilation system, evaluation of 

building energy performance, building emergency 

management and indoor environment control. 

However, neither nodal models nor CFD can satisfy 

this requirement. The nodal models are fast, but not 

informative. The CFD is accurate, but too slow. As an 

intermediate method between the nodal models and the 

CFD, a FFD (Stam, 1999) method was proposed to fill 

the gap. Our primary studies (Zuo and Chen, 2009) on 

the FFD model showed that it could provide detailed 

flow information, such as flow velocity, air 

temperature and contaminant concentration, at a speed 

50 times faster than the CFD. Although FFD is not as 

accurate as CFD, it is sufficiently good for building 

design or emergency management. Thus, the FFD 

model has a great potential for use in buildings. 

The FFD was originally proposed by Stam (1999) for 

computer visualization and computer games. It applies 

a time-splitting technique to separate the Navier-Stokes 

equations into several simple equations. Then those 

splitted equations are solved one by one. Thus, FFD 

can solve the Navier-Stoke equations without a trial-

correction iterations used in CFD. This is the reason 

why FFD is much faster than CFD. However, current 

FFD model applied many low-order schemes, so its 

accuracy is poorer than CFD. For instance, because of 

a linear interpolation used in a semi-Lagrangian 

approach for advection equation, the FFD has a 

significant numerical diffusion (Fedkiw et al., 2001). 

To reduce the numerical diffusion in the FFD model, 

improvements have been done in two directions. One 

is applying a high-order interpolation scheme in the 

semi-Lagrangian solver. For instance, Fedkiw et al 

(2001) proposed a monotonic cubic interpolation, 

while Song et al (2005) adopted a constrained 

interpolation profile (CIP) (Yabe and Aoki, 1991; 

Yabe et al., 1991). Both methods were reported to be 

able to reduce the numerical diffusion in the FFD 

model. However, the CIP method is very complex 

since it introduces more than ten extra equations. It 

also needs additional computer memory to store the 

gradients of interpolated variables. Thus, this 

investigation did not use the CIP method but the 

monotonic cubic interpolation. Unfortunately, the 

monotonic cubic interpolation did not yield a better 

accuracy for the flows we have tested. 

Instead of seeking higher-order interpolations for the 

semi-Lagrangian solver, another improvement was to 

solve the advection equation using the convectional 

method used in CFD, such as the Lax-Wendroff 

scheme (Lax and Wendroff, 1960) and the QUICK 

(Quadratic Upwind Interpolation for Convective 

Kinetics) (Leonard, 1979). For instance, Molemaker et 

al (2008) tried to eliminate the numerical diffusion by 

applying the QUICK scheme. However, both Lax-

Wendroff and QUICK schemes are not unconditionally 

stable. In addition, the QUICK scheme will have 

numerical dispersion if the profile is not smooth. 

Through the literature review, we find that none of 

current proposals can provide a satisfactory solution 

for the numerical diffusion problem in the FFD. 

Considering the FFD should be fast and stable, the 

semi-Lagrangian solver is still a good choice for the 

FFD. Thus, the challenge is to seek a better 

interpolation for the semi-Lagrangian solver. To gain a 

better understanding about the numerical diffusion, we 

would start our research with a mathematical analysis 
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of numerical diffusion. Then we will propose our 

solution according to the analysis. 

ANALYSIS OF NUMERICICAL 

DIFFUSION IN THE FFD MODEL 

The FFD model splits the Navier-Stokes equations into 

following equations: 
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where φ is a single velocity component, ν is kinematic 

viscosity, S is source, P is pressure, ∆t is time step size, 

superscript (n) and (n+1) present previous and current 

time step, (1) and (2) are interval time between (n) and 
(n+1). The FFD first applies a semi-Lagrangian method 

(Courant et al., 1952) for solving advection equation 

(1). Then it computes the diffusion equation (2) by 

using an implicit scheme. Finally, it solves equation (3) 

together with continuity equation by using a pressure-

correction method (Chorin, 1967). More details about 

the FFD model were given in our previous paper (Zuo 

and Chen, 2009). 

Studies show that the advection solver in the FFD can 

cause significant numerical diffusion. It is to be 

analyzed in this section. The split advection equation 

(1) can be expanded to 
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where U, V, and W are velocity components at x, y, and 

z directions, respectively. 

We can re-write equation (4) using material difference: 

0
D

Dt

φ
= . (5) 

Equation (5) means that if we follow a flow particle, 

we will see that φ on this particle is constant with time. 

In other words, 

1n nφ φ+ = , (6) 

where n and n+1 represent the previous and current 

time. This is the basic idea of semi-Lagrangian method. 

For simplicity, we use a one-dimensional flow as an 

example to analyze the numerical diffusion. Similar 

conclusion can also be made by using two or 

dimensional flows. We also assume that the grid is 

uniform and the time step size is: 

1; / , 0i ix x x t x U U−∆ = − ∆ <∆ > , (7) 

where xi and xi-1 are the coordinates of grid points i and 

i-1.  

1n

iφ
+  is an unknown variable at grid xi. If the particle is 

currently located at xi, then we can get its location in 

the previous time step by using a one step tracing: 

ix x U t= − ∆ . (8) 

Since we have known n
φ  at all grid points in the 

previous time step, we can obtain ( )n xφ  with 

interpolation. The FFD applies a linear interpolation: 
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Since φ on this particle does not change, then we have: 
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1n

iφ
+  is the solution for equation (4) by using semi-

Lagrangian solver. To evaluate the accuracy of 1n

iφ
+ ,  

we expand 
1

n

iφ−  by first using  a Taylor series: 
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Substitute equation (11) into equation(10), we have 
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Re-arranging equation (12), we obtain 
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Finally, equation (13) can be formatted as 

2
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Equation (14) is a modeled equation of equation (4) 

and it is the actual equation computed by the semi-

Lagrangian approach. Compared to equation (1), the 

modeled equation has an extra second-order term 
2 20.5 /U x xφ∆ ∂ ∂ . This term is analogous to a diffusion 

term 2 2/ xν φ∂ ∂  in the momentum equation. Because it 

is artificially generated by numerical scheme, this term 

is called “numerical diffusion” or “artificial diffusion”. 

Accordingly, 0.5U x∆  is named “numerical viscosity”. 
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Comparing with the kinematic viscosity, the numerical 

viscosity is significant for indoor airflow simualtions. 

For instance, a typical indoor air velocity, U, should be 

lower than 0.2 m/s. A typical mesh size, ∆x, for indoor 

airflow simulation, is about 0.1 m. Then the numerical 

viscosity 0.5U x∆  is about 1×10-2 m2/s, which is 600 

times larger than kinematic viscosity of air at room 

temperature (~1.568×10-5 m2/s). Thus, it is necessary to 

reduce the numerical diffusion for improving the 

accuracy of the FFD model. 

A HYBRID INTERPOLATION 

Since the numerical diffusion is caused by the low-

order linear interpolation, it is possible to minimize it 

by using a higher-order interpolation scheme. We start 

our investigation with a third-order interpolation: 
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Figure 1 shows the transportation of a sine wave in an 

inviscid flow. With numerical diffusion, the linear 

interpolation damped the amplitude of predicted sine 

wave. Without the numerical diffusion, the third order 

interpolation can properly catch the sine profile, 

although it has small error at the feet of since wave. 

For a non-smooth square wave (Figure 2), the linear 

interpolation still computed a smooth profile and the 

amplitude was under-predicted. On the other hand, the 

third-order scheme predicted reasonable amplitude, but 

it had oscillations due to numerical dispersion. 

To utilize the merits of both schemes, this study 

proposed a hybrid interpolation: 
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The hybrid interpolation adopts the third order 

interpolation when the profile is monotonic or smooth. 

Otherwise, it takes the linear interpolation for the non-

smooth part. It applies a simple criterion 

( )( )1 1 1 0i i i iφ φ φ φ+ + −− − > to judge if the profile is 

smooth. 
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(b) square wave 

Figure 1 Comparison of simulated sine waves by 

linear and third order interpolations 
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(b) square wave 

Figure 2 Comparison of simulated square waves by 

linear and third order interpolations 

 

As shown in Figure 3, the hybrid interpolation further 

improved the results by minimizing numerical 

diffusion and suppressing numerical dispersion. 

Combining the merits of both linear- and third-order 

interpolations, the hybrid interpolation seems to be a 

promising solution for the FFD model. Since the sine 

and square waves are ideal flows, the results for these 

flows are not sufficient to assess the performance of 

hybrid scheme. Thus, we further evaluated the hybrid 

method by using two cases of complex flows. 
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(b) Square Wave 

Figure 3 Comparison of simulated sine and square 

waves by the hybrid interpolations 

 

SIMULATION RESULTS 

Flow in a lid-driven cavity 

The flow in a lid-driven cavity is like a circulated flow 

in a room. Figure 4 is a schematic view of this flow. 

Based on lid velocity U0 and square height, L, 

Reynolds numbers of the studied flows are 100, 1000, 

and 10000, respectively. With the increase in the 

Reynolds numbers, the flow transfers from laminar to 

turbulent. Correspondingly, flow profiles also changes 

from smooth to non-smooth. Since the FFD model was 

expected to provide reasonable results on a relatively 

coarse mesh, it is important to know its performance 

on different meshes, especially coarse grids. Thus, we 

applied four different meshes (17 × 17, 33 × 33, 65 × 

65, 129 × 129) to this flow to assess the impact of 

mesh size on the accuracy. 

Figure 5 compares the predicted velocity U at vertical 

mid-section (x = 0.5L) with various Reynolds numbers. 

All the results were obtained by using a fine mesh of 129 

× 129 grids. At Re = 1000 (Figure 5a),  the linear 

interpolation damped the velocity peak values due to the 

numerical diffusion. With less numerical diffusion, the 

hybrid interpolation can predict the peak values. The 

difference increased significantly as the Reynolds number 

increased to 10000 (Figure 5b). 
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Figure 4 Schematic view of a flow in a lid-driven 

cavity 

 

The performance of the two schemes with different 

meshes was quantitatively evaluated by using a root 

mean square deviation, 
RMSφ . The 

RMSφ  represents the 

total computing error: 
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(a) U at Re =1000 
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(b) U at Re = 10000 

Figure 5 Comparison of velocity profiles at different 

Reynolds numbers computed by the FFD with linear 

and hybrid interpolations 
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where N is the total number of sampled data. Ui and 

Uref,i are the calculated velocity and reference data at 

location i. 

Figure 6 illustrates the relationship between mesh size 

and root mean square deviation. The URMS generally 

decreased when the mesh size increased as one would 

expect. Figure 6 also shows that the error of the hybrid 

scheme diminishes faster than that of the linear 

interpolation. In other words, to obtain the same 

accuracy, the hybrid interpolation requires fewer grids 

than the linear one. 
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(b) URMS at Re = 10000 

Figure 6 Comparison of root mean square deviation at 

different Reynolds numbers computed by the FFD with 

linear and hybrid interpolations for the lid-driven 

cavity flow. The grid resolution is N × N. 

 



SimBuild
2010

Fourth National Conference of IBPSA-USA
New York City, New York

August 11 – 13, 2010

544

Flow over a backward facing step 

The airflow which goes into a room through an open 

window is like a flow passing over a backward facing 

step. Many experimental data (Armaly et al., 1983; 

Driver and Seegmiller, 1985; Durst and Schmitt, 1985) 

and numerical simulations (Barton, 1994; Kim and 

Moin, 1985; Le et al., 1997; Saldana et al., 2005) are 

available in the literature, although their geometries 

and flow conditions may vary case by case. 

We selected the experiment by Armaly et al (1983) 

because their geometry was close to a vertical wall 

with an open window. Because of high quality, their 

data was widely used for numerical validation (Das 

and Devangre, 2009; Lian et al., 2009; Liu, 2009). 

Figure 7 illustrates the schematic view of their 

experiment. Height of the step, H, was the half of the 

channel height. The flow in the small channel was 

fully developed when it reached the step at x = 0. The 

Reynolds number, Re, was based on the averaged inlet 

velocity, Uin, and step height, H. Armaly et al (1983) 

found that the flow was laminar when Re < 1200 and 

the flow pattern was two-dimensional when Re < 400. 

 

H
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x

HU
in

H
y
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HU
in

 

Figure 7 Schematic view of a flow passing the 

backward facing step 

 

Since the FFD model did not use a turbulence model, it 

is better to focus on the laminar flow. Thus, we 

compared both schemes using the flow at Re = 100 and 

389. To save the computing time, this study omitted 

the long small channel. Instead, a parabolic profile for 

laminar flow was given at intersection of small and 

large channel. Since these flows were two-dimensional, 

four different meshes (25 × 25, 50 × 50, 100 × 100 and 

200 × 200) were applied until a mesh independent 

solution was achieved. 

Table 1 compares the calculated reattachment length 

from the step with the experimental data (Armaly et al., 

1983). All the data was normalized by H and the error 

was relative to the experimental data. Due to the 

numerical diffusion, the FFD model computed a 

shorter reattachment length at the two Reynolds 

numbers. However, with less numerical diffusion, the 

FFD with the hybrid interpolation predicted better 

results than that with the linear interpolation. When the 

Reynolds number was small (Re = 100), the hybrid 

interpolation predicted the reattachment length 

precisely with an error of less than 1%. The linear 

interpolation also got reasonable results with an error 

of less than 5%. When the Reynolds number increased 

to Re = 389, the error increased for both the 

interpolation methods, but still acceptable. 

 

Table 1 Comparison of normalized reattachment 

length computed by the FFD with different 

interpolation schemes 

 

Re Experiment Bilinear Error Hybrid Error 

100 2.99 2.87 -4.0% 2.97 -0.7% 

389 8.59 7.80 -9.2% 7.95 -7.5% 

 

Similar to the lid-driven cavity flow, the hybrid 

scheme performed better than the linear scheme when 

the grid was coarse. With finer grids, the predictions of 

these two methods became closer. For instance, at Re = 

389, the hybrid interpolation calculated better velocity 

profiles than the linear one with a coarse mesh of 25 × 

25 grids (Figure 8). With a fine of 200 × 200, both 

methods provided similar results (Figure 9). 

CONCLUSIONS 

By quantitatively analyzing the interpolation methods 

in the FFD, this study proposed a hybrid interpolation, 

which is combination of linear and third order 

interpolation. The hybrid model can reduce the 

numerical diffusion in low order model and damp the 

numerical dispersion in high order model. The 

validation results showed that the FFD with hybrid 

interpolation can provide more accurate results than 

that with linear interpolation. For the same accuracy, 

the hybrid method requires much less grids and 

computing time than the linear interpolation does. 
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(a) x = 3.57H 
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(b) x = 6.12H 

Figure 8 Comparison of computed horizontal 

velocities of backward facing step flow at Re = 389 

by using a coarse mesh with 25 × 25 grids. 
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(b) x = 6.12H 

Figure 9 Comparison of computed horizontal 

velocities of backward facing step flow at Re = 389 

by using a fine mesh with 200 × 200 grids. 
 

NOMENCLATURE 

φRMS  Root mean square deviations 

υ  Kinematic viscosity of fluid 

Re  Reynolds number 

∆t  Time step size 

U Horizontal velocity 

V Vertical velocity 

∆x  Mesh size 

φ Field variable 
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