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Abstract. Habitat fragmentation disrupts species movement, leading to local extinctions and altered

community structure. Habitat corridors, which connect isolated patches of habitat and facilitate movement

between patches, provide a potential solution to these negative impacts. However, most studies to date

have examined the movement of species alone without considering emergent effects on the community

(e.g., altered trophic structure). We use large-scale, experimental landscapes and nitrogen stable isotopes

ratios (d15N) of a common generalist consumer (the fire ant, Solenopsis invicta) to determine how corridors

affect trophic structure. Thus, because the fire ant is a species whose trophic position is flexible and whose

diet typically reflects local prey availability, we assume that shifts in fire ants’ trophic position between

connected and isolated patches are likely to reflect shifts in patch trophic structure. We found that colonies

in isolated patches had lower means and ranges of d15N than colonies in otherwise similar connected

patches, suggesting that corridors may increase fire ants’ trophic position and breadth, respectively.

Previous work in our landscapes documented higher species richness of plants in connected than

unconnected patches. Patch means of ant d15N were positively correlated with plant richness, suggesting

that increased plant richness may influence the observed responses in fire ant d15N. Together these results

suggest that fragmentation may reduce trophic position and narrow trophic breadth of dietary generalists

such as the fire ant. These shifts likely reflect an alteration of food webs in isolated patches. Our results

suggest that corridors may be effective in preventing or reducing such alterations.
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INTRODUCTION

The alteration of area, shape, and isolation of

habitat patches can drive changes in species

composition, biotic processes, and trophic struc-

ture (Kruess and Tscharntke 1994, Gilbert et al.

1998, Fahrig 2003, Collinge 2009). Such changes

are increasingly common as natural landscapes

become subdivided by anthropogenic processes.

Corridors are a commonly implemented man-

agement strategy to mitigate the negative effects

of fragmentation because they facilitate move-

ment of organisms between otherwise isolated

patches (Hilty et al. 2006). Indeed, many studies

have demonstrated that corridors generally

increase rates of inter-patch movement (Sutcliffe

and Thomas 1996, Gonzalez et al. 1998, Tewks-

bury et al. 2002, Haddad and Tewksbury 2005,

Gilbert-Norton et al. 2010, but see Hilty et al.

2006 and Haddad et al. 2011a). These increases in
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movement are linked to increased species rich-
ness (Gilbert et al. 1998, Damschen et al. 2006,
Damschen et al. 2008) and greater persistence of
predators in connected habitat patches (Gilbert et
al. 1998). However, the impact of corridors on
community and trophic structure is still not well
understood.

Determining how changes in landscape char-
acteristics affect trophic structure is important,
given the central role of trophic dynamics in
ecosystem stability and function (McCann 2000,
Estes et al. 2011). Fragmentation may alter
trophic structure via several mechanisms. Theory
predicts a positive relationship between the
number of trophic levels and habitat area
(Schoener 1989, Holt 1993, Pimm 2002), a pattern
supported by non-experimental, empirical stud-
ies (Vander Zanden et al. 1999, Komonen et al.
2000, Post et al. 2000, Layman et al. 2007a,
Takimoto et al. 2008, McHugh et al. 2010).
Although such studies provide insight on poten-
tial effects of habitat loss, confounding factors
make it difficult to pinpoint the underlying
mechanisms. Studies that experimentally manip-
ulate fragmentation and connectivity to test how
they affect organisms of different trophic levels
are rare (Gilbert et al. 1998, Holyoak 2000, Davies
et al. 2001).

A particular challenge in fragmentation and
corridor studies is to separate connectivity effects
from edge effects. The challenge arises because
corridors essentially always increase the edge-to-
area ratio of associated patches, and edges are
well known to alter species abundance, distribu-
tion, interspecific interactions, and ecosystem
processes (Harrison and Bruna 1999, Davies et
al. 2001, Laurance et al. 2002, Ries et al. 2004).
This confounding of connectivity and edge
effects raises the question, ‘‘To what extent could
differences in trophic structure between habitat
patches with and without corridors be due to
connectivity versus differences in patch shape
(i.e., edge-to-area ratio)?’’ An equally difficult
challenge is quantification of the trophic struc-
ture of a food web. A potential solution is
provided by stable isotopes; recent work sug-
gests that stable isotope ratios of generalist
consumers reflect fragmentation effects on tro-
phic structure (see below, Layman et al. 2007a).

In a large-scale experiment, we quantified
corridor and patch shape effects on trophic

structure. We did so by quantifying indirect
measures of trophic position and dietary breadth
for a generalist consumer, the fire ant (Solenopsis
invicta Buren). We used stable isotopes, the ratio
of 15N/14N (hereafter d15N), to estimate the
relative trophic position of fire ants between
patch types (Bearhop et al. 2004, Newsome et al.
2007). In particular, we use mean d15N of
colonies in a patch to estimate fire ant trophic
position (higher d15N indicates higher trophic
position) and range (maximum minus minimum
values of d15N within a patch) to estimate of
range of trophic positions (hereafter trophic
breadth). Fire ants are ideal study organisms
for answering our questions about whether
corridors alter trophic structure because they
are trophic generalists (Tschinkel 2006). As such,
the d15N of a fire ant colony likely reflects the
average trophic position of nearby prey items
and d15N of a population of colonies in a habitat
patch can be interpreted to reflect the trophic
structure of that patch (Layman et al. 2007a).

We address three questions. (1) Do corridors
increase trophic position and trophic breadth of
fire ant colonies? Because corridors increase the
movement of organisms (Gilbert-Norton et al.
2010), help sustain species richness (Gilbert et al.
1998, Damschen et al. 2006), and allow greater
persistence of predators in connected habitat
patches (Gilbert et al. 1998), we predicted that
fire ant colonies in unconnected patches would
have a lower mean trophic position and narrow-
er trophic breadth than those from patches
connected by a corridor but otherwise similar in
shape (i.e., edge-to-area ratio). Because our
experimental design also allows us to test for
patch shape effects while controlling for connec-
tivity, we also asked: (2) Does patch shape affect
trophic position and trophic breadth of fire ants?
To address possible mechanisms underlying
connectivity effects, we ask: (3) Does plant
species richness positively correlate with the
mean d15N of fire ants across patches? Plant
species richness is enhanced by connectivity
(Damschen et al. 2006) and can increase abun-
dance of predatory arthropods (Haddad et al.
2009). If corridors indeed increase the trophic
position of fire ants (question 1), a positive
relationship between plant species richness and
d15N of fire ants would suggest that plant species
richness is likely affecting the trophic structure of
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consumers (i.e., the prey of fire ants) and
ultimately influencing the higher trophic position
of fire ants in connected patches.

METHODS

Study site
We conducted this study at the Savannah River

Site, South Carolina (33.208 N, 81.408 W) in ten
randomized and replicated blocks designed to
test effects of corridors on ecological processes.
Patches were created by clearing mature pine
plantation forest and are now managed for
restoration to longleaf pine savanna, a species-
rich, endangered habitat (Van Lear et al. 2005,
Jose et al. 2006). Restoration practices include
prescribed fire, planting of longleaf pine (Pinus
palustris) seedlings, and mechanical removal of
hardwood trees. As a result, the ground-layer
vegetation in patches is diverse and productive
relative to the understory of the pine forest
matrix.

Each block consists of five patches. In the
center of each block is a 1 ha ‘‘center’’ patch, and
four peripheral patches. Peripheral patches are
150 m from the center patch and are of three
types: ‘‘connected’’, ‘‘rectangular’’, and
‘‘winged’’. Connected patches are connected to
the center patch by a 150 m long, 25 m wide
corridor of the same habitat (Fig. 1A). Rectangu-
lar and winged patches lack a corridor connect-
ing to the center patch and are thus isolated or
unconnected. They are equal in area to the
connected patch, 1.375 ha (1 ha plus the area of
the corridor, 0.375 ha). The equivalent area of the
corridor is added to the winged patches as two
lateral 75 m long, 25 m wide ‘‘wings’’ and to the
rectangular patches as additional area on the far
side of the patch. Connected and winged patches
have similar edge-to-area ratios (491 m/ha and
509 m/ha, respectively) which are substantially
higher than the edge-to-area ratio of rectangular
patches (345 m/ha). This design allows us to test
for corridor effects independent of patch shape
effects by comparing response variables from
connected patches to those from winged patches,
which are unconnected but nearly identical in
edge-to-area ratio. Similarly, we can test for patch
shape effects independent of corridor effects by
comparing response variables from winged
patches to those from rectangular patches, which

differ greatly in edge-to-area ratio but are
identical with respect to connectivity (i.e., they
are both unconnected). Each block contains either
a second winged or a second rectangular patch
(Fig. 1B). We averaged response variables from
duplicate patch types within each block.

Study organism, sampling,
and stable isotope analysis

Fire ants are opportunistic, omnivorous feed-
ers that consume a wide variety of invertebrate
prey, scavenged vertebrates, small seeds, plant
exudates, and homopteran honeydew. Their diet
typically reflects immediately available food
sources rather than strong dietary preferences
(Tschinkel 2006). Depending on resources avail-
able, they can be highly carnivorous (Tillberg et
al. 2007) or omnivorous (Lofgren et al. 1975).

Stable isotopes are frequently used to charac-
terize food webs and estimate trophic position of
consumers (Layman et al. 2007b, Newsome et al.
2007, Schmidt et al. 2007). d15N is particularly
useful because nitrogen from the tissue of
consumers is enriched in 15N relative to that of
prey, which means that d15N is positively
correlated with a consumer’s trophic position
(Gannes et al. 1998, Post 2002). d15N values of
consumers are often calibrated against d15N
baseline values of plants. We did not make
baseline adjustments. However, a recent study
suggests that at spatial scales comparable to our
within-block comparisons, unadjusted d15N of
consumers result in reliable comparisons of
relative trophic position (Woodcock et al. 2012).

The enrichment in d15N for one consumer
trophic level transfer (including insects) is gen-
erally 3–4% (Mooney and Tillberg 2005, Tillberg
et al. 2006). In their native range, fire ant nests
are highly variable in d15N ratios. This variance
reflects an estimated span of two trophic levels
(Tillberg et al. 2006). Here we use the patch mean
d15N, which estimates the average trophic posi-
tion of fire ant colonies in a given patch, and
patch range (maximum minus minimum) of
d15N, which estimates the breath of trophic
positions of fire ant colonies in a given patch.
Both mean and range of d15N have been used
previously to characterize trophic structure in
fragmented landscapes (Layman et al. 2007a) and
mean d15N has been used to infer trophic
position and prey availability in ants (Bluthgen
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et al. 2003, Palmer 2003, Tillberg et al. 2007, Gibb
and Cunningham 2011).

In each peripheral patch (connected, rectangu-
lar, and winged) we collected fire ants using a

stratified design. We divided each patch into a 3
3 3 sampling grid (N¼ 9 cells, each 33.3 m3 33.3

m; Fig. 1B). We attempted to collect fire ants from

one nest per cell within the grid in all patches.

Fig. 1. (A) Photograph of one of ten experimental landscapes taken from a center patch looking down the

corridor to the connected patch. (B) Sampling design within an experimental landscape. Dotted lines depict a 33

3 grid centered in each patch, where S. invicta workers were collected in each of the 33.3 m2 cells.
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When we did not find nests within a cell, we
collected whenever possible from the nearest fire
ant nest in an adjacent cell with the same amount
of edge habitat. From each nest, we collected
approximately 200 workers and stored them at
�178C. Of these, we haphazardly selected 30–50
individuals for stable isotope analysis. To obtain
an estimate from a relatively long time window
of nitrogen assimilation and unbiased by the last
meal ingested, we analyzed only heads and
thoraxes (Tillberg et al. 2006). Samples from a
given nest were thoroughly mixed, weighed to
the nearest 61 lg, and analyzed for d15N at the
University of Georgia Savannah River Ecology
Laboratory using continuous flow isotope ratio a
mass spectrometer (Finnigan Delta plusXL; Fin-
nigan-MAT, San Jose, CA). We report stable
isotope ratios in per-mil units (%) in the standard
delta (d) notation. We tested for normality of
response variables in each patch type using a
Shapiro-Wilk test. Response variables did not
require transformation. Data on plant species
richness were collected via visual censuses over
the entire area of all patches in eight blocks
(Damschen et al. 2006).

To determine whether trophic position was
increased by corridors (question 1) we tested a
directional hypothesis using paired, one-tailed t-
tests on the mean and range of d15N from winged
vs. connected patches. To determine whether
trophic position was affected by patch type
(question 2) we tested a non-directional hypoth-
esis using paired, two-tailed t-tests on the mean
and range of d15N from winged vs. rectangular
patches. One block was omitted from the range
of d15N analysis because one patch type within
that block was inadequately sampled. To exam-
ine the relationship between plant species rich-
ness and trophic position of fire ants (question 3),
we used a linear regression of plant species
richness and mean d15N of fire ants from the
same patch. All analyses were conducted using R
(R Development Core Team 2009).

RESULTS

We collected fire ants from 322 nests, with a
mean of 8.05 (6 2.17 SD) nests per patch. d15N
from these nests varied substantially, ranging
from �1.03% to 4.13%. Mean d15N values were
;10% higher in connected than in unconnected

patches of similar shape (d15N¼ 1.86 and 1.69 in
connected and winged patches, respectively; t ¼
2.10; P¼ 0.03), supporting our prediction (Fig. 2).
Likewise, the range of d15N was ;33% greater in
connected than unconnected patches of similar
shape (ranges ¼ 1.70 and 1.28 in connected and
winged patches, respectively; t ¼ 1.95; P ¼ 0.04;
Fig. 2), as predicted.

Patch shape did not affect the trophic signature
of fire ant colonies. In particular, mean and range
of d15N did not differ between winged and
rectangular patches, which differ greatly in edge-
to-area ratio but are identical in size and
connectivity (t ¼ 1.13; P ¼ 0.29 for mean; t ¼
0.72; P ¼ 0.50 for range; Fig. 2).

The relationship between plant species rich-
ness and d15N of fire ant colonies was highly
dependent on patch type (Fig. 3). In connected
and rectangular patches the relationship was
strong and positive (r2 ¼ 0.60 and 0.52, respec-
tively; P’s , 0.05), whereas in winged patches
there was no apparent relationship (r2 ¼ 0, P .

0.94).

DISCUSSION

Our results suggest that patch connectivity
(but not patch shape) has an effect on relative
trophic position and breadth of a generalist
consumer. As predicted, fire ant nests in con-
nected patches had lower mean and range of
d15N than those in similarly shaped, unconnected
patches. While the mechanism driving this
pattern is uncertain, the positive correlation
between patch plant species richness and mean
fire ant d15N in most patch types suggests that
plant diversity may play a role, since plant
species richness is higher in connected than
unconnected patches (Damschen et al. 2006).

Due to the wide range of resources consumed
by fire ants, the dietary shifts we observed may
reflect local trophic structure of the habitat
patches in our study system (see Layman et al.
2007a). Assuming that fire ants’ diets reflect local
food sources, the lower d15N in isolated (winged)
patches could signify an overall decrease in
availability of animal prey, a decrease in trophic
position of those prey or both. Likewise, the
lower d15N range in isolated patches suggests
that fire ants in those patches occupy a narrower
range of trophic positions than those in connect-
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ed patches. While we are unable to discern

whether corridors increased the abundance or

trophic position of prey, our results nevertheless

suggest that isolation negatively impacts prey

and that corridors mitigate such disruptions.

Further work of this kind using focal organisms

of other trophic levels could disentangle how

trophic structure is might be impacted by

isolation.

An impact of fragmentation on the contraction

of trophic structure would be consistent with

other studies. Layman et al. (2007a) concluded

Fig. 2. (A) Corridor effects on mean d15N (t¼ 2.10; P¼ 0.03), (B) patch shape effects on mean d15N (differences

not significant; NS), (C) corridor effects on range of d15N (t¼ 1.95; P¼ 0.04) (D) patch shape effects on range of

d15N (NS). For A-C, n ¼ 10. For D, n ¼ 9. Bars represent mean 6 1 SE.

Fig. 3. The relationship between species richness of plants and mean d15N of fire ants for each patch type

(connected, rectangular, and winged).
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that fragmentation collapsed trophic structure of
a tidal creek food web. That collapse was evident
in intraspecific comparisons of isotopic ratios
from generalist consumers (gray snapper (Lutja-
nus griseus Linneaus)) in fragmented and intact
tidal creeks. Small-scale experimental studies
have also found that fragmentation affects
trophic structure. In a microbial food web, for
example, fragmentation reduced the density of a
top predator (Holyoak 2000). In another exper-
imental study, Gilbert et al. (1998) found that
fewer predator species persisted in moss patches
that were isolated than in patches that were
connected by corridors. Our findings are congru-
ent and extend these results to a much larger
spatial scale.

Although our results suggest that corridors
may affect trophic position of fire ants via
differences in plant species richness, we note
that the strong positive relationship between
plant species richness and mean d15N of fire ants
occurred in just two of three patch types,
connected and rectangular. We have no explana-
tion for the absence of the relationship in winged
patches, but it suggests that increased prevalence
of edges may disrupt the relationship between
the plant richness and trophic position of fire ants
and certainly calls for additional research. The
pattern in connected and rectangular patches,
however, coincides with studies documenting
positive relationships between plant diversity
and consumer abundance and diversity (Sie-
mann et al. 1998, Haddad et al. 2009). Further-
more, experiments by Haddad et al. (2009 and
2011b) found that plant species richness is
positively related with species richness of con-
sumers and with abundance of arthropod pred-
ators.

In conclusion, we teased apart potential effects
of patch shape and connectivity on the isotopic
signature and likely trophic position of a
generalist consumer, and found that connectivity
effects have the most influence. These results
have relevance in the context of land manage-
ment and conservation because they suggest that
habitat corridors can help maintain food web
structure in fragmented landscapes.
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