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Abstract

Understanding the ranges of rare and endangered species is central to conserving

biodiversity in the Anthropocene. Species distribution models (SDMs) have

become a common and powerful tool for analyzing species–environment rela-

tionships across geographic space. Although evaluating the distribution of rare

species is integral to their conservation, this can be difficult when limited distri-

bution data are available. Community science platforms, such as iNaturalist,

have emerged as alternative sources for species occurrence data. Although these

observations are often thought to be of lower quality than those of natural his-

tory collections, they may have potential for improving SDMs for species with

few occurrence records from collections. Here, we investigate the utility of

iNaturalist data for developing SDMs for a rare high-elevation plant, Telesonix

jamesii. Because methods for modeling rare species are limited in the literature,

five different modeling techniques were considered, including profile methods,

statistical models, and machine learning algorithms. The inclusion of iNaturalist

data doubled the number of usable records for T. jamesii. We found that a ran-

dom forest (RF) model using ensemble training data performed the highest of

any model (area under curve = 0.98). We then compared the performance of RF

models that use only natural history training data and those that use a combina-

tion of natural history (herbarium specimens) and iNaturalist training data.

All models heavily relied on climate data (mean temperature of driest quarter,

and precipitation of the warmest quarter), indicating that this species is under

threat as climate continues to change. Validation datasets affected model fits as

well. Models using only herbarium data performed slightly poorer when evalu-

ated with cross-validation than when validated externally with iNaturalist data.

This study can serve as a model for future SDM studies of species with similar

data limitations.
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INTRODUCTION

Species distribution models (SDMs) have become a com-
mon tool for analyzing species–environment relation-
ships and projecting range estimates across geographic
space (Guisan et al., 2017). By using species occurrence
data along with environmental predictors, these models
can aid in species monitoring (Williams et al., 2009), des-
ignating conservation areas (Koch et al., 2017), and pro-
viding insights into how the distribution of a species may
be affected by anthropogenic stressors such as biological
invasion, human land use, and climate change (Franklin,
2013). Several studies suggest that these stressors
have led to species range contractions and extinctions
(Chen et al., 2011; Fois et al., 2018; Imperio et al., 2013;
Parmesan & Yohe, 2003). Therefore, to mitigate declines
of global biodiversity, research efforts directed toward
modeling species at higher risks of extinction are critical
(Lomba et al., 2010; Wang et al., 2012).

Rare and endemic plant species are particularly
threatened and could benefit from applications of SDMs
(Breiner et al., 2015; Guisan et al., 2013). Extinction risk
is often higher for these species due to narrow geographic
ranges, small population sizes, specialized habitat prefer-
ences, reduced gene flow, and higher vulnerability to
environmental changes (Kruckeberg & Rabinowitz, 1985;
Lavergne et al., 2005; Lomba et al., 2010; Mousikos
et al., 2021). Therefore, there is great urgency for identify-
ing and protecting habitat for rare species (Mousikos
et al., 2021; Singh, 2013). However, despite being in the
most need of predictive distribution modeling, rare spe-
cies remain the most challenging to model. This chal-
lenge has been referred to as the “rare species modeling
paradox” (Lomba et al., 2010).

Modeling the distributions of rare species is challeng-
ing for several reasons. SDMs rely on accurate datasets of
georeferenced species occurrences (Fletcher & Fortin,
2018). Correlations between presence locations and envi-
ronmental variables provide an estimate of a given species’
fundamental niche across space (Guisan & Thuiller, 2005).
Natural history collections have served as reliable sources
for obtaining the distribution data necessary for these
models. For rare species, these datasets are often limited,
containing only a small number of occurrences gathered
over long periods of time (Rushton et al., 2004). Small sam-
ple sizes may compromise model robustness if the full
range of a species is not well represented in records
(Pearson et al., 2007; Williams et al., 2009). Additionally,
rare species are often habitat specialists with patchy distri-
butions. This can make it difficult to determine the extent
of a species range if there is strong sample selection bias
(McPherson & Jetz, 2007; Seoane et al., 2005). Sample
selection bias can often occur when numerous occurrence

records are collected in areas more amenable to sampling,
such as roadsides or areas with higher human population
density (Fletcher & Fortin, 2018). Despite advancements in
predictive algorithms and the pressing need for modeling
rare species, there are few SDM studies addressing
methods for modeling species with limited distribution
data (Lomba et al., 2010; Mousikos et al., 2021).

Community science (sometimes called “citizen science”)
platforms such as iNaturalist have emerged as alternative
sources for species occurrence data over the last decade
(Gardiner et al., 2012; Mesaglio & Callaghan, 2021). Using
iNaturalist, amateur naturalists can upload georeferenced
photographs of a species observation. This platform provides
large amounts of species distribution data, with over 126
million observations to date (https://www.inaturalist.org/
observations). Although these datasets can be powerful,
there is concern that these data are of lower quality than
natural history collections (Gardiner et al., 2012). Correctly
determining a species identification can be challenging for
many nonexperts, even if they have some familiarity with
the subject species (Silvertown et al., 2015); however, expert
users on the platform can help by corroborating or
correcting identifications. Geographic accuracy of observa-
tion points may be lower as well due to issues relating to pri-
vacy and errors, such as incorrectly uploading information
from mobile devices (Suzuki-Ohno et al., 2017). Sample
selection bias is another potential issue, with observations
often skewed toward low-effort sampling sites, such as
along roadsides and in areas with high population density
(Armstrong, 2021). Despite concerns over quality, these
datasets may have promise for improving SDMs when there
is limited distributional data available for a species in natural
history collections and for serving as independent datasets
for model validation. This is especially promising since col-
lection of new museum records for rare species may be lim-
ited by legal protections and ethical concerns. Therefore,
further investigation into the utility of iNaturalist data for
modeling the distribution of rare species is warranted.

In this paper, we used a combination of herbarium and
iNaturalist records, as well as five different modeling tech-
niques, to address the challenge of developing SDMs for
data-limited rare species. We first evaluate the effectiveness
of iNaturalist and natural history collection records as
model training and evaluation data. To illustrate this
approach, we develop SDMs for a test species, Telesonix
jamesii (James’ telesonix). T. jamesii is a rare, high-elevation
plant endemic to the southern Rocky Mountains of
Colorado and New Mexico, USA. Because methods for
modeling rare species are limited in the literature, five dif-
ferent modeling techniques were used, including profile
methods, statistical models, and machine learning algo-
rithms. Using the best-performing modeling technique, we
compare SDM performance using only herbarium data and
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a combination of the herbarium and iNaturalist data.
Models are validated using cross-validation as well as
iNaturalist data as an external validation dataset. We com-
pare model results and discuss their relevance toward con-
servation of this species and similar species.

METHODS

Study species

T. jamesii (Figure 1) is a rare species of Saxifragaceae
that grows in rocky habitats and is regionally endemic

to the Southern Rocky Mountains. There are 21 known
populations of this species, extending from northern
New Mexico to Rocky Mountain National Park in
northern Colorado (Beatty et al., 2004; Figure 1).
T. jamesii grows from montane to alpine life zones,
typically on granite tors in dry, poor nutrient soils in
areas with high exposure to wind and UV radiation
(Ackerfield, 2015). These conditions are common above
tree line, making the alpine a suitable zone for this spe-
cies. However, these conditions are often not as com-
mon in the subalpine zones, with large areas of forests
isolating suitable exposed habitat for T. jamesii (Gaier
et al., 2023). This species is an ideal candidate for a

Colorado

Wyoming

New Mexico

A B

C

F I GURE 1 (A, B) Telesonix jamesii flowering in an exposed rocky habitat in the alpine of Pikes Peak, CO. Photos: K. Barthell. (C) The

spatial extent considered for this study, encompassing the range of T. jamesii in the southern Rocky Mountains, USA, is indicated with red

polygon. Herbarium records of T. jamesii occurrences are shown on the right.
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community-science-based study on rare plants for
several reasons. Although rare statewide, T. jamesii is
abundant locally surrounding Pikes Peak and Rocky
Mountain National Park, which are two highly visited
wilderness areas in Colorado. The bright and charis-
matic flowers of this species make it unlikely to be
passed up by keen iNaturalist users. Furthermore, these
distinctive floral traits make it easier to validate obser-
vations on iNaturalist. This species is also threatened; it
is ranked as S2 (imperiled in state because of rarity;
Beatty et al., 2004) by the Colorado National Heritage
Program. Thus, rigorous distribution modeling of
T. jamesii could benefit conservation efforts for this spe-
cies (Gaier et al., 2023).

Herbarium data

We used herbarium records of T. jamesii reported on
SEINet (https://swbiodiversity.org/seinet/). There were
initially 201 herbarium records of T. jamesii. T. jamesii
and its only congener, Telesonix heucheriformis, have
occasionally been treated as the same species in the
past (Beatty et al., 2004). Distinct morphological and dis-
tributional differences are now considered necessary to
separate these two species (Gornall & Bohm, 1985).
T. heucheriformis has darker colored, shorter corollas and
is found in Nevada, Utah, Wyoming, Montana, and
South Dakota (Beatty et al., 2004). There were seven
T. jamesii specimens collected in Nevada, Wyoming, and
Montana, which we suspected were either identified
incorrectly or never taxonomically revised (Appendix S1:
Table S1). All of these specimens were in close geo-
graphic proximity to other T. heucheriformis occurrences,
leading us to further suspect that they were not T. jamesii.
We contacted the herbaria housing these specimens and
requested either detailed photographs or confirmation of
identification from herbarium staff to determine whether
these specimens were T. heucheriformis (Appendix S1:
Table S1). All seven specimens were confirmed to be
T. heucheriformis and were eliminated from the dataset.
We also eliminated any specimens without geocoordinates.
Observations dated prior to 1970 were removed from
the dataset as well. There were 32 specimens with
geocoordinates dated prior to 1970. We chose 1970 as our
cutoff date because we do not have climate data prior to
1970 (see Environmental data). To avoid pseudoreplication,
we eliminated any observations from the same 900-m
(30 arcseconds) cell as another. The resolution of our cli-
mate rasters is 900 m, which is the coarsest resolution of
all of our environmental data (Table 1). In total, 30 herbar-
ium specimen records remained (Figure 1; Appendix S1:
Table S2).

iNaturalist data

T. jamesii observations were downloaded directly from
iNaturalist in January 2022. Because there is often error
when users upload GPS information on their mobile devices,

TABL E 1 List of initial environmental predictors considered

in our models.

Variable Description

Worldclim,a 900 m

Bio1 Annual mean temperature

Bio2 Mean diurnal range

Bio3 Isothermality

Bio4 Temperature seasonality

Bio5 Max temperature of the warmest month

Bio6 Min temperature of the coldest month

Bio7 Temperature annual range

Bio8 Mean temperature of the wettest quarter

Bio9 Mean temperature of the driest quarter

Bio10 Mean temperature of the warmest quarter

Bio11 Mean temperature of the coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of the wettest month

Bio14 Precipitation of the driest month

Bio15 Precipitation seasonality

Bio16 Precipitation of the wettest quarter

Bio17 Precipitation of the driest quarter

Bio18 Precipitation of the warmest quarter

Bio19 Precipitation of the coldest quarter

SRTM, 90 m

Elevation DEM

SoilGrids.org,b 250 m

Cation Cation exchange capacity of the soil (mmol/kg)

Nitrogen Total soil nitrogen (cg/kg)

MRLC,c 90 m

Barren Presence or absence of barren landcover

Canopy Percent canopy cover

Derived from DEM,d 90 m

Slope Slope between cells in DEM

Aspect Orientation of slope measured clockwise
from 0 to 360

Abbreviations: DEM, digital elevation model; SRTM, Shuttle Radar
Topography Mission.
ahttps://www.worldclim.org/.
bhttps://www.isric.org/explore/soilgrids.
cMulti-Resolution Land Characteristics Consortium, https://www.mrlc.gov/.
dhttps://www.rdocumentation.org/packages/raster/versions/3.5-15/topics/
terrain.
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we eliminated any observations that were placed in
unlikely habitats, such as residential areas. We confirmed
the identification of all observations using diagnostic mor-
phological characteristics from user-uploaded images.
Relative corolla lengths and coloration were examined to
distinguish between T. jamesii and T. heucheriformis
(Gornall & Bohm, 1985). We again thinned observations
occurring in the same 900-m cell as other observations.
In total, 29 iNaturalist records remained (Appendix S1:
Table S3).

Environmental data

Predictor variables were derived from online sources
(Table 1). These include 19 climatic variables from
WORLDCLIM averaged between 1970 and 2000 (Hijmans
et al., 2005; http://www.worldclim.org/bioclim.htm). We
downloaded climate data at resolution of 30 arcseconds
(900 m). Other variables considered were topographical
features like elevation, slope, and aspect. We obtained a
digital elevation model from the Shuttle Radar Topography
Mission (Farr & Kobrick, 2000) at a resolution of 90 m.
Slope and aspect were derived from a digital elevation
model by taking the mean difference between the value of
a cell and the values of its eight surrounding cells
(Hijmans, 2022). Additional variables that are biologically
relevant to T. jamesii were used. The life history strategy of
T. jamesii promotes growth in open, rocky environments
(Beatty et al., 2004; Gaier et al., 2023). As a proxy for this
habitat type, land cover maps were downloaded from the
National Land Cover Database (NLCD) and filtered to
include only barren landcover. Barren landcover includes
gravel, bare rock, and talus slopes. We incorporated barren
landcover into the model as a binary covariate. Canopy
cover was also downloaded from NLCD. Both canopy and
landcover were downloaded at a resolution of 30 × 30 m
and then aggregated to 90 × 90 m to aid computation time.
Soil maps can be particularly appropriate for modeling
edaphically limited species (Velazco et al., 2017). Maps of
soil nitrogen content and cation exchange capacity were
downloaded from SoilGrids (https://soilgrids.org/). This is
a global database of estimated soil properties mapped at a
250 × 250 m spatial resolution.

Once all the raster layers were obtained, they were
cropped to the model extent. We defined the extent as
−108� W, −103� W, 34� N, and 42� N (Figure 1). This
includes the entire Colorado Front Range as well as
potential northern and southern habitats in Wyoming
and New Mexico. Once projected over the study area,
layers were resampled to a resolution of 90 × 90 m. We
used bilinear interpolation to resample rasters that had
resolutions coarser than 90 × 90 m.

Background data

To compensate for having no absence data (e.g., from
systematic surveys), presence-only data can be contrasted
with pseudoabsences, which are randomly drawn back-
ground points across the study extent (Fletcher &
Fortin, 2018). These have been shown to produce more
accurate SDMs than presence-only data on their own (Elith
et al., 2005). Pseudoabsences are particularly appropriate
for modeling rare endemics due to the higher probability
that points selected will be true absences (Williams et al.,
2009). We generated a different set of pseudoabsences
for our two training datasets (only herbarium and herbar-
ium with iNaturalist). Here we chose to generate
16 pseudoabsences for every true presence. Liu et al.
(2019) found that for rare species, the number of back-
ground points needs to be up to 16 times greater than the
number of true presences for model accuracy to reach
an asymptote. We randomly generated pseudoabsences
across the extent of the study area, with no points falling
within 4.5 km of a true presence to help ensure that
pseudoabsences did not fall on suitable habitat.

Variable selection

An important decision to make when fitting SDMs with
limited distribution data is the selection and number of
environmental variables (Guisan & Zimmermann, 2000).
Overfitting a model with too many predictors can affect
accuracy and predictive power; however, the inclusion of
many variables may provide more informative models
(Lomba et al., 2010). This trade-off makes variable selec-
tion a challenging decision when working with rare spe-
cies. An effective method for thinning variables is to
eliminate those that are highly correlated (Zuur et al.,
2009). The variance inflation factor (VIF) measures how
strongly each predictor can be explained by the rest of
the predictors and is one of the most widely used
methods for dealing with collinearity (Naimi et al., 2014).
We eliminated the variables with the highest VIFs in a
stepwise process until only variables with VIFs below
three remained. A VIF of three is a conservative thresh-
old for model collinearity (Zuur et al., 2009).

Model fitting

Recent developments in SDM packages have allowed
modelers to use different predictive algorithms. Although
it is promising that these modeling techniques can be
easily applied to species occurrence data, it has been
found that distinct modeling techniques can turn out

ECOSPHERE 5 of 15
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different results when calibrated on the same species
(Broennimann et al., 2007). Therefore, assessing which
modeling technique works best for T. jamesii is necessary
before further investigating the more specific uses of
iNaturalist data. To do so, we first combined all occur-
rence data and fitted an array of models (Figure 2).

To capture the full range of modeling techniques, we
considered profile methods, statistical models, and machine
learning algorithms. Profile methods relate environmental
variability at presence locations to background data
across the study extent using similarity-based measures
(Fletcher & Fortin, 2018). We implemented a BIOCLIM
model, which is a commonly used profile method and the
first SDM package (Booth, 2018). Statistical models used in
SDMs are commonly variations on linear models. We used
generalized linear models (GLMs) and generalized additive
models (GAMs). Although GLMs are widely used for distri-
bution modeling, a major concern is that they fail to cap-
ture nonlinear relationships between species with predictor
variables (Elith et al., 2006). GAMs offer an alternative,
using splines to accommodate nonlinearity in response
functions (Fletcher & Fortin, 2018). No interaction terms or
quadratic terms were considered for statistical models.
Finally, we implemented two machine learning algorithms:
random forest (RF) and Maxent. RF works by growing a
suite of regression trees that bootstrap the original data.
The outcome of each bootstrap informs the algorithm on

how to fit the model (Fletcher & Fortin, 2018). The number
of explanatory variables (mtry) that are sampled for each
tree can be adjusted manually to minimize predictive error
(Fletcher & Fortin, 2018). After tuning our RF model, we
set mtry as 1. Maxent is one of the most widespread and
routine algorithms for SDMs in scientific studies and
applied modeling (Lissovsky & Dudov, 2021). These models
are based on the principle of maximum entropy, which
states that the most uniform distribution is the best approxi-
mation of an unknown distribution (Phillips et al., 2006).
The regularization parameter was tuned manually to
reduce error. Here, we specified our beta multiplier as 1 in
our Maxent model.

Model evaluation and selection

We used K-fold cross-validation to evaluate the perfor-
mance of this first suite of models. K-fold validation splits
the training data into K equal-sized parts (Naimi
et al., 2014). Each K-fold is used as model testing data,
and the other K-1 folds are used as training data. We
used five folds for evaluating our data. There are many
statistical approaches for evaluating model performance
(Fielding & Bell, 1997). K-fold cross-validation is an
appropriate method for this study because, although it is
not truly independent, each validation fold replicates an

BIOCLIM

GLM

GAM

RF

Maxent

Cross- 

Validation

Herbarium Only

iNaturalist + 

Herbarium

K-fold 
Cross- 

Validation

K-fold 
Cross-

Validation

iNaturalist 
Cross-

Validation

1. Input 

Data

2. Modeling 

Method

3. Validation 

Dataset

4. Modeling 

Method 

Selection

5. Input Data 6. Validation

A

B

Herbarium

Best- 
Performing 
Modeling 
Technique

F I GURE 2 Overview of successive steps in our model-building process. Models are either trained/tested with data from iNaturalist,

herbaria, or the two combined. Model evaluation metrics are used to select the best-performing algorithm at step 4. GAM, generalized

additive model; GLM, generalized linear model; RF, random forest.
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independent dataset (Pearson, 2010). This promotes consis-
tency between our evaluations since we are examining
both internally validated models and externally validated
models. Here, we evaluated performances using both a
threshold-independent metric (area under curve, AUC)
and a threshold-dependent metric from a confusion matrix,
true skill statistic (TSS; Lawson et al., 2014). We also report
sensitivity and specificity frommodel evaluations.

To determine where each model predicts a presence
or absence, the distribution probabilities for each model
were converted into a binary map of species presence and
absence by applying a threshold value (Appendix S1:
Figure S1; Bagaria et al., 2021). The threshold value for
each model was calculated based on the maximization of
sum of specificity and sensitivity.

After selecting the best-performing modeling tech-
nique based on evaluation metrics, we developed two
new models, each with different training data (Figure 2).
Our first model was trained using both herbarium and
iNaturalist data and evaluated once again using K-fold
validation. Our second model was trained using only her-
barium data and validated with training data and again
with only iNaturalist data. This second evaluation with
just iNaturalist data is the only instance in this study
where a model is externally evaluated with a truly inde-
pendent dataset.

All analyses were performed in R version 4.0.2
(R Core Team, 2022). We used the raster package version
3.3-15 for analyses, visualizations, and manipulations of
all raster layers, as well as generating background points
(Hijmans, 2022). The usdm package version 1.1-18 was
used for thinning variables and diagnosing collinearity
(Naimi et al., 2014). For training and testing our SDMs,
we used the dismo package version 1.3-5 (Hijmans
et al., 2021), the PresenceAbsence package version 1.1.10
(Freeman & Moisen, 2008), the randomForest package
version 4.7-1 (Liaw & Wiener, 2002), and the glmnet
package version 4.1-1.3 (Friedman et al., 2010). The sp
package version 1.4-6 (Pebesma & Bivand, 2005), the
rgdal package version 1.5-28 (Bivand et al., 2021), and the
dplyr package version 1.0.8 (Wickham et al., 2022) were
used for various data formatting tasks.

RESULTS

Model performance and selection

We ran our initial suite of models using a reduced set of
environmental variables. Of our initial set of variables,
only 11 remained after meeting our VIF threshold
(Table 2). The predictive maps for all five initial models
(BIOCLIM, GLM, GAM, Maxent, and RF) showed similar

patterns of low-probability habitat across most of the
study extent, with areas of higher probability surround-
ing Pike National Forest and other small pockets across
the Front Range (Figure 3). Despite two herbarium
occurrences in New Mexico, none of the models
predicted high-probability habitat in the southern end of
the study area. Interestingly, many of our models showed
suitable habitat in the Sangre de Cristo Mountains near
the Colorado–New Mexico border, where there are no
known occurrences. All models had AUC values greater
than 0.85, which indicates high predictive accuracy
(Lomba et al., 2010). The optimal threshold for presence
varied across models (Figure 3). GLM recorded the lowest
optimal threshold (0.079). The BIOCLIM model predicted
the least amount of high-probability habitat compared to
the other models (Figure 3). This algorithm also
displayed both the lowest AUC and TSS values (Table 3),
despite displaying the second highest specificity value
(0.964). This is likely due to our BIOCLIM model show-
ing the lowest sensitivity of any model (0.750). BIOCLIM
and GAM recorded the highest optimal thresholds for
detecting a presence (Table 3). The projections for these
models show more high-probability habitat compared to
the other model projections (Figure 3). This would call
for a higher threshold so that the sum of specificity and
sensitivity is maximized. Although models varied in their
sensitivity, specificity was high across all models (>0.90),

TABL E 2 Variance inflation factors (VIFs) of environmental

variables remaining after diagnosing collinearity problems.

Variables Description VIF

Bio2 Mean diurnal range 1.261749

Bio4 Temperature seasonality 1.924307

Bio6 Min temperature of the coldest
month

2.972027

Bio9 Mean temperature of the driest
quarter

1.308481

Bio18 Precipitation of the warmest quarter 1.503391

Nitrogen Cation exchange capacity of the soil
(mmol/kg)

2.999971

Cation Total soil nitrogen (cg/kg) 1.919629

Slope Slope between cells in DEM 1.878356

Aspect Orientation of slope measured
clockwise from 0 to 360

1.014600

Canopy Percent canopy cover 1.277840

Barren Presence or absence of barren
landcover

1.015801

Note: The VIFs of all variables were taken, and we eliminated the variable

with the highest VIF. We then took the VIFs once again and continued this
process until all variables had VIFs below three.
Abbreviation: DEM, digital elevation model.
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F I GURE 3 Predictive maps of the distribution of Telesonix jamesii across the study region generated by each modeling technique.

A scale indicating probability of occurrence is shown to the right of each map. State and county boundaries are included for geographic

reference. GAM, generalized additive model; GLM, generalized linear model; RF, random forest.
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indicating that models were overall more successful at
predicting absences than presences.

Of the five different modeling techniques implemented,
RF had the highest TSS and AUC values when
cross-validated (Table 3). With an AUC of 0.981, the initial
RF model can be considered an excellently fitted model
(Elith & Leathwick, 2007). Thus, the RF modeling algo-
rithm was utilized for the continuation of the study.

The ranked importance of each predictor considered
in our RF model is summarized in Figure 4. Of our 11 pre-
dictors, Bio9 (mean temperature of the driest quarter)
and Bio18 (precipitation of the warmest quarter) were
scored the highest by RF by a wide margin. Species
response curves (Appendix S1: Figure S2) to the most
important predictors (Bio9 and Bio18) reveal that
T. jamesii is preferably distributed in areas with high
summer rainfall and cold temperatures during the quar-
ter with the lowest precipitation, which is winter in west-
ern North America (Krause et al., 2015; Schwinning
et al., 2005). Cation exchange, Bio4, and Bio2 were all
ranked intermediately (Figure 4). Despite what is known

about the habitat preferences of T. jamesii (Gaier et al.,
2023), canopy and barren landcover were among the least
important variables for predicting its distribution.
Overall, these results show the dominance of variables
related to precipitation regimes in determining the range
of our test species.

iNaturalist as an evaluation dataset

RF models performed slightly differently depending on how
iNaturalist data were used (Table 4). The model built using
only herbarium data recorded slightly higher test statistics
when cross-validated with iNaturalist data (AUC = 1,
TSS = 1) compared to when it was cross-validated with her-
barium data (AUC = 0.988, TSS = 0.935). Our model using
herbarium and iNaturalist data together as both training
and testing data displayed the lowest predictive accuracy
between our three RF models (AUC = 0.981, TSS = 0.896).
It should be noted that all models had AUC values greater
than 0.95 and TSS values above 0.85, which suggests that all
models had an excellent fit (Allouche et al., 2006; Guisan
et al., 2017).

DISCUSSION

Rare species have long been considered a challenge to
model due to severe limitations of occurrence data (Lomba
et al., 2010). Scarce datasets not only limit the geographic
breadth of modeling procedures but also hamper the num-
ber of predictor variables that can be incorporated into
models (Guisan & Thuiller, 2005; Walther et al., 2007).

TAB L E 3 Model metrics for the first suite of models.

Model AUC TSS Sens Spec Threshold

BIOCLIM 0.868 0.714 0.75 0.964 0.151

GLM 0.96 0.889 0.956 0.933 0.079

GAM 0.901 0.733 0.754 0.979 0.445

RF 0.981 0.896 0.964 0.932 0.11

Maxent 0.975 0.881 0.912 0.941 0.0895

Abbreviations: AUC, area under curve; GAM, generalized additive model;
GLM, generalized linear model; RF, random forest; Sens, sensitivity; Spec,
specificity; TSS, true skill statistic.

F I GURE 4 Ranked importance of each predictor variable considered by random forest. Importance is measured by the increase in node

purity. Higher values indicate that the explanatory variable is an important predictor for Telesonix jamesii distribution. See Table 2 for an

explanation of variable abbreviations.
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This then further limits the possibility of obtaining a fuller
understanding of this species’ niche, despite the crucial
need to investigate species–environmental relationships of
rare and threatened species (Farnsworth & Ogurcak,
2006). Therefore, procedures for dealing with this “rare
species modeling paradox”must be explored (Lomba et al.,
2010). In our approach to the “rare species modeling
paradox,” we incorporated iNaturalist data into our
dataset along with the more traditional herbarium data.
Although iNaturalist records are typically thought to be of
lower quality compared to museum collection records
(Gardiner et al., 2012), we found more erroneous observa-
tions in our herbarium data. This is surprising, especially
given that herbarium collections are considered the gold
standard for plant species occurrence records.
Additionally, these erroneous observations were only
flagged because we were familiar with the biology of our
study species, which may not always be the case in other
applied modeling scenarios. We omitted only two
iNaturalist observations from our dataset due to inaccurate
geocoordinates. One observation was from inside the Pikes
Peak gift shop, and the other was in a Colorado Springs
residential area. These were both likely the result of mobile
device error in assigning coordinates to the observations.
The herbarium data for T. jamesii contained seven errone-
ous presences, all of which were the result of incorrect tax-
onomic classification. Much more effort was then required
to confidently omit these specimens from our dataset com-
pared to the iNaturalist data. It is however important to
note that a vast number of plants require direct observation
with a hand lens or dissecting scope to be correctly
identified, which cannot be achieved with most iNaturalist
photos. Our data integration approach would be best
applied to species with traits that make filtering out
erroneous iNaturalist observations possible. The fact that
T. jamesii has distinct flowers and is a habitat specialist
makes that process relatively easy; however, mistakes
might be more difficult to catch if the species has minute
diagnostic characteristic or a wider niche breadth. It is also
important to consider that this species had a similar num-
ber of herbarium and iNaturalist records (herbarium = 30,
iNaturalist = 29). The approach shown in this paper may
not be as promising in cases where the number of

herbarium records greatly outweighs the number of
iNaturalist records; however, instances where there are
much more iNaturalist records would likely benefit from
our approach.

From our framework, we generated an initial suite of
five commonly used modeling algorithms. The projec-
tions for each of these models appear qualitatively differ-
ent from one another. GAM, for instance, predicted more
total area of high-quality habitat, whereas BIOCLIM
predicted less. These different projections could have bio-
logical significance for this species. For example, our
GAM and Maxent model predict a lot more habitats out-
side the known range of this species, which could
indicate that this species is limited by dispersal. There
appears to be suitable habitat elsewhere, but T. jamesii
may not have the ability to establish in these favorable
areas. A more conservative projection such as RF might
indicate that T. jamesii is more constrained by the envi-
ronmental factors at the locations where it is already
found. Despite these differences, the evaluation metrics
between all models were relatively high. This is likely
due to the variation in optimal threshold values between
models. Another consideration to make when selecting a
modeling algorithm is computation time and interpret-
ability. All models ran relatively quickly, with GLM being
the quickest and longer run times for BIOCLIM and
GAM. Although computation time was not an issue in
this study, it could present challenges when modeling
species with larger ranges and more presences. Ease of
interpretability can vary between algorithms. It may be
more difficult to infer the direct relationship between
probability of occurrence and environmental variables
when using nonparametric algorithms such as RF and
Maxent, whereas statistical approaches like GLM will
give us a more direct inference on these relationships.
Ensemble models can sometimes offer an alternative to
using a single modeling algorithm when performance
varies between models (Araújo & New, 2007). Because
all models performed well and the goal of this study was to
evaluate the efficacy of different models for a rare species,
we chose not to consider an ensemble model. Additionally,
although ensemble models can sometimes be more accu-
rate than single model predictions (Marmion et al., 2009),

TAB L E 4 Test statistics for the second batch of random forest models based on which data are used for training and which data are

used for testing.

Training data Testing data TSS Sens Spec AUC

Herbaria Herbaria 0.935 1.00 0.935 0.988

Herbaria iNaturalist 1.00 1.00 1.00 1.00

Herbaria and iNaturalist Herbaria and iNaturalist 0.896 0.96 0.932 0.981

Abbreviations: AUC, area under curve; Sens, sensitivity; Spec, specificity; TSS, true skill statistic.
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it is important to consider that the models we use are fun-
damentally predicting different things. For example, an
envelope model, such as BIOCLIM, predicts environmen-
tal similarity while a statistical method, such as GLM,
predicts the probability of occurrence (Fletcher &
Fortin, 2018). We found that our RF model had the best fit
of all five models (Figure 5). This was surprising because
Maxent is a more widely used modeling algorithm for
SDMs (Fletcher & Fortin, 2018) and has often been treated
as the default method for modelers due to its prevalence
(Fourcade et al., 2014). We show that it is informative to
investigate a number of different modeling techniques
when dealing with rare species.

Proceeding with RF, we found that our model
performed the best when using herbaria data as training
data and iNaturalist data as testing data, though all com-
binations tested performed very well. External indepen-
dent datasets often provide more robust evaluations of

presence-only models (Araújo et al., 2005). Since these
datasets are difficult for modelers to obtain, the utility of
iNaturalist data for validation shown in this study is prom-
ising. However, there were drawbacks to using iNaturalist
for validating our SDM for T. jamesii. Collections from
herbaria ranged from northern Colorado through New
Mexico. iNaturalist data did not span that range, with all of
the observations derived from Colorado. Even though our
herbaria-only model was accurate at predicting the
iNaturalist occurrences, the iNaturalist occurrences did not
represent the entire distribution of this species. Similarly,
the herbaria-only model was not as accurate when
cross-validated compared to being externally validated.
This suggests that it had difficulty predicting suitable habi-
tat across the entire study extent outside of the few promi-
nent populations in Colorado. Because many narrow
endemics follow similar patchy distributions across their
ranges (Kruckeberg & Rabinowitz, 1985), more localized

F I GURE 5 Best-performing random forest (RF) model (left) showed in contrast with occurrences of herbarium and iNaturalist records

(right). Red dots indicate presence from herbarium dataset and blue dots indicate presence from iNaturalist dataset.
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validation datasets like the one used in this study may not
be as promising as their test statistics suggest.

An important factor to consider when training SDMs
is scale (Fletcher & Fortin, 2018). Although some of our
predictor variables, such as elevation and landcover, were
mapped at finer resolutions, all of our climatic predictors
were at a grain size of 900 m. Variation in climate is gen-
erally not as drastic across most landscapes, but the steep
gradients of alpine and subalpine environments bring
about changes in microclimates at much smaller scales
(Wershow & DeChaine, 2018). This variation is not likely
represented in the climatic predictors used in these
models. Another caveat is that although T. jamesii fol-
lows a distribution pattern similar to many other rare
endemics, most of the known subpopulations are cen-
tered around Pikes Peak and Rocky Mountain National
Park, which are among the most highly trafficked wilder-
ness areas in Colorado. This means that T. jamesii may
have more abundant iNaturalist data compared to
other species with patchy distributions. Therefore, our
approach may be less effective for species that are not dis-
tributed around popular destinations.

Another important consideration when modeling rare
species is distinguishing whether the small number of
records is because observations have been made at a sub-
set of populations or if few records are available because
the species only occurs in a few locations to begin with.
In the latter case, the data may provide an accurate repre-
sentation of a species distribution despite having limited
records. It is possible that the records available for
T. jamesii, while few, accurately represent its distribution,
but that is difficult to truly discern. In either case, we
cannot know for certain the true distribution of this spe-
cies, and we will always be biased by data we have in any
model. Although cleaning the data spatially and tempo-
rally as we have done here can help us reduce biases,
these concerns may very well persist in the remaining
records. Specifically, it is difficult to separate the effects
of high sampling efforts in the highly visited areas of
Pikes Peak and Rocky Mountain National Park from the
true distribution of T. jamesii. SDMs can also suggest
areas of suitable habitat where unrecorded populations
might occur. Our best-performing model (RF) predicted
suitable habitat in areas with records and also in other
areas where no occurrences have been recorded, such as
in southern Colorado. Targeted surveys of this region
could potentially identify new populations. Expert evalu-
ation of model projections can often aid in validating
SDMs (Fourcade, 2016; Gast�on et al., 2014); however,
expert knowledge may also be bound to the same distribu-
tional records that are already used in SDMs. We shared
our results with botany experts at several institutions in
Colorado: the Colorado Natural Heritage Program, the

University of Colorado Herbarium, and the Colorado
Native Plant Society—none of which knew of any anec-
dotal occurrences in the Sangre de Cristo Mountains.
Additionally, none reported knowledge of any occurrences
outside the areas of our known records. It is also possible
that an area with suitable habitat for T. jamesiimay not be
occupied due to dispersal limitations preventing the coloni-
zation of these typically isolated mountain habitats. In this
case, areas like the Sangre de Cristos may be a potential
refuge for this species if land managers or conservation
practitioners were ever to transplant individuals from other
populations.

There is a wide potential usefulness for the data inte-
gration approach shown in this study toward the conser-
vation and management of rare species. We have shown
that community science data can be reliable and substan-
tially increase the number of usable records leveraged
for modeling distributions. Both museum records and
iNaturalist records require examination to determine
taxonomic and location reliability. The use of iNaturalist
data improved model fits only slightly. Choice of model-
ing algorithm showed more variation in our results than
choice of data source. Much of the information needed to
accurately model T. jamesii distribution was already cap-
tured in the herbarium data. We therefore speculate that
this framework may be more useful for a species with more
iNaturalist observations in novel habitats. It is important
to consider that this is a species-specific study, and greater
insights could be gained through a multispecies approach.
A potential next step would be to evaluate how this
data integration approach differs between species dis-
playing different patterns of rarity (Rabinowitz, 1981).
Notwithstanding these caveats, the information obtained
from our model projections can aid in the conservation of
T. jamesii to support future targeted surveys (Williams
et al., 2009), help identify populations most at risk, and pre-
dict how distributions may be affected by future climate
change (Franklin, 2013). This study can serve as ground-
work for future SDM studies of species with similar data
limitations.
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