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ABSTRACT 

Fast flow simulations are needed for some applications in building industry, such as the 

conceptual design of indoor environment or education of Heating Ventilation and Air 

Conditioning (HVAC) system design in classroom. Instead of pursuing high accuracy, 

those applications require only conceptual distributions of the flow but within a short 

computing time. To meet these special needs, a Fast Fluid Dynamics (FFD) method was 

proposed to provide fast airflow simulation with some compromise in accuracy. This study 

is to further improve the FFD method by reducing the numerical viscosity that is caused by 

a linear interpolation in its semi-Lagrangian solver. We propose a hybrid scheme of a linear 

and a third-order interpolation to reduce the numerical diffusion in low order scheme and 

the numerical dispersion in high order scheme. The FFD with both linear and hybrid 
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interpolations are evaluated by simulating four different indoor flows. The results show that 

the hybrid interpolation can significantly improve the accuracy of the FFD with a small 

amount of extra computing time. 

KEYWORDS 

Fast Fluid Dynamics, Indoor Airflow, Numerical Diffusion, Semi-Lagrangian Solver, 

Hybrid Interpolation 

 

INTRODUCTION 

Fast flow simulations are useful for the conceptual design of indoor environment, the 

development of education software for HVAC system design, the building emergency 

management in fire, and the real time control of indoor environment. Instead of pursuing 

high accuracy, those applications require only conceptual distribution of flow in time and 

space, but within a short computing time. However, none of current models for indoor 

airflow simulation can satisfy this requirement. Assuming the air in a zone, such as a room, 

is well-mixed, multizone network simulations (Axley, 2007) are fast, but cannot provide 

the spatial distribution of airflow inside the zone. The computational fluid dynamics (CFD) 

(Chen, 2009) can provide the information that are more accurate than the requirements, but 

its computing speed is too slow. As an intermediate method between the multizone models 

and the CFD, the FFD method (Zuo, 2009) was proposed to fill the gap by providing more 

detailed flow information than the multizone models at a speed much faster than the CFD. 

On the other side, the FFD is slower than the multizone models and less accurate than the 

CFD. 
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The FFD was originally developed by Stam (1999) for computer visualization and 

computer games. Since his goal was to generate plausible effects of flow motion in real 

time, Stam mainly adopted low order numerical schemes due to their simplicity. By 

scarifying some accuracy, the FFD can solve the Navier-Stokes equations at a speed of 50 

times faster than the CFD (Zuo, 2009). It can provide detailed flow information, such as 

flow velocity, air temperature and contaminant concentration with sufficient accuracy for 

building conceptual design and emergency management. Thus, the FFD model has a great 

potential for fast and informative flow simulation in buildings. 

 

To apply the FFD for industrial practices, the accuracy and computing speed of the FFD 

need to be further improved. By studying the impacts of different numerical schemes, we 

have significantly improved the accuracy of the FFD model and reduced its computing time 

by half (Zuo, 2010b). However, this work did not solve the problem in numerical viscosity, 

which was caused by the linear interpolation in the semi-Lagrangian solver for the 

advection equation (Fedkiw, 2001, Song, 2005, Molemaker, 2008). 

 

Previous studies for reducing the numerical viscosity in the FFD model can be divided into 

in two categories. One is to apply high order interpolation schemes in the semi-Lagrangian 

solver. For instance, Fedkiw et al (2001) proposed a monotonic cubic interpolation, while 

Song et al (2005) adopted a constrained interpolation profile (CIP). However, the CIP 

method is too computationally expensive for fast flow simulation since it introduces more 

than ten extra equations for each interpolated variable. We implemented the monotonic 
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cubic interpolation and compared its performance with the linear interpolation. 

Unfortunately, the monotonic cubic interpolation did not provide better results than the 

linear interpolation for the studied flows. 

 

The other approach is to replace the semi-Lagrangian solver with convectional CFD 

solvers. For instance, Molemaker et al (2008) tried to eliminate the numerical diffusion by 

applying the QUICK (Leonard, 1979) scheme. We found that the FFD with QUICK 

scheme could reduce the numerical diffusion, but it introduced significant numerical 

dispersion. In addition, to achieve a stable simulation, the time step size of the FFD 

simulation with QUICK scheme cannot be as large as the one used by the FFD with semi-

Lagrangian approach.  

 

The literature review and preliminary studies show that current solutions cannot solve the 

numerical diffusion problem in the FFD. Thus, it is necessary to seek an alternative 

solution. Considering the semi-Lagrangian solver is stable with large time step size that is 

important for fast flow simulation, we focus our efforts on developing a better interpolation 

scheme for it. In the following sections, we will first briefly introduce the FFD model. Then 

we will conduct a mathematical analysis for the numerical diffusion in the semi-Lagrangian 

solver. To reduce the numerical diffusion, different interpolations will be proposed and 

evaluated using ideal flows. After that, the FFD with the most promising approach will be 

further studied by comparing its results with the literature data and the results from the FFD 
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with linear interpolation for four typical indoor airflows. Finally, we will discuss the future 

work and make a conclusion based on the numerical studies. 

 

FAST FLUID DYNAMICS MODEL 

Using a first-order time splitting method (Ferziger, 2002), the FFD splits the momentum 

equation 
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where  , 1,2,3i j = , iU  is the ith component of the velocity vector, P the static pressure of a 

flow field, ,F iS  the ith component of the source, such as buoyancy force and other external 

forces, υ  the kinematic viscosity, and ρ the density of fluid. 
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Then the FFD solves the advection equation (2)  by using a first-order semi-Lagrangian 

method (Robert, 1981). To understand the principle of semi-Lagrangian method, we can 

write (2) in a material difference form 

0iDU

Dt
= . (5) 

It means that if an observer is standing on a particle moving with the flow, he will see that 

the Uι  on the particle is constant in time. In other words, Ui(t) = Ui(t-∆t). Therefore, we 

will know Ui(t) if we find Ui(t-∆t). To calculate Ui(t-∆t), we can trace the particle back to 

its previous position at t-∆t. Since Ui(t-∆t) at all grid points are known, we can get Ui(t-∆t) 

at any other positions by interpolations.  

 

Thereafter the FFD solves the diffusion and source equation (3) with a first-order implicit 

scheme. Finally, it ensures the mass conservation by solving the pressure equation (4) and 

continuity equation 

������ � 0, (6) 

together using a pressure-correction method (Chorin, 1967). 

 

Similarly, the FFD divides the governing equation for scalar variable  
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where C represents scalar variables, such as temperature and species concentration, and C
υ  

denotes the diffusivity of C. The (8) and (9) are solved in a way similar to (2) and (3). 

 

ANALYSIS OF NUMERICICAL DIFFUSION IN THE FFD MODEL 

Since (2) for velocity and (8) for scalar variables are analogous, we can write them in a 

general form:  

���	 
 �� ����� � ���	 � 0 (10) 

where φ can be Ui or C. To analyze the numerical diffusion, a one-dimensional flow is 

applied for simplicity and similar conclusions can also be made by using two or three 

dimensional flows. We also assume that the grid is uniform and the particle cannot move 

more than one cell in each time step ∆t: 

Δ� � ��� �  ��; � � |�|���� � 1, (11) 

where xi+1 and xi are the coordinates of grid points i+1 and i. The C is the CFL number 

(Courant, 1928).  
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Let ��� � ��  and �������� is an unknown variable for the particle in ���
 at t, the 

position of the particle at t-∆t is: 

�� � ��� � �Δ	 � �� �  �Δ	. (12) 

If U < 0, �� will be between xi and xi+1. We can obtain ������ by a linear interpolation 

������ � |�|Δ	Δ� ���� 
 Δ� � |�|Δ	Δ� ��� � ��� 
  |�|Δ	 ���� � ���Δ�  (13) 

where the notation ��� � �� ��� � ���. Using the concerpt of semi-Lagrangian method, 

(10) can be reformatted as 

�������� � ������. (14) 

Substituting (13) into (14) yields 

���� � �������� � ������ � ��� 
 |�|Δ	 ����� � ����Δ� . (15) 

The ����  is the solution of (10) by using the semi-Lagrangian solver with linear 

interpolation. To evaluate the accuracy of ����, we first expand ����  using Taylor series 

���� � ��� 
 �� �� !�
� "� 
 ��# ��# !�

� $�#
% 
 ��& ��&!�

� $�&
' 
 (�"�)�. (16) 

Substituting (16) into (15) gives 

���� � ��� 
 |�|Δ	 *+���� ,�
� 
 -�%���% .�

� Δx2 
 (�Δ�%�1. (17) 

Considering U < 0, (17) can be rearranged as 
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���� � ���"	 � �� +����,�
� 
 -�%���% .�

� |�|"�2 
 (�"�%�. (18) 

Finally, we can format (18) as 

���	 
 � ���� � |�|"�2 �%���% 
 (�"�%�. (19) 

The (19) is the actual equation solved by the semi-Lagrangian approach and is called 

“modeled equation” of (10). Although (19) is derived with U < 0, same conclusion can be 

obtained with U > 0. Compared to (10), (19) has extra terms 
|�|$�% �# ��# 
 (�Δ�%�.  The 

dominant term 
|�|$�% �# ��#  is called “numerical diffusion” term since it is analogous to the 

diffusion term 2 �# ��#  and artificially generated by the numerical scheme. Accordingly, 
|�|$�%  

is named “numerical viscosity”.  

 

It is noteworthy that the numerical viscosity produced by the linear interpolation in the 

semi-Lagrangian method is the same as that by the first-order explicit upwind scheme 

(Ferziger, 2002). To illustrate it, we simulate the transportation of waves in inviscid fluid 

using the FFD with both methods. The flow domain is one-dimensional and the length of 

the domain is L. Suppose the flow velocity U is constant, the flow property �  can be 

described by the advection equation (10). If the initial condition is 

���, 	 � 0� �  �3 ���, � 4 50, 67, (20) 

the exact solution at time t will be  
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���, 	� �  �3 �� � 8	�, � 4 50, 67, (21) 

Two flows with different initial profiles are simulated. One is a sine wave  

 �3 ��� � 9sin +4>6 �, , � 4 50,0.567
0 � 4 50.56, 67@. (22) 

The other is a square wave  

�3 ��� � A1, � 4 50.256, 0.5670 � 4 B	CDEF .@ (23) 

The parameters are U = 1 m/s and L = 1 m. The simulations were performed using two 

uniform meshes (50 and 100 grids) and two time step sizes (0.005 s and 0.01 s). The 

profiles at t = 0.25 s predicted by the semi-Lagrangian method with linear interpolation 

(Figure 1) are the same as those by the first-order upwind scheme (Figure 2). Both methods 

under-predict the amplitudes due to the damping effect of numerical viscosity. Since the 

numeric viscosity is proportion to the mesh size Δ�, it can be reduced by using finer grids. 

For instance, the results become better when the Δ� decreases from 0.02 m to 0.01 m 

although the CFL number remains the same.  

 

Compared to the physical viscosity of air, the numerical viscosity is significant for indoor 

airflow simualtions. For instance, a comfortable speed of indoor air flow |�| should be 

around 0.4 m/s (ASHRAE, 1995). A typical mesh size ∆x for indoor airflow simulation is 

about 0.1 m. Then the numerical viscosity 0.5|�|"�  is about 2×10
-2 

m
2
/s, which is 1200 

times larger than the kinematic viscosity of air at room temperature (~1.568×10
-5 

m
2
/s). The 
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numerical viscosity has both positive and negative impacts on the simulation. On one side, 

it can partially act as turbulent viscosity since there are not treatments for turbulence in the 

FFD model.  It can also stabilize the simulation which is critical for computer games. On 

the other side, the numerical viscosity is not turbulent viscosity so that the FFD model has 

difficulties to precisely predict the turbulent flows. In addition, simply adding turbulence 

models into the FFD cannot improve the prediction for turbulence (Zuo, 2009) since the 

flow will become too viscous with both numerical and turbulent viscosities. To improve the 

accuracy of the FFD model, it is necessary to reduce the numerical viscosity.  

 

A HYBRID INTERPOLATION 

As shown in the previous analysis, the numerical viscosity is caused by the low order linear 

interpolation in the semi-Lagrangian solver. Thus, it is possible to minimize it by using 

higher order interpolation schemes, such as a third-order interpolation 

���� � ��� 
 |�|Δ	����� � ��G�� �2Δ� 
 �|�|Δ	�%H����� 
 ��G�� � � 2���I2�Δ��%  (24) 

 

To analyze formula (24), we first expand ��G��  using Taylor series 

��G�� � ��� � +����,�
� "� 
 -�%���% .�

� "�%
2 � -�J���J .�

� "�J
6 
 (�"�)�. (25) 

Suppose � � 0, substituting (16) and (25) into (24) gives 
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���	 
 � ���� � �%"	2 �%���% �  �"�%
6 �J���J 
 �%"	Δ�%

24 �)���) 
 (�"�)�.    (26) 

The (26) is a modeled equation of (10) by solving it using the semi-Lagrangian method 

with third-order interpolation. Different than the diffusion term 
|�|Δ�% �# ��#  in (19), the 

numerical diffusion term 
�#$�% �# ��#  in (26) is proportion to the temporal discretization. When Δ	 L 0 , both  

�#$�% �# ��#  and 
�#$���#

%) �M ��M  vanish so that (26) becomes  

���	 
 � ���� � � �"�%
6 �J���J . (27) 

The additional third-order derivative term � �$�#
' �& ��&  is called “numerical dispersion”, 

which can generate oscillations in the simulation.   

 

The third-order interpolation is evaluated by simulating the same sine and square waves 

with the same settings as those used for the linear interpolation in the previous section. 

Compared to Figure 1, Figure 3 shows that the third-order interpolation can significantly 

improve the prediction for sine waves. It also computes better amplitude for the square 

wave but introduces oscillations due to the numerical dispersion. Similar to the linear 

interpolation, we can also improve the predictions of the third-order interpolation by using 

smaller grids and time steps. 

 

The above studies show that the linear interpolation can smooth the profile but damp the 

amplitude, while the third-order interpolation can maintain the amplitude but introduce 
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oscillations. To utilize the merits of both schemes, we propose a hybrid scheme of two 

interpolations 

����
�  

NO
P�� 
 �� � ��� ���� � ��G��2Δ� 
 �� � ���%

2 ���� 
 ��G� � 2����Δ��% , ���� � ������� �  ��G�� Q 0
�� 
 �� � ��� ��� � ��Δ� , ���� � ������� �  ��G�� R 0

@. (28) 

When the profile is monotonic, the third-order interpolation is adopted to precisely capture 

the amplitude. Otherwise, the linear interpolation is used to avoid possible oscillations at 

the non-monotonic part. 

 

With the same settings, the hybrid interpolation method computes better results for both 

sine and square waves (Figure 4) than the linear interpolation (Figure 1) and the third-order 

interpolation (Figure 3). Thus, the hybrid interpolation seems to be a promising solution for 

the FFD model. Considering both cases use ideal flows that are not sufficient to assess the 

performance of the hybrid scheme, we will evaluate the hybrid method by simulating four 

different indoor. 

 

SIMULATION RESULTS 

Flow in a square lid-driven cavity 

The two-dimensional flow in a square lid-driven cavity (Ghia, 1982, Kumar, 2009) is like a 

circulated flow in a room (Figure 5). Based on the lid velocity U0 and square height L, the 

Reynolds numbers Re of the studied flows are 100 and 1000, respectively. When the 
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Reynolds number increases, the flow profiles change from smooth to non-smooth. Four 

different meshes (17 × 17, 33 × 33, 65 × 65, and 129 × 129) are used to evaluate the mesh 

dependence. The accuracy of the FFD model can be improved by using smaller time step 

size since the FFD is a first-order method in time (Hu, 2010). Thus, various time step sizes 

are also adopted until the solution is independent of time step size. The high quality data of 

Ghia et al. (Ghia, 1982) is used as reference .  

 

Figure 6 compares the predicted horizontal velocity U along the vertical mid-section (x = 0.5L) 

at various Reynolds numbers. All the results were obtained by using a fine mesh of 129 × 129 

grids with a time step of 0.005s. When Re = 100, the flow profile is smooth. Both linear and 

hybrid interpolation correctly compute the velocity profiles (Figure 6a). When Re = 1000, the 

flow profile becomes sharp (Figure 6b). The linear interpolation damps the peak values of 

velocity due to the large numerical viscosity. With less numerical viscosity, the hybrid 

interpolation  properly predicts the velocity.  

 

To measure the model performance (accuracy and computing speed) with different meshes, 

we define the relative error to the reference data as 

STUV,� � �� � �WXY,��WXY,� , � � �, Z, [ 4 51, \7, (29) 

where N is the number of sampled data and �WXY,� the value reference data at point i. The 

averaged value or root mean square of EREF,i may not correctly represent the overall 

performance since a small �WXY,� can yield huge EREF,i. For instance, the flow velocity near 

the wall is almost zero and it can magnify the relative error even the absolute error is tiny. 
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To avoid this problem, we evaluate the accuracy using a probability of confidence interval 

for the relative error EREF,i: 

Pr �|STU_,�| � `�, [ 4 51, \7, (30) 

where δ is constant. Using the probability of confidence interval, we can properly obtain 

the overall accuracy. 

 

Figure 7 compares the Pr for ` � 10% at Re = 1000. For both methods, the Pr increases if 

we refine the grids. The Pr of hybrid method increases at a speed much faster than the 

linear method. Applying a mesh with 257 × 257 grids, the hybrid interpolation can has Pr 

(|STU_,�|� 10%� � 100% and the Pr by the linear interpolation is less than 60%. To get Pr 

= 60%, the hybrid scheme only needs a grid resolution of 70 × 70 and the total number of 

grids is only 7% of that required by the linear interpolation. Figure 7 also compares the 

computing time needed by the FFD with two interpolations using different grids. For the 

same grid distribution, the hybrid method needs about 10% more CPU time than the linear 

one. But the difference of these two approaches in computing time is significantly smaller 

than that in accuracy. As a result, the hybrid method is able to provide more accurate results 

with less computing time than the linear interpolation. For instance, the hybrid method with 

128 × 128 grids uses 654s of computing time to get Pr � 97%. As a comparison, the linear 

interpolation with 256 × 256 grids needs 3290s of computing time but only has Pr � 58%. 
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Flow over a backward facing step 

The airflow that goes into a room through an open window is like a flow passing over a 

backward facing step. There are many experimental data (Armaly, 1983, Durst, 1985, 

Driver, 1985) and numerical simulations (Kim, 1985, Saldana, 2005, Barton, 1994, Le, 

1997) related to this flow, although their geometries and flow conditions may vary case by 

case. We simulate the flow studied by Armaly et al (1983) because the flow domain is close 

to a vertical wall with an open window and the data has been widely used for numerical 

validation (Liu, 2009, Das, 2009, Lian, 2009) due to its high quality. Figure 8 gives the 

schematic view of the experiment. The height of the step H is half of the channel height. 

The small channel is long enough to ensure that the flow is fully developed when it reaches 

the step at x = 0. The Reynolds number Re is based on H and the averaged inlet velocity 

Uin.  

 

Armaly et al (1983) measured the flow within a wide range of Reynolds numbers (70 < Re 

< 8000). They found that the flow was laminar when Re < 1200 and the flow pattern was 

two-dimensional when Re < 400. Since the FFD has no treatments for turbulence, we only 

simulate the laminar flow with Re = 100 and 389. To save computing time, we do not 

simulate the flow in the long small channel. Instead, we use a parabolic profile for laminar 

flow as inlet boundary condition at the intersection of the small and large channel. The 

computing domain is two-dimensional since the flows are two-dimensional. Four different 

meshes (25 × 25, 50 × 50, 100 × 100 and 200 × 200) are used to achieve a mesh 

independent solution. 
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Table 1 compares the calculated reattachment length from the step with the experimental 

data (Armaly, 1983). The grids are 100 × 100 for the flow at Re = 100 and 200 × 200 for Re 

= 389. The time step size is 0.02s for both cases. The data is normalized by H and the error 

is a relative error to the experimental data. Due to the numerical viscosity, the FFD model 

computes a shorter reattachment length for all the cases. With less numerical viscosity, the 

hybrid interpolation has better predictions than the linear interpolation. When the Reynolds 

number is small (Re = 100), the hybrid scheme computes the reattachment length precisely 

and the relative error is less than 1%. The linear interpolation also gets reasonable results 

with a relative error of 4%. When the Reynolds number increases (Re = 389), the errors 

increases for both methods. But the hybrid scheme is still more accurate than the linear one. 

 

Similar to the previous cases, the hybrid scheme has better performance than the linear 

scheme when the grid is coarse. With the refinement of grids, the predictions of these two 

methods are getting closer. For instance, at Re = 389, the hybrid interpolation calculates 

better velocity profiles than the linear one when a coarse grid is applied (Figure 9). If the 

grid is fine, both methods provide similar results (Figure 10). The reason is that the 

numerical viscosity in the linear interpolation is proportion to grid size and using smaller 

grid can reduce it. 

 

Natural convection in a square cavity 

The flows in the previous two cases are isothermal. To evaluate the impact of the hybrid 

and linear interpolations for non-isothermal flows, a natural convective flow in a square 
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cavity is simulated. This case is widely used for validation of the numerical program 

(Davis, 1983b, Kimura, 1983, Mergui, 1996). As shown in Figure 11, the upper and lower 

walls are isolated from heat transfer. Temperatures on the two side walls are T1 and T2, 

respectively. To simplify the configuration, we set T2 = –T1 and the reference temperature 

Tref = 0. The length of the cavity L is 0.1 m, the kinematic viscosity of fluid ν is 1.59×10
-5

 

m2/s, the thermal diffusivity α is 2.2495×10-5 m2/s, the thermal expansion coefficient β is 

3.0×10
-3 

1/K, and the gravitational acceleration is 10.0 m/s
2
. Thus, the Rayleigh number Ra 

only depends on the temperature difference ∆T = T1 – T2. 

 

The two interpolations are compared by using flows in three different Rayleigh numbers 

(Ra = 10
3
, 10

4
 and 10

5
). When the Ra = 10

5
, the convection plays a more important role in 

the heat transfer than the diffusion. To evaluate the mesh dependence, all the simulations 

are conducted on four various meshes (16 × 16, 32 × 32, 64 × 64 and 128 × 128). 

 

To compare with the benchmark solution, we normalize the results as follows 

, , ,
x y uL vL

X Y U V
L L a a

= = = = , (31) 

where X and Y are normalized coordinates at x and y directions, respectively. U and V are 

normalized velocities for u and v, respectively. Another important result is the averaged 

Nusselt number N u : 

hL
Nu

k
= , (32) 
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where h  is the averaged heat transfer coefficient and k the thermal conductivity. To 

calculate N u , we need to get Ce from the equation for heat transfer between the fluid and 

the wall 

Ce�f� �  f%�gh �  i jkklgh � �m i lfl�  lghnono
, (33) 

where q ′′  is the heat flux and AS the area of vertical surface. Substituting (33) into (32) 

leads to 

\8eeee � 6f% �  f�
p lfl�  lghno gh . (34) 

 

Table 2 compares the simulated results using the finest mesh (128 × 128) and a time step 

size of 0.025s with the benchmark solution (Davis, 1983a). The Umax value is the maximum 

value of U velocity on the central vertical plane and Ymax is the position of Umax. Similarly, 

Vmax and Xmax are the maximum V velocity and its position on the central horizontal plane. 

The FFD with both linear and hybrid interpolations provide reasonable solutions for Umax, 

Vmax, Xmax, Ymax, and \8eeee. The hybrid interpolation computes the results generally closer to 

the benchmark data than the linear interpolation. But the difference between the hybrid 

interpolation and the linear interpolation is not significant. Similar phenomena are observed 

in a comparison of predicted temperature contours (for instance, Ra = 10
5 

in Figure 12). 

Using the finest grids, the temperature contours computed by the linear and hybrid 

interpolations are close to each other. 
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Figure 13 compares the relative errors of \8eeee calculated by the FFD with two interpolations 

using different grid resolutions for different flows. Similar to previous cases, the hybrid 

interpolation computes a solution with less error than the linear scheme when the grid 

resolution is the same. One exception is the flow at Ra = 10
5
 with the grid of 16 × 16. The 

liner interpolation provides slightly better results than the hybrid interpolation. The reason 

is that the FFD model is not able to properly capture the flow property with such coarse 

grid. For instance, the relative errors are larger than 20% for both methods. Thus, it is not 

meaningful to compare the interpolations methods if the FFD model fails. As long as the 

FFD model works, using the hybrid interpolation can provide higher accuracy than the 

linear interpolation.  

 

Three-dimensional flow in a cubic lid-driven cavity 

The flows studied in previous three cases are two-dimensional. To study the impact of 

hybrid interpolation in predicting three dimensional flows, we now evaluate it using a 

three-dimensional flow in a cubic lid-driven cavity (Figure 14) with the reference data from 

Ku et al (Ku, 1987). The size of the cavity is 1 m × 1 m × 1 m and the Reynolds number is 

1000.  

 

Figure 15 presents the predicted vertical velocity V along the horizontal centerline by using 

different grid resolutions. The FFD predicts the profiles with large errors using a coarse 

grid (30 × 30 × 30) and a time step size of 0.1 s (Figure 15a). Similar to other cases, we can 

improve the predictions (Figure 15b) by using a finer grid (60 × 60 × 60) and a smaller time 
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step size (0.01 s). With less numerical viscosity, the hybrid interpolation can provide better 

predictions than the linear interpolation for both settings.  

 

DISUCSSIONS 

The current formulation of the hybrid interpolation is only for structured uniform mesh. 

The formula will need to be modified if it is applied for non-uniform structured meshes and 

unstructured meshes. However, the principle of the hybrid scheme of low and high order 

interpolation should remain the same.  

 

Since the FFD had no turbulence model, we only studied the performance of hybrid 

schemes for laminar flows. However, most indoor airflow is turbulent (Lariani, 2009). Our 

previous work (Zuo, 2009) tried to predict turbulent flow by adding turbulence models in 

the FFD. Unfortunately, it did not provide satisfactory results due to the large numerical 

viscosity in the linear interpolation. Considering the FFD with the hybrid interpolation has 

significantly less numerical viscosity, it is possible to further improve its accuracy for 

turbulent flow by adding turbulence models. 

 

Various approaches can be taken to accelerate the computing speed of the FFD model. The 

current FFD is a first-order method in time. Thus, it is possible to apply higher order 

temporal scheme in the FFD so that it can use larger time step sizes without losing 

accuracy. We can also apply advanced numerical schemes, such as the multigrid method 

(Kumar, 2010), to reduce the computing time. In addition, parallelization is another way to 
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speed up the simuation. For instance, we have acclerated the FFD simulation 30 times by 

computing in parallel on a graphics processing unit (Zuo, 2010a).  

 

CONCLUSIONS  

This study proposed a hybrid scheme of linear and third-order interpolations to reduce both 

the numerical viscosity in the FFD model. The results show that: 

 With the same special and temporal resolutions, the hybrid interpolation can provide 

more accurate results than the linear interpolation, but it needs about 10% more computing 

time. 

When refining the grid resolution, the error of FFD model using hybrid interpolation 

can be reduced at a faster rate than that using the linear interpolation. 

 The FFD model with hybrid interpolation can achieve the same accuracy with much 

less grids and computing time compared to the FFD with the liner interpolation. 

  

ACKONWLEDGEMENT 

Wangda Zuo was supported by the Assistant Secretary for Energy Efficiency and 

Renewable Energy, Office of Building Technologies of the U.S. Department of Energy, 

under Contract No. DE-AC02-05CH11231. He also wants to thank the support of the 

visiting scholar program at Chongqing University’s Key Laboratory of Three Gorges 

Reservoir Region’ s Eco-Environments under Ministry of Education. 

 



23 

 

Mingang Jin and Qingyan Chen would like to thank the U.S. Federal Aviation 

Administration (FAA) Office of Aerospace Medicine for funding this project through the 

National Air Transportation Center of Excellence for Research in the Intermodal Transport 

Environment under Cooperative Agreement 10-C-RITE-PU. Although the FAA has 

sponsored this project, it neither endorses nor rejects the findings of this research. The 

presentation of this information is in the interest of invoking technical community comment 

on the results and conclusions of the research.  

 

REFERENCES 

Armaly, B.F., Durst, F., Pereira, J.C.F. and Schonung, B. (1983) "Experimental and 

Theoretical Investigation of Backward-Facing Step Flow", Journal of Fluid 

Mechanics, 127, 473-496. 

Ashrae (1995) Thermal Environmental Conditions for Human Occupancy, In: Ashrae (ed), 

Vol. ASHRAE Standard 55a-1995. 

Axley, J. (2007) "Multizone Airflow Modeling in Buildings: History and Theory", 

HVAC&R Research, 13, 907-928. 

Barton, I.E. (1994) "Laminar-Flow Past an Enclosed and Open Backward-Facing Step", 

Physics of Fluids, 6, 4054-4056. 

Chen, Q. (2009) "Ventilation performance prediction for buildings: A method overview and 

recent applications", Building and Environment, 44, 848-858. 

Chorin, A.J. (1967) "A Numerical Method for Solving Incompressible Viscous Flow 

Problems", Journal of Computational Physics, 2, 12-26. 

Courant, R., Friedrichs, K. and Lewyt, H. (1928) "Uber die partiellen differenzgleichungen 

der mathematischen physik", Mathematische Annalen, 100, 32-74. 

Das, M.K. and Devangre, R.B. (2009) "Conjugate Mixed Convection Heat Transfer in 

Plane Laminar Wall Jet Flow", Numerical Heat Transfer Part a-Applications, 56, 

60-75. 

Davis, G.D. (1983a) "Natural-Convection of Air in a Square Cavity - a Bench-Mark 

Numerical-Solution", International Journal for Numerical Methods in Fluids, 3, 

249-264. 

Davis, G.D. and Jones, I.P. (1983b) "Natural-Convection in a Square Cavity - a 

Comparison Exercise", International Journal for Numerical Methods in Fluids, 3, 

227-248. 

Driver, D.M. and Seegmiller, H.L. (1985) "Features of a Reattaching Turbulent Shear-

Layer in Divergent Channel Flow", AIAA Journal, 23, 163-171. 



24 

 

Durst, F. and Schmitt, F. (1985) "Experimental Studies of High Reynolds Number 

Backward-Facing Step Flow". In: Proceedings of the 5th Symposium on Turbulent 

Shear Flows, pp. 519-524. 

Fedkiw, R., Stam, J. and Jensen, H.W. (2001) "Visual simulation of smoke". In: 

Proceedings of SIGGRAPH 2001, pp. 15-22. 

Ferziger, J.H. and Peric, M. (2002) Computational methods for fluid dynamics, Berlin, New 

York, Springer. 

Ghia, U., Ghia, K.N. and Shin, C.T. (1982) "High-Re Solutions for Incompressible Flow 

Using the Navier-Stokes Equations and a Multigrid Method", Journal of 

Computational Physics, 48, 387-411. 

Hu, J., Zuo, W. and Chen, Q. (2010) "Impact of time-splitting schemes on the accuracy of 

FFD simulations". In: Proceedings of the 7th International Indoor Air Quality, 

Ventilation and Energy Conservation in Buildings Conference (IAQVEC 2010), pp. 

55-60. 

Kim, J. and Moin, P. (1985) "Application of a Fractional-Step Method to Incompressible 

Navier-Stokes Equations", Journal of Computational Physics, 59, 308-323. 

Kimura, S. and Bejan, A. (1983) "The Heatline Visualization of Convective Heat-

Transfer", Journal of Heat Transfer-Transactions of the Asme, 105, 916-919. 

Ku, H.C., Hirsh, R.S. and Taylor, T.D. (1987) "A Pseudospectral Method for Solution of 

the three-dimensional Incompressible Navier-Stokes Equations", Journal of 

Computational Physics, 70, 439-462. 

Kumar, D.S., Dass, A.K. and Dewan, A. (2010) "A Multigrid-Accelerated Code on Graded 

Cartesian Meshes for 2d Time-Dependent Incompressible Viscous Flows", 

Engineering Applications of Computational Fluid Mechanics, 4, 71-90. 

Kumar, D.S., Kumar, K.S. and Das, M.K. (2009) "A Fine Grid Solution for a Lid-Driven 

Cavity Flow Using Multigrid Method", Engineering Applications of Computational 

Fluid Mechanics, 3, 336-354. 

Lariani, A., Nesreddine, H. and Galanis, N. (2009) "Numerical and Experimental Study of 

3d Turbulent Airflow in a Full Scale Heated Ventilated Room", Engineering 

Applications of Computational Fluid Mechanics, 3, 1-14. 

Le, H., Moin, P. and Kim, J. (1997) "Direct Numerical Simulation of Turbulent Flow Over 

a Backward-Facing Step", J. Fluid Mechanics, 330, 349-374. 

Leonard, B.P. (1979) "Stable and Accurate Convective Modelling Procedure Based on 

Quadratic Upstream Interpolation", Computer Methods in Applied Mechanics and 

Engineering, 19, 59-98. 

Lian, C.Z., Xia, G.P. and Merkle, C.L. (2009) "Solution-limited time stepping to enhance 

reliability in CFD applications", Journal of Computational Physics, 228, 4836-

4857. 

Liu, J. (2009) "Open and traction boundary conditions for the incompressible Navier-

Stokes equations", Journal of Computational Physics, 228, 7250-7267. 

Mergui, S. and Penot, F. (1996) "Natural convection in a differentially heated square 

cavity: Experimental investigation at Ra=1.69x10(9)", International Journal of 

Heat and Mass Transfer, 39, 563-574. 

Molemaker, J., Cohen, J.M., Patel, S. and Yong Noh, J. (2008) Low Viscosity Flow 

Simulations for Animation, Symposium on Computer Animation. 



25 

 

Robert, A. (1981) "A stable numerical integration scheme for the primitive meteorological 

equations", Atmosphere Ocean, 19, 35-46. 

Saldana, J.G.B., Anand, N.K. and Sarin, V. (2005) "Numerical Simulation of Mixed 

Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step", J. 

Heat Transfer, 127, 1027-1036. 

Song, O.-Y., Shin, H. and Ko, H.-S. (2005) "Stable but nondissipative water", ACM 

Transactions on Graphics, 24, 81-97. 

Stam, J. (1999) "Stable Fluids". In: Proceedings of 26th International Conference on 

Computer Graphics and Interactive Techniques (SIGGRAPH’99), pp. 121-128. 

Zuo, W. and Chen, Q. (2009) "Real-time or faster-than-real-time simulation of airflow in 

buildings", Indoor Air, 19, 33-44. 

Zuo, W. and Chen, Q. (2010a) "Fast and informative flow simulations in a building by 

using fast fluid dynamics model on graphics processing unit", Building and 

Environment, 45, 747-757. 

Zuo, W., Hu, J. and Chen, Q. (2010b) "Improvements in FFD Modeling by Using Different 

Numerical Schemes", Numerical Heat Transfer Part B-Fundamentals, 58, 1-16. 

 
  



26 

 

 

(a) sine wave 

 

(b) square wave 

Figure 1 Predicted time advection of sine and square waves by the semi-Lagrangian method 

with linear interpolation. 
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(a) sine wave 

 

(b) square wave 

Figure 2 Predicted time advection of sine and square waves by the first-order upwind scheme. 
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(a) sine wave 

 

(b) square wave 

Figure 3 Predicted time advection of sine and square waves by the semi-Lagrangian method 

with third-order interpolation. 
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(a) sine wave 

 

(b) square wave 

Figure 4 Predicted time advections of sine and square waves by using the semi-Lagrangian 

method with hybrid interpolation. 
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Figure 5 Schematic view of a flow in a lid-driven cavity 
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(a) U at Re =100 

 

(b) U at Re =1000 

Figure 6 Comparison of velocity profiles at different Reynolds numbers computed by 

the FFD with linear and hybrid interpolations with a mesh of 129 x 129. 
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Figure 7 Comparison of probabilities of confidence interval for relative error less than 

10% in predictions of linear and hybrid interpolation at Re = 1000. The grid resolution is 

N × N. 
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Figure 8 Schematic view of a flow passing the backward facing step. 
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(a) x = 4.80H 

 

(b) x = 6.12H 

Figure 9 Comparison of computed horizontal velocities of backward facing step flow at 

Re = 389 by using a coarse mesh with 25 × 25 grids. 
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(a) x = 4.80H 

 

(b) x = 6.12H 

Figure 10 Comparison of computed horizontal velocities of backward facing step flow at 

Re = 389 by using a fine mesh with 200 × 200 grids. 
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Figure 11 Sketch of the natural convection flow in a square cavity. 
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(a) Linear 

 

(b) Hybrid 

 

Figure 12 Comparison of temperature contours at Ra = 10
5
. 
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(a) Ra = 10
3
 

 

(b) Ra = 10
4
 

 

 

(c) Ra =  10
5
 

Figure 13 Comparison of relative error in averaged Nusselt number predicted by the linear 

and hybrid interpolations with different grids for different Rayleigh numbers. Grid 

resolution is N × N. 
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Figure 14 Schematic of the flow in a cubic lid-driven cavity 
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(a) grids 30 × 30 × 30 

 

 

(b) grids 60 × 60 × 60 

 

Figure 15 Comparison of velocity V along the horizontal centerline in the cubic lid-

driven cavity predicted by the FFD with hybrid and linear interpolation schemes with 

different grid resolutions. The reference data is from Ku et al. (Ku, 1987) 

 

 

 

 

 

 

 

 

 

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

V
 (

m
/s

)

x (m)

Linear
Hybrid

Ku

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

V
 (

m
/s

)

x (m)

Linear
Hybrid

Ku



41 

 

Table 1 Comparison of normalized reattachment lengths computed by the FFD with 

different interpolation schemes. 

Re Experiment Bilinear Error Hybrid Error 

100 2.99 2.87 -4.0% 2.97 -0.7% 

389 8.59 7.80 -9.2% 7.95 -7.5% 
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Table 2 Comparison of simulation results with the finest mesh. 

Ra = 10
3
 

Variable Linear Hybrid Benchmark 

Umax 3.634 3.647 3.649 

Ymax 0.815 0.815 0.813 

Vmax 3.687 3.705 3.697 

Xmax 0.178 0.178 0.178 

N u  1.116 1.118 1.118 

Ra = 10
4
 

Umax 16.201 16.167 16.178 

Ymax 0.822 0.822 0.823 

Vmax 19.613 19.662 19.617 

Xmax 0.123 0.115 0.119 

N u  2.222 2.243 2.243 

 Ra = 10
5
 

Umax 35.54 34.85 34.73 

Ymax 0.855 0.855 0.855 

Vmax 69.39 68.86 68.59 

Xmax 0.068 0.068 0.066 

N u  4.449 4.514 4.519 

 

 




