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Abstract
Plant-pollinator interaction networks are dynamic in time and space. Interaction turnover consists of interaction rewiring 
(i.e., changes in interactions independent of species turnover) and species turnover (i.e., the gain or loss of species present 
in the network). To capture network dynamics, it is crucial to address the effect of sampling effort because insufficient data 
can distort apparent network patterns. We used eight years of plant-pollinator interaction data from a subalpine meadow to 
examine patterns of temporal (week-to-week) interaction turnover and the role of sampling effort. With increasing sampling 
effort, values of interaction turnover and species turnover decreased, and rewiring increased. Saturation curves suggest an 
approach towards true values with higher sampling effort. Across the eight years, substantial variation in weekly and seasonal 
interaction turnover was observed, with identifiable seasonal trends across all aggregated years. These results demonstrated 
that the interpretation of interaction turnover and its components is sensitive to sampling effort, stressing the importance of 
considering its role in network studies.
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Introduction

Plants and pollinators engage in mutualistic interactions 
that are beneficial to the plant and the pollinating animal 
(Bascompte 2009). These plant-pollinator interactions form 
and dissolve over time and space, creating a dynamic net-
work structure (CaraDonna et al. 2021). In temperate areas, 
where cold weather limits the growth of plants and polli-
nators, flowers and pollinator activity generally increase as 
the weather warms throughout the season, then decrease 
as the season wanes and temperatures drop (Inouye 2022). 
Across a growing season and among years, the phenolo-
gies of plants and their pollinators are variable–at different 
times flowers bloom, insects emerge, become active, and 
die. These phenological processes influence opportunities 
for interactions as species enter or leave the network over the 
season (Simanonok and Burkle 2014; Ogilvie and Forrest 

2017; Resasco et al. 2021). Pollinator preferences for floral 
resources may also vary throughout the season (Ogilvie and 
Thomson 2016). There has been increasing interest in under-
standing fluctuations within these networks and the underly-
ing processes driving them (Poisot et al. 2015; Trøjelsgaard 
and Olesen 2016; CaraDonna et al. 2017; Chacoff et al. 
2018; Schwarz et al. 2020; Resasco et al. 2021).

Interactions may change over time and space due to two 
observable patterns: (1) interaction rewiring, as the change 
in interactions independent of species turnover, or (2) spe-
cies turnover, as the change in species present (Poisot et al. 
2012). Interaction rewiring represents the reassembly of 
interactions among shared species over time and space, 
while species turnover represents changes in community 
composition over time and space as species are gained or lost 
(Fig. 1). Together, these measures provide insight into the 
dynamics of plant-pollinator interactions and allow exami-
nation of the mechanisms driving changes in community 
structure and function. The patterns of interaction dissimi-
larity or turnover in plant-pollinator networks can be exam-
ined by utilizing beta-diversity, which quantifies changes in 
species diversity (Novotny 2009; Poisot et al. 2012). Beta-
diversity, broadly defined as the turnover of ecological enti-
ties (e.g., species or interactions) between sampling units 
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(Novotny 2009; Anderson et al. 2011), can also be used to 
assess dissimilarity in interaction networks (Poisot et al. 
2012; Simanonok and Burkle 2014; Carstensen et al. 2014; 
CaraDonna et al. 2017). In this study, interaction turnover 
assesses the dissimilarity between pairs of networks sampled 
one week apart from each other across growing seasons.

An important consideration in the investigation of net-
work dynamics is the impact of sampling effort (Schwarz 
et al. 2020). Incomplete sampling may affect inferences from 
collected data and bias interpretation of network measures 
(Vázquez et al. 2022; Blüthgen and Staab 2024), includ-
ing interaction turnover and its components. While fully 
sampling plant-pollinator networks in nature is practically 
impossible in most systems, researchers may increase sam-
pling effort to obtain a more complete picture of the net-
work (Jordano 2016). By understanding how sampling effort 
affects inferences about network measures and their dynam-
ics, researchers can better understand potential biases and 
guide their study design (Jordano 2016). Although the effect 
of sampling effort has been considered on some network 
metrics (Nielsen and Bascompte 2007; Chacoff et al. 2012; 
Rivera-Hutinel et al. 2012; Vizentin‐Bugoni et al. 2016), its 
influence on the dynamics of interaction turnover is poorly 
understood.

In this study, we used eight years of plant-pollinator inter-
action data to examine how sampling effort (as the number 
of plots included in the analysis) affects the interpretation of 
and assumptions about the components of interaction week-
to-week turnover and the patterns observed across seasons 
and years. We asked (1) how apparent interaction turnover 
and its components (i.e., species turnover and interaction 
rewiring) change as a function of sampling effort, and (2) 
how interaction turnover and its components change across 
seasons and over eight years. To investigate these questions, 
we used two different methods to calculate the components 
of interaction turnover, one proposed by Poisot et al. (2012) 
and the other proposed by Fründ (2021); different methods 

of calculating interaction turnover may also affect interpreta-
tions of the magnitude and variability of interaction turnover 
components (Poisot et al. 2012; Fründ 2021).

With these questions in mind, we hypothesized that (1) 
sampling effort influences the interpretation of interaction 
turnover and its components. As sampling effort increases, 
more species and interactions are detected, reducing appar-
ent interaction turnover. Since species richness saturates 
faster than interaction richness with greater sampling effort 
(Resasco et al. 2021), the contribution of species turnover 
declines with increasing sampling effort. Given the additive 
relationship between species turnover and rewiring (Poisot 
et al. 2012), a reduction in species turnover results in a pro-
portional increase in rewiring. We also hypothesized that 
(2) interaction turnover is expected to follow a relatively 
consistent seasonal pattern across years, decreasing towards 
the end of the season as species and interactions become 
more persistent. Rewiring may follow an inverse U-shaped 
trend, peaking in the middle of the flowering season when 
species turnover is lowest. In contrast, species turnover may 
be higher at the beginning and end of the season, reflecting 
rapid changes in floral and pollinator composition driven 
by phenology and environmental factors such as snowmelt 
and temperature. However, these patterns may vary across 
years due to variability in climate, resource availability, and 
idiosyncrasies of small networks.

Methods

Sampling and collection

The study was conducted in a subalpine meadow (Fig. S1) 
in the Colorado Rocky Mountains, at the University of 
Colorado’s Mountain Research Station (40°01048′′ N, 
105°32026′′ W). Data were collected weekly (at an average 
of 7.06 days apart) during the annual flowering season from 

Fig. 1  Conceptual diagram of interaction rewiring and species turno-
ver. Solid lines indicate conserved or new interactions, while dot-
ted lines represent lost interactions. A shows interaction rewiring 
as changes only in which species are interacting over time. B shows 

species turnover as changes in the species present or gain or loss of 
species over time and the associated changes in interactions. Diagram 
adapted from CaraDonna et al. 2017
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2015 through 2022; the flowering season typically begins 
after snowmelt in late May or early June, with plant, polli-
nator, and interaction richness peaking in mid-summer, and 
the season concluding in September (Fig. S2). Sampling was 
conducted in six plots (five 30 × 2 m plots and one 20 × 2 m 
plot) across the meadow, which occupies an area of approxi-
mately 110 × 40 m (Fig. S1). Interactions were recorded dur-
ing fair weather between 8:00 and 12:00 h. Plant-pollinator 
interactions were sampled by walking around each plot for 
15 min in random order and observing flowers for visitors. 
All plots were sampled each week for exactly the same dura-
tion (15 min) such that the sampling effort was consistent 
across the season. When a pollinator contacted the reproduc-
tive part of the flower, the pollinator was collected with an 
aspirator or net. The pollinator was identified when it was 
collected or later identified in the lab, with the plant species 
recorded at the time of sampling. A total of 81% of pollina-
tors were identified to species level, and 18% were identi-
fied to genus level. Taxonomic resolution of identifications 
can also play a role in network inference (Vázquez et al. 
2022); for example, species identified to the genus level may 
mask species turnover and influence turnover components. 
This study builds on the dataset from Resasco et al. (2021), 
including three additional years of sampling.

Partitioning interaction turnover

Interaction turnover (ßWN, using Whittaker's dissimilar-
ity), a measure of beta diversity, or the dissimilarity between 
networks, can be partitioned through differing calculation 
methods (Poisot et al. 2012; Fründ 2021), but each has the 
practical objective of separating its components of inter-
action rewiring and species turnover. Specifically, these 
components are (1) the rewiring component (ßOS), which 
is the dissimilarity of interactions between species shared 
by both networks, and (2) the species turnover component 
(ßST), which is the dissimilarity of interactions due to spe-
cies turnover (Poisot et al. 2012). To separate these compo-
nents, Poisot et al. (2012) proposed a method that derives 
its partitioning via an additive model in which interaction 
rewiring (ßOS) is subtracted from the overall interaction 
turnover (ßWN) to obtain species turnover (ßST) so that 
ßWN = ßST + ßOS. An alternative method derived from an 
additive partitioning approach based on Novotny (2009) has 
also been suggested (Fründ 2021). This method keeps the 
same denominator for the total network dissimilarity, only 
partitioning the numerator, which results in lower magni-
tudes of interaction rewiring. Fründ (2021) intends to parti-
tion dissimilarity into additive components and contends that 
the method proposed by Poisot et al. (2012) is not properly 
additive and overestimates the role of rewiring. Hereafter, 
the method proposed by Poisot et al. (2012) will be referred 
to as the “poisot” method while the method proposed by 

Fründ (2021) will be referred to as the “commondenom” 
method, each referring to how they are identified in the R 
package “bipartite” (v 2.18, Dormann et al. 2009). Because 
the methods of calculating ßOS and ßST may address dif-
ferent aspects of questions about plant-pollinator network 
dissimilarity (Fründ 2021), it is worthwhile considering both 
partitioning methods to examine whether the magnitude or 
variation of values of ßOS and ßST change for each of the 
research questions. This study used empirical data to com-
pare these methods to better understand how week-to-week 
interaction turnover changes as a function of sampling effort 
and assess whether the conclusions are qualitatively similar.

Statistical analyses

To calculate interaction turnover (ßWN) and its two com-
ponents of interaction rewiring (ßOS) and species turnover 
(ßST), weekly plant-pollinator interaction matrices were cre-
ated for each of the eight years to measure turnover across 
week-to-week interaction networks. The number of weeks 
sampled in each year ranged from between 13 and 17. Only 
weekly networks were included in the analyses that consisted 
of at least three plant species and three pollinator species, 
resulting in a total of 117 weekly networks. In plant-polli-
nator interaction matrices, columns represent pollinator spe-
cies, rows represent plant species, and values represent the 
number of observed interactions. Then, ßWN, ßOS, and ßST 
values were calculated for all subsequent weekly matrices 
using the betalinkr function implemented in the R package 
“bipartite” (v 2.18, Dormann et al. 2009). ßWN, ßOS, and 
ßST were calculated using both the “poisot” (Poisot et al. 
2012) and “commondenom” (Fründ 2021) partitioning 
methods. All analyses were performed using values obtained 
by the two methods. All statistical analyses were performed 
in R version 4.3.0 (R Core Team 2023).

Sampling effort in interaction network studies is often 
increased by expanding the area (Dáttilo et al. 2019) or 
duration of sampling (e.g., Vizentin-Bugoni et al. 2016). To 
examine the effect of increased sampling effort, calculation 
of ßWN, ßOS, and ßST was repeated on subsets of data, 
including different numbers of plots, with increasing plots 
increasing both area and duration of sampling. To calculate 
these values, subsets of data were created by including every 
combination of one to six plots (e.g., for one: each plot indi-
vidually, for two: plots 1 and 2, plots 1 and 3, plots 2 and 
3… and so on), until values for all 126 unique combinations 
of plots had been obtained.

The effect of sampling effort on apparent 
interaction turnover and its components

The first aim was to examine how apparent interaction 
turnover and its components of interaction rewiring and 
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species turnover change as a function of sampling effort. 
Specifically, we were interested in determining how aver-
age values of ßWN, ßOS, and ßST changed across the 
season, aggregated across years, depending on the number 
of plots sampled. To investigate this question, a series of 
multiple linear regression models were fit using the lm 
function in the “stats” R package (version 4.3.0, R Core 
Team 2023). Average values of ßWN, ßOS, and ßST, 
respectively, were included as response variables, and 
ordinal day (i.e., calendar day of year ranging from 1 to 
366 starting on January 1) and the number of included 
plots as predictors. Initially, the interaction between the 
two predictor variables was also included to examine 
whether the effects of sampling effort vary over the season. 
To check for multicollinearity in the models, we calculated 
the generalized Variance Inflation Factor (gVIF). Specifi-
cally, we calculated gVIF^(1/(2*Df)), as this provides a 
more interpretable VIF equivalent. For all three models 
(using average values of ßWN, ßOS, and ßST as response 
variables), the VIF equivalent for the interaction term and 
the number of plots showed a VIF greater than 5, indicat-
ing high collinearity. Therefore, we removed the interac-
tion term. After removal of the interaction term, the VIF 
equivalent of all variables was close to 1, indicating no 
multicollinearity. The predictor variables were fitted as 
both linear and quadratic terms, as a non-linear relation-
ship between the response and predictors was predicted. 
The model fit including the quadratic terms was compared 
to models where predictors were included only as linear 
terms using AIC (Akaike information criterion) values. 
In all cases, models that included a quadratic term were 
a better fit. Models were visually inspected to ensure that 
model assumptions were fulfilled, including linearity, 
homogeneity of variance, collinearity, and normality of 
residuals, using the check_model function in the “perfor-
mance” R package (version 0.10.8, Lüdecke et al. 2021). 
We used these models to assess the relationship between 
sampling effort and turnover metrics, rather than for strict 
statistical inference, since resampling of plots generates 
non-independence.

For each final selected model, a comparison of the 
response variable predicted by each combination of 
the number of plots included was conducted to further 
examine the effects of sampling effort. The “emmeans” 
R package (version 1.8.9, Lenth et al. 2023) was used for 
comparisons between plot combinations. The “emmeans” 
package uses the Tukey method for comparing pairs and 
adjusting p values.

To gain additional insight into how resulting data were 
affected by sampling effort, species richness and interac-
tion richness were calculated and visualized to see how 
they increase with increasing sampling effort. Accumu-
lation and extrapolation curves were plotted, using the 

iNEXT function in the iNEXT R package (version 3.0.0, 
Hsieh et al. 2016).

Dynamics of interaction turnover and its 
components across seasons

Our second aim was to examine how interaction turnover 
and its components change across seasons and over eight 
years. Specifically, we were interested in determining how 
flowering season (measured by ordinal day) and year related 
to values of ßWN, ßOS, and ßST.

To investigate this question, a series of linear mixed-
effect models (LMMs) were fit using the lmer function in the 
package “lme4” (version 1.1–35, Bates et al. 2015). ßWN, 
ßOS, and ßST, respectively, were the response variables, 
ordinal day was included as a fixed predictor, and year (as 
a factor with eight levels) was included as a random effect. 
The predictor variable, ordinal day, was included both as 
a linear and as a quadratic term, as the relationships were 
hypothesized to be non-linear. Each model was visually vali-
dated to ensure that model assumptions were fulfilled.

Results

The effect of sampling effort on apparent 
interaction turnover and its components

Temporal interaction turnover (i.e., turnover in interactions 
from one week to the next; ßWN), rewiring (ßOS), and spe-
cies turnover (ßST) were affected by sampling effort (num-
ber of plots included; Figs. 2 and 3). Specifically, interac-
tion turnover and species turnover decreased, and rewiring 
increased, as the sampling effort increased. A comparison 
of the response variable predicted by each combination of 
the number of plots included revealed that as the difference 
between the number of plots included increased, the differ-
ence in the response variable increased (Table S1; Fig. S4).

Apparent interaction turnover decreased as the number 
of plots included increased (Figs. 2 and 3), and changed 
across the season depending on the ordinal day (Table S2, 
Fig. 2). Because the calculation for ßWN is identical in both 
methods, ßWN exhibits the same trends when the “poisot” 
method was used as with the “commondenom” method. 
Apparent interaction rewiring, ßOS, increased as the number 
of plots included increased (Table S2, Figs. 2 and 3). Finally, 
apparent species turnover, ßST, decreased as the number of 
plots included increased (Table S2, Figs. 2 and 3). Results 
using the “commondenom” method displayed similar trends 
to the results using the “poisot” method (Table S2, Figs. 2 
and 3).
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Dynamics of interaction turnover and its 
components across seasons

Interaction turnover, ßWN, varied considerably across years 
but generally followed a decrease from the beginning to end 
of a season (Table S3, Fig. 4). Ordinal day as a linear term 
had a significant negative effect on ßWN (Table S3). Rewir-
ing, ßOS, was highly variable across years but somewhat 
tended to peak in the middle of the season with a trend 
toward the lowest values occurring at the beginning and 
end of the season (Table S3, Fig. 4). However, there was no 
significant effect of ordinal day (Table S3). Finally, species 
turnover, ßST, generally had higher values than rewiring at 
the beginning of the season, declined in the middle of the 
season, then had a slight uptick towards the end of the sea-
son (Table S3, Fig. 4). Ordinal day was positively related to 
ßST (Table S3). Random effects analysis revealed variance 
in intercepts across years for all models (Table S3). As the 
calculation method for ßWN is identical in both methods, 
ßWN exhibited the same trends when using the “poisot” or 
“commondenom” methods (Table S3, Fig. 4). When using 

the “commondenom” method, trends across years were 
somewhat similar for ßOS and ßST, with ßOS having a lower 
overall magnitude of contribution to interaction turnover 
compared to the “poisot” method, and ßST having a higher 
overall contribution to ßWN (Table S3, Fig. 4).

Discussion

Our findings revealed that as sampling effort increased, 
apparent interaction turnover (ßWN) decreased. As sampling 
effort increased, the apparent levels of the rewiring compo-
nent (ßOS) also increased, while the apparent levels of the 
species turnover component (ßST) decreased. However, at 
a higher level of sampling effort—measured by the num-
ber of plots included—the results stabilized, indicating that 
the network was becoming robustly sampled and approach-
ing saturation. This suggests that, with adequate sampling, 
it is possible to obtain reliable estimates of interaction 
turnover and its components (Jordano 2016). The findings 
also revealed that ßWN, ßOS, and ßST exhibited seasonal 

Fig. 2  Interaction turnover and its components as a function of sam-
pling effort across the season. The top row (A, B, and C) uses the 
“poisot” method for partitioning while the bottom row (D, E, and F) 
uses the “commondenom” method for partitioning. Plots show the 
relationship between ordinal date and average values of ßWN (A and 

D, note that ßWN calculation is identical across methods), ßOS (B 
and E), and ßST (C and F) with polynomial regression lines for dif-
ferent numbers of included plots, from 1 to 6. Shaded areas represent 
standard error
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patterns; ßWN decreased over the season, ßST was higher 
towards the beginning and end of the flowering season, and 
ßOS showed a tendency towards rising in the middle of the 
season. These patterns are likely driven by seasonal phenol-
ogy and seasonal variations in climatic and other environ-
mental factors that influence networks. These results were 
consistent irrespective of the partitioning method (“poisot” 
or “commondenom”) used.

The effect of sampling effort on apparent 
interaction turnover and its components

Because insufficient sampling of plant-pollinator networks 
can distort approximations of the network patterns (Jordano 
2016; Vázquez et al. 2022), understanding how sampling 
effort affects inferences on network patterns is important. 
Sampling effort in ecological studies can be varied by 
increasing either the temporal extent, such as the duration 
or frequency of surveys, or by increasing the spatial extent, 
such as the number of plots or transects sampled. In our 
study, sampling effort is increased by expanding both the 

spatial and temporal extents of sampling. By incorporating 
more plots and increasing the sampling extent, research-
ers can capture greater spatial and temporal heterogeneity, 
providing more representative ecological networks. Here, 
the apparent decreases in ßWN and ßST, as well as appar-
ent increases in ßOS with increasing sampling effort, may 
be explained by species richness becoming saturated more 
quickly than interaction richness with increased sampling 
effort (Fig. S3). As species become better sampled with 
increasing sampling effort, lower species turnover from one 
week to the next should become more evident. Rare species 
are more likely to be detected at higher levels of sampling, 
influencing turnover estimates.

With more complete sampling, more possible pairwise 
interactions were also revealed. However, because the detec-
tion of new interactions did not increase at the same rate as 
the detection of new species (Fig. S3), the resulting rates 
of interaction rewiring compared to species turnover were 
higher when sampling was more complete. Furthermore, 
pairwise comparisons revealed that as the number of plots 
included increased, the effect of sampling effort on ßWN, 

Fig. 3  Interaction turnover and its components as a function of sam-
pling effort. The top row (A, B, and C) uses the “poisot” method 
while the bottom row (D, E, and F) uses the “commondenom” 
method for turnover partitioning. Plots show the relationship between 

average values of ßWN (A and D, note that ßWN calculation is iden-
tical across methods), ßOS (B and E), ßST (C and F), and the number 
of plots included in the analysis (sampling effort)
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ßOS, or ßST decreased. For instance, comparing five plots 
to six plots had less of an impact on the metrics than com-
paring one plot to two. This indicates that sampling effort 
was approaching a plateau for ßWN, ßOS, or ßST estimates, 
providing a more reliable depiction of interaction turnover 
at a higher sampling effort.

The contrasting partitioning methods did not result in any 
qualitative differences in the overall results. Sampling effort 
and ordinal day still significantly affected average values of 
ßWN, ßOS, and ßST, regardless of the calculation method. 
While ßOS and ßST additively contribute to ßWN in both 
methods, the partitioning approach led to different magni-
tudes for each component. For example, when values of ßST 
were low, values of ßOS were high, an attribute of partition-
ing that is particularly visible using the “poisot” method. 
The “commondenom” method reduced apparent rewiring, 
so while the two components are still additive, they are par-
titioned differently using a common denominator and ßOS is 
likely to display an inherently lower magnitude, which was 
reflected in the results. Pairwise comparisons revealed fewer 
significant differences in ßOS and ßST with the “commonde-
nom” method compared to the “poisot” method, indicating a 
slightly less pronounced effect of sampling effort. However, 

the general observed patterns were consistent between the 
two methods.

Dynamics of interaction turnover and its 
components across seasons

There was evidence of seasonal interaction turnover display-
ing prominent patterns across eight years, with interaction 
turnover (ßWN) decreasing from the beginning to the end of 
the season when yearly variation was controlled for. The rel-
atively higher degree of interaction turnover at the beginning 
of the season is likely due to species’ phenological differ-
ences and high variation in emergence time for different spe-
cies at the beginning of the season (e.g., early season flowers 
such as Cymopterus lemmonii and Taraxacum officinale and 
early season pollinators like Osmia bucephala; Simanonok 
and Burkle 2014, Resasco et al. 2021). At this point in the 
season, turnover is high, and new species emerge and enter 
the network each week. At the approximate midpoint of the 
season, most plant species are flowering and pollinator spe-
cies are active, decreasing week-to-week overall dissimilar-
ity. For rewiring (ßOS), a trend of relatively higher rewiring 
during the peak of the season was detected, which may be 

Fig. 4  Interannual variation in interaction turnover and its compo-
nents. The top row (A, B, and C) uses the “poisot” method for par-
titioning. The bottom row (D, E, and F) uses the “commondenom” 
method for partitioning. Plots display the relationship between ordi-
nal day and ßWN (A and D), ßOS (B and E), and ßST (C and F), 

with polynomial regression lines for each year from 2015–2022. 
Solid black lines indicate a statistically significant relationship; 
dashed black line indicates a non-significant relationship. Shaded 
areas represent the confidence interval of the regression line
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due to increased options for interactions between plants and 
pollinators to reassemble in the middle of the season when 
species richness of plants and pollinators are at their highest. 
Species turnover (ßST) was significantly affected by ordinal 
day and displayed an opposite trend to rewiring across all 
years, due to the additive nature of the two components.

The finding of aggregated seasonal trends in each inter-
action turnover component is consistent with the results 
of CaraDonna et al. (2017) on seasonal plant-pollinator 
interaction turnover across three years. However, our study 
demonstrated a greater degree of variability in inter-annual 
week-to-week temporal dynamics. While this study reflected 
the general seasonal trends identified by CaraDonna et al. 
(2017), the same degree of consistency across all eight years 
was not observed. This may suggest that seasonal plant-pol-
linator network dynamics may not be as consistent across 
years as previously documented.

Partitioning method

We examined the difference in calculation methods of 
partitioning ßWN into ßOS and ßST. A few recent stud-
ies have compared the two methodologies based on Poisot 
et al. (2012) and Fründ (2021). Ceron et al. (2022) used both 
methods in their predator–prey network study and found no 
changes to their main conclusions based on the partition-
ing method. Lázaro and Gómez‐Martínez (2022) consid-
ered both partitioning methods for estimating the rate of 
rewiring of plant-pollinator networks along a gradient of 
habitat loss, but lacked discussion of differences between 
the two methods. Whereas our analyses identified some dif-
ferences between partitioning methods, overall conclusions 
regarding the effects of sampling effort and patterns of sea-
sonal dynamics of ßWN and its components did not change 
substantially. This study contributes to the understanding 
of how interaction turnover partitioning methodology influ-
ences the interpretation of plant-pollinator network patterns.

Conclusion

This study calls further attention to the role of sampling 
effort in plant-pollinator network studies and how sensitive 
interaction turnover and its components are to incomplete 
sampling. Insufficient sampling effort can lead to overes-
timation of interaction turnover (ßWN) and the species 
turnover component (ßST), as well as underestimation of 
the rewiring component (ßOS). Without sufficient sampling, 
it becomes challenging to assess the accuracy of values of 
interaction turnover, leaving uncertainty as to whether they 
reflect true dynamics or are merely artifacts of sampling. 
Therefore, the assessment of apparent interaction turnover 
and its components as a function of sampling effort gives 

us insights into whether these metrics have reached satura-
tion and are approaching their true values, and how much 
sampling effort is required to reach a reliable estimate. Fur-
thermore, analysis of seasonal trends of interaction turnover 
over eight years demonstrates more variable seasonal pat-
terns from one year to the next compared to previous studies. 
Overall, this study contributes to a greater understanding 
of how sampling effort influences patterns of interaction 
turnover and inferences of temporal and spatial network 
dynamics.
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